JPS6250913A - Invalid electric power adjusting device - Google Patents

Invalid electric power adjusting device

Info

Publication number
JPS6250913A
JPS6250913A JP60189692A JP18969285A JPS6250913A JP S6250913 A JPS6250913 A JP S6250913A JP 60189692 A JP60189692 A JP 60189692A JP 18969285 A JP18969285 A JP 18969285A JP S6250913 A JPS6250913 A JP S6250913A
Authority
JP
Japan
Prior art keywords
reactive power
wire
stator
winding
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60189692A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
佐竹 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP60189692A priority Critical patent/JPS6250913A/en
Publication of JPS6250913A publication Critical patent/JPS6250913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE:To adjust the smooth invalid electric power simply and to eliminate the necessity of the maintenance almost by turning and positioning relatively the winding type rotor and the stator of the shifting device. CONSTITUTION:Switches S1-Sn and S1'-Sn' are all opened, so that a delay invalid electric power adjusting device 6 can obtain the maximum delay invalid electric powe, the rotational angle of a winding rotor 1 of a phase shifter M is adjusted to 180 deg. by a worm 5 to a stator 2. Next, switches S1' and S1 are inputted. At such a time, since the invalid electric power obtained by a capaci tor C1 and the delay invalid electric power obtained by the device 6 are equal, the total invalid electric power comes to be zero. Next, so that the invalid electric power obtained by the device 6 can come to be small, a rotational angle theta of the rotor 1 is decreased, the rotational angle theta is brought to 0 deg. and the switch S1' is opened. In the same way hereinafter, capacitors C2-Cn are proceeded and the invalid electric power is obtained. Thus, the total capacity of the phase shifter M and a transformer T can be decreased to 1/n of the capacitor K.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は無効電力を任意に調整できる無効電力調整装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a reactive power adjustment device that can arbitrarily adjust reactive power.

従来の技術 無効電力を調整する装置としては従来がら同期調相機や
りアクドルとコンデンサによるもの、さらにはサイリス
タによる遅れ無効電力調整装置がある。しかし、上記同
期調相機は一種の同期電動機で回転機であるため、起動
装置が複雑で、保守点検に手間がかかり、ざらに騒音が
大きいという欠点がある。また、上記リアクトルとコン
デンサによるものは、なめらかな無効電力の調整ができ
なく、また切換スイッチが消耗するという欠点がある。
BACKGROUND ART Devices for adjusting reactive power include conventional devices such as synchronous phase modifiers, devices using an accelerator and a capacitor, and lagging reactive power adjusting devices using thyristors. However, since the synchronous phase modifier is a type of synchronous motor and a rotating machine, it has drawbacks such as a complicated starting device, time-consuming maintenance and inspection, and a large amount of noise. Furthermore, the method using the reactor and capacitor described above has the drawback that it is not possible to smoothly adjust the reactive power, and the changeover switch is worn out.

すなわち、リアクトルはそのタップを切換えることによ
って巻線の巻数を変えることによって無効電力の調整を
するため、このタップ切換えによって無効電力が階段的
に調整され、なめらかな調整ができない。さらに、コン
デンサはその投入、開放の個数を変えることによって無
効電力を調整するので、調整が階段的になる。
That is, since the reactor adjusts the reactive power by changing the number of turns of the winding by switching the tap, the reactive power is adjusted stepwise by this tap switching, and smooth adjustment is not possible. Furthermore, since the reactive power is adjusted by changing the number of capacitors that are turned on and off, the adjustment becomes stepwise.

また、サイリスタによる遅れ無効電力調整装置は、リア
クトルに流れる電流をサイリスタで制御するもので、無
効電力のなめらかな調整ができるが、高調波が発生して
電源に悪影響を与えるという欠点がある。
In addition, a delayed reactive power adjustment device using a thyristor uses a thyristor to control the current flowing through a reactor, and allows smooth adjustment of reactive power, but has the disadvantage that harmonics are generated, which adversely affects the power supply.

発明が解決しようとする問題点 本発明は、上記従来技術が有する欠点を改善し、なめら
かな無効電力の調整ができ、保守をほとんど必要としな
い無効電力調整装置を提供することにある。
Problems to be Solved by the Invention The object of the present invention is to improve the drawbacks of the above-mentioned prior art and provide a reactive power adjustment device that can smoothly adjust reactive power and requires almost no maintenance.

問題点を解決するための手段 本発明は、巻線型回転子と固定子からなる移相器と変圧
器とを有し上記移相器の巻線型回転子及び固定子には各
々巻線を巻装し、巻線型回転子に巻装した巻線の端子と
上記変圧器の2次側端子を接続し、上記変圧器の1次側
端子と上記固定子に巻装された巻線の端子を並列に電源
に接続し、上記巻線型回転子と上記固定子は相対的に回
動し位置決めされるようにした。
Means for Solving the Problems The present invention has a phase shifter and a transformer each comprising a wire-wound rotor and a stator, and the wire-wound rotor and stator of the phase shifter are each wound with a wire. Connect the terminals of the windings wound around the wire-wound rotor to the secondary terminals of the transformer, and connect the primary terminals of the transformer and the terminals of the windings wound around the stator. The wire-wound rotor and the stator were connected in parallel to a power source so that they could be rotated and positioned relative to each other.

作  用 巻線型回転子と固定子のどちらか一方を回動させ位置決
めすることにより、その回動量に応じて無効電力を変化
させ制御することができる。
By rotating and positioning either the working wire-wound rotor or the stator, reactive power can be varied and controlled in accordance with the amount of rotation.

実施例 第1図は、本発明の無効電力調整装置の一実施例を示す
もので、本無効電力調整装置は、移相器Mと3相変圧器
Tによって構成され、本実施例においては、さらに3相
に結線されたコンデンサにの端子A、B、Cが3相交流
電源A、B、Cに接続されている。
Embodiment FIG. 1 shows an embodiment of the reactive power adjustment device of the present invention. The reactive power adjustment device is composed of a phase shifter M and a three-phase transformer T. Furthermore, terminals A, B, and C of the capacitor wired in three phases are connected to a three-phase AC power source A, B, and C.

上記移相器Mは巻線型回転子1と固定子2によって構成
され、上記巻線型回転子1の回転子軸3にウオーム歯車
4が固着され、該ウオーム歯車4にウオーム5が噛み合
っており、該ウオーム5を回動させることによって上記
巻線型回転子1を回動させ、上記固定子2に対しその静
止位置を制御できるようになっている。そして、上記固
定子2には3相の1次巻線が施され、その端子A、B。
The phase shifter M is composed of a wire-wound rotor 1 and a stator 2, a worm gear 4 is fixed to the rotor shaft 3 of the wire-wound rotor 1, and a worm 5 is meshed with the worm gear 4, By rotating the worm 5, the wire-wound rotor 1 can be rotated, and its stationary position relative to the stator 2 can be controlled. The stator 2 is provided with a three-phase primary winding, and terminals A and B thereof.

Cは3相交流電源に接続され、上記巻線型回転子1には
3相の2次巻線が施され、その端子a、b。
C is connected to a three-phase AC power supply, and the wire-wound rotor 1 is provided with a three-phase secondary winding, and its terminals a and b.

Cは3相変圧器Tの2次側端子a、b、cに接続され、
該3相変圧器Tの1次側端子A、B、Cは3相交流電源
A、B、Cに接続されている。なJ5、移相器Mの巻線
型回転子1の3相巻線を1次巻線とし、固定子2の3相
巻線を2次巻線としてもよい。また、上記実施例では、
移相器Mの巻線型回転子1を固定子2に対し回動できる
ようにしたが、逆に巻線型回転子1に対し、固定子2を
回動させるようにしてもよい。また、巻線型回転子1ま
たは固定子2を相対的に回動させる手段としてウオーム
5とウオーム歯車4を用いたが、他の構成でもよい。
C is connected to secondary side terminals a, b, c of three-phase transformer T,
Primary terminals A, B, and C of the three-phase transformer T are connected to three-phase AC power supplies A, B, and C. J5, the three-phase winding of the wire-wound rotor 1 of the phase shifter M may be used as the primary winding, and the three-phase winding of the stator 2 may be used as the secondary winding. Furthermore, in the above embodiment,
Although the wire-wound rotor 1 of the phase shifter M can be rotated with respect to the stator 2, the stator 2 may be rotated with respect to the wire-wound rotor 1 conversely. Further, although the worm 5 and the worm gear 4 are used as means for relatively rotating the wire-wound rotor 1 or the stator 2, other configurations may be used.

そこで、上記構成よりなる本実施例について移相器Mの
巻線型回転子1の位置を上記ウオーム5によって回動さ
せて電気角θだけ回動した位置で静止させ、この状態に
おける無効電力について解析する。
Therefore, in this embodiment having the above configuration, the position of the wire-wound rotor 1 of the phase shifter M is rotated by the worm 5 and then stopped at a position rotated by an electrical angle θ, and the reactive power in this state is analyzed. do.

巻線型回転子1の3相巻線のa相に誘起する電圧を61
とし、変圧器Tの2次側a相の誘起電圧を62とする。
The voltage induced in the a phase of the three-phase winding of the wire-wound rotor 1 is 61
The induced voltage on the secondary side a-phase of the transformer T is 62.

そして、変圧器Tの変圧比は一ヒ記巻線型回転子1の3
相巻線のa相に誘起する電圧a1の絶対値と変圧器Tの
2次側a相の誘起電圧e2の絶対値が等しくなるように
選定する。
The transformation ratio of the transformer T is 3 of the wire-wound rotor 1.
The voltage is selected so that the absolute value of the voltage a1 induced in the a-phase of the phase winding is equal to the absolute value of the induced voltage e2 in the secondary a-phase of the transformer T.

いま、上記誘起電圧δ2を基準にとり62−Eとすると
、巻線側の誘起電圧61は巻線型回転子1の位置が電気
角でθだけ回動しているから、6、=E6JOとなる。
Now, assuming that the induced voltage δ2 is 62-E, the induced voltage 61 on the winding side becomes 6=E6JO since the position of the wire-wound rotor 1 has rotated by θ in electrical angle.

いま、巻線型回転子1の巻線と変圧器Tの2次側巻線の
1相分の漏れインピーダンスの総和を7とし、その抵抗
弁をr、リアクタンス分をXとすると、巻線型回転子1
の3相巻線のa相端子から変圧器Tの2次側のa相端子
に向って流れる電流Iは次の第(1)式のようになる。
Now, if the sum of the leakage impedances for one phase of the winding of the wire-wound rotor 1 and the secondary winding of the transformer T is 7, the resistance valve is r, and the reactance is X, then the wire-wound rotor 1
The current I flowing from the a-phase terminal of the three-phase winding to the a-phase terminal on the secondary side of the transformer T is expressed by the following equation (1).

Zr + jx    r + jx    −= <
 1)従って電流Iの共役を■とすると、リアクタンス
Xによる無効電力QXは次の第(2)式のようになる。
Zr + jx r + jx −= <
1) Therefore, if the conjugate of the current I is set to ■, then the reactive power QX due to the reactance X is expressed by the following equation (2).

E(εJθ−1)E(ε−Jo−1〉 Qx  = x Il = x −−−□r + jx
    r −jx εJθε−Jo−εJθ−ε−Jθ+1= X EQ 
E(εJθ−1) E(ε−Jo−1〉 Qx = x Il = x −−−□r + jx
r −jx εJθε−Jo−εJθ−ε−Jθ+1= X EQ
.

r’+x’ 2−(CO3θ+j sinθ) −(cosθ−j 
sinθ)2− (1−cosθ) = X EQ◆−一一一1−一。
r'+x' 2-(CO3θ+j sinθ) -(cosθ-j
sinθ)2-(1-cosθ)=X EQ◆-1111-1.

r ’ +x ’ EQ      1 =□・□・2 (1−cosθ) X    (r/x)2+1            
    ・・・・・・・・・(2)第(2)式かられか
るように、移相器Mの巻線型回転子1の位置θを変えれ
ば無効電力Qxを変化させることができる。
r'+x' EQ 1 =□・□・2 (1-cosθ) X (r/x)2+1
(2) As can be seen from equation (2), by changing the position θ of the wire-wound rotor 1 of the phase shifter M, the reactive power Qx can be changed.

この関係を図示すると第2図のようになる。すなわち、
巻線型回転子1の位置θを横軸にとり、無効電力を縦軸
にとると、リアクタンスXによる無効ミノ〕は図示のQ
xの曲線となる。
This relationship is illustrated in FIG. 2. That is,
If we take the position θ of the wire-wound rotor 1 on the horizontal axis and the reactive power on the vertical axis, then the reactive power due to the reactance
It becomes a curve of x.

次に、コンデンサにのA相の無効電力をQcとすればこ
れは進み無効電力であり、また、巻線型回転子1の位置
θに無関係であるから第2図のQCの直線となる。従っ
て、QxとQcの和は第2図の(Qx +Qc )の曲
線となる。
Next, if the A-phase reactive power in the capacitor is Qc, this is leading reactive power, and since it is unrelated to the position θ of the wire-wound rotor 1, it becomes the straight line of QC in FIG. Therefore, the sum of Qx and Qc becomes the curve (Qx +Qc) in FIG.

この第2図の(QX +QC)の曲線かられかるように
、本発明の無効電力調整装置に入るA相の無効電力(Q
X +QC)は、移相器Mの巻線型回転子1の位置θを
0度から180度まで変化させると、進み無効電力から
遅れ無効電力へと変化させることができる。
As can be seen from the curve (QX +QC) in FIG. 2, the A-phase reactive power (Q
X +QC) can be changed from leading reactive power to lagging reactive power by changing the position θ of the wire-wound rotor 1 of the phase shifter M from 0 degrees to 180 degrees.

以上の説明においてはA相のみ考えているが、B、C相
についても同様である。また、以上の説明においては、
移相器Mの固定子2と変圧器Tの1次側の漏れリアクタ
ンスと励磁インピーダンスによる無効電力を省略してい
るが−これは説明を簡単にするためで、実際の無効電力
はこれ等を含めたものとなる。
In the above explanation, only the A phase is considered, but the same applies to the B and C phases. Also, in the above explanation,
The reactive power due to the leakage reactance and excitation impedance of the stator 2 of the phase shifter M and the primary side of the transformer T is omitted - this is to simplify the explanation, and the actual reactive power is It will be included.

次に、本発明の無効電力調整装置を使用して受電端の電
圧を調整することについて述べる。
Next, a description will be given of adjusting the voltage at the receiving end using the reactive power adjusting device of the present invention.

第3図に示すように、送電端電圧をVS、線路1のイン
ピーダンスを(R+j X) 、受電端電圧を■「、受
電端の複素電力を(P+j Q)とげる。
As shown in Fig. 3, the voltage at the sending end is VS, the impedance of the line 1 is (R+j

ここで、受電端には負荷と並列に本発明の無効電力調整
装置が接続されており、受電端の無効電力Qが本発明の
無効電力調整装置によって調整できるようになっている
Here, the reactive power adjusting device of the present invention is connected to the power receiving end in parallel with the load, so that the reactive power Q of the power receiving end can be adjusted by the reactive power adjusting device of the present invention.

いま線路1を流れる電流をtiとすると、これは次の第
(3)式のようになる。
Assuming that the current flowing through the line 1 is ti, this is expressed by the following equation (3).

i皇=(V s−ψりべR+jX)    ・・・・・
・(3)として受電端電圧をVr =Vrε−Jδとす
る。ここでδは送受雷端雷圧の相差角である。
i = (V s - ψ R + jX) ...
- As for (3), the receiving end voltage is set to Vr = Vrε-Jδ. Here, δ is the phase difference angle of the lightning pressure at the transmission and reception terminals.

上記第(3)式を用いて受電端の複素電力は次式のよう
になる。
Using the above equation (3), the complex power at the receiving end is expressed as follows.

Vs Vr 、E−一δ−VrQ =□       ・・・・・・(4)−jX 第(4)式を整理すると次第(5)式のようになる。Vs Vr ,E-1δ-VrQ =□     ・・・・・・(4)−jX When formula (4) is rearranged, it becomes formula (5).

(P十j Q)(P−j X)  =Vs Vr e−
Jδ−Vr2・・・・・・(5) 第(5)式の両辺の実数部と虚数部がそれぞれ等しいこ
とから次の第(6)式が成立する。
(Pj Q) (P-j X) =Vs Vr e-
Jδ−Vr2 (5) Since the real part and the imaginary part on both sides of equation (5) are equal, the following equation (6) holds true.

RP十XQ+Vr ’ =Vr Vs cosδRQ−
XP=−Vr Vs sinδ ・・・・・・(6) 第(6)式の2つの式の2乗和をとると次式のようにな
る。
RP1XQ+Vr' = Vr Vs cos δRQ-
XP=−Vr Vs sin δ (6) When the sum of the squares of the two equations in equation (6) is taken, the following equation is obtained.

(RP十XQ+Vr 2)’ + (RQ−XP)=y
r !2  ysQ             ・・”
”  (7)いま、受電端の無効電力Qを本発明の無効
電力調整装置によって(Q+ΔQ)に増大させたとする
。この場合の受電端電圧の変動をΔ■rとすると、これ
は次式のようになる。
(RP1XQ+Vr2)' + (RQ-XP)=y
r! 2ysQ...”
(7) Now, suppose that the reactive power Q at the receiving end is increased to (Q + ΔQ) by the reactive power adjustment device of the present invention.If the variation in the voltage at the receiving end in this case is Δ■r, this is expressed by the following equation. It becomes like this.

ΔVr = (6Vr /8Q)ΔQ・・・・・・(8
)第(1)式から偏微分(8Vr /6Q)を求めて第
(8)式に代入すると次式が得られる。
ΔVr = (6Vr / 8Q) ΔQ (8
) By calculating the partial differential (8Vr/6Q) from equation (1) and substituting it into equation (8), the following equation is obtained.

Z’Q + XVr2 ΔVr= −一−−−−−−−−−−−−−・ΔQVr
 (2XQ+2RP+2Vr ’ −Vs 2)・・・
・・・(9) たt、:し z  =  fr1TX7第(9)式から
れかるように、ΔQの係数は負となる。従って、受電端
の無効電力を本発明の無効電力調整装置によりΔQだけ
ふやせば、受電端電圧VrがΔvrだけ下がることにな
る。逆に受電端の無効電力を本発明の無効電力調整装置
によって減少させると、受電端電圧VrがΔVrだけ高
くなることになる。
Z'Q + XVr2 ΔVr= −1−−−−−−−−−−−−・ΔQVr
(2XQ+2RP+2Vr'-Vs 2)...
...(9) t, : z = fr1TX7 As seen from equation (9), the coefficient of ΔQ is negative. Therefore, if the reactive power at the receiving end is increased by ΔQ using the reactive power adjustment device of the present invention, the receiving end voltage Vr will be reduced by Δvr. Conversely, when the reactive power at the receiving end is reduced by the reactive power adjustment device of the present invention, the receiving end voltage Vr increases by ΔVr.

このように、本発明の無効電力調整装置は受電端電圧を
巻線型回転子の位置θを変えることによって調整するこ
とができる。
In this way, the reactive power adjusting device of the present invention can adjust the receiving end voltage by changing the position θ of the wire-wound rotor.

次に、本発明の無効電力調整装置の言回を軽減する方法
について述べる。一般に負荷は遅れ力率のものが多いか
ら、その遅れ無効電力を補償するために無効電力調整装
置は進相運転にすることが多い。このような場合には本
発明の無効電力調整装置の容量を軽減することができる
Next, a method for reducing the wording of the reactive power adjustment device of the present invention will be described. Generally, many loads have a lagging power factor, so in order to compensate for the lagging reactive power, the reactive power adjustment device is often operated in leading phase mode. In such a case, the capacity of the reactive power adjustment device of the present invention can be reduced.

以下にその方法について説明する。The method will be explained below.

第1図に示すコンデンサKを任意の数nのバンクに分け
て、第4図に示すようにそれぞれ開閉器′器S+ 、8
2.83・・・・・・Snを介して電源に接続する。な
おn個のそれぞれのバンクのコンデンサC+ 、C2、
C3・・・・・・Cnの容量はすべて等しくする。
The capacitor K shown in FIG. 1 is divided into an arbitrary number n of banks, and as shown in FIG.
2.83...Connect to the power supply via Sn. Note that the n capacitors C+, C2, and C2 of each bank are
The capacitances of C3...Cn are all made equal.

さらに、第1図に示す移相器Mと変圧器Tのみから成る
遅れ無効電力調整装置6を第4図に示すように開閉器S
+ ’ 、82 ’ + Sa ’ ++msn ’を
介して、n個のそれぞれのバンクのコンデンサC1,C
2、C3・・・・・・Cnに並列に接続し、遅れ無効電
力調整装置6の容量を1個のバンクのコンデンIJ−C
Iの容量に等しくする。
Furthermore, the delayed reactive power adjusting device 6 consisting only of the phase shifter M and the transformer T shown in FIG.
+ ' , 82 ' + Sa ' ++msn ' to the capacitors C1, C of each bank of n
2, C3......Connect in parallel to Cn, and connect the capacity of the delayed reactive power adjustment device 6 to one bank of capacitor IJ-C.
be equal to the capacity of I.

まず、進み無効電力を零から次第に大きくして行く場合
について説明する。開閉器S1.82 。
First, a case will be described in which the advanced reactive power is gradually increased from zero. Switch S1.82.

S3・・・・・・Sn及び開閉器S+ ’ 、82’ 
、83’・・・・・・Sn’ をすべて開放しておく。
S3...Sn and switch S+', 82'
, 83'...Sn' are all left open.

遅れ無効電力調整1@6が最大の遅れ無効電力を取るよ
うに第1図の移相器Mの巻線型回転子1の回動角を18
0度に調節する。
The rotation angle of the wire-wound rotor 1 of the phase shifter M in Fig. 1 is set to 18 so that the delayed reactive power adjustment 1@6 obtains the maximum delayed reactive power.
Adjust to 0 degrees.

次に第4図の81′の開閉器を投入し、その次に開閉器
S1を投入する。この状態においては、コンデンサC1
の取る進み無効電力と遅れ無効電力調整装置6の取る遅
れ無効電力が等しいから、それらの合計の無効電力は零
となる。次に遅れ無効電力調整装置6の取る遅れ無効電
力が小さくなるように、移相器Mの巻線型回転子1の回
動角θを減少させて回動角θを零度にもってくる。そし
て、次に開閉器81′を開放する。
Next, the switch 81' in FIG. 4 is turned on, and then the switch S1 is turned on. In this state, capacitor C1
Since the lead reactive power taken by the lag reactive power and the lag reactive power taken by the lag reactive power adjusting device 6 are equal, their total reactive power becomes zero. Next, the rotation angle θ of the wire-wound rotor 1 of the phase shifter M is decreased to bring the rotation angle θ to zero degrees so that the delayed reactive power taken by the delayed reactive power adjustment device 6 is reduced. Then, the switch 81' is opened.

このようにすると、電源から取る無効電力は零からスタ
ートしてコンデンサC1の取る進み無効電力まで進み無
効電力をなめらかに増大させたことになる。以下、同様
な手順でコンデンサC2゜C3・・・・・・Onに進み
無効電力を取らせて行く。
By doing this, the reactive power taken from the power supply starts from zero and progresses to the advanced reactive power taken by the capacitor C1, which increases the reactive power smoothly. Thereafter, following the same procedure, the capacitors C2, C3, . . . are turned on and reactive power is taken.

以上は、進み無効電力を零゛から次第に大きくして行く
場合について説明したが、逆に無効電力を減少させたい
場合には次のように操作する。開閉器S1,82.83
・・・・・・3nがすべて投入し、また、開閉器S1’
 、82 ’ 、S3’ −−・・Sn ’をすべて開
放する。すなわち、本発明の無効電力調整装置が最大の
進み無効電力を電源から取っている状態にし、この状態
から進み無効電力を次第に減少させて行く操作を説明す
る。まず、遅れ無効電力調整装置6の取る遅れ無効電力
が小さくなるように、移相WMの巻線型回転子1の回動
角θを零度に調整する。そして、開閉器S+’ を投入
する。そして、次に遅れ無効電力調整装置6の取る遅れ
無効電力が大きくなるように、移相器Mの巻線型回転子
1の回動角を180度にもって行く。
The above has explained the case where the advanced reactive power is gradually increased from zero, but if it is desired to decrease the reactive power conversely, the following operation is performed. Switch S1, 82.83
...3n are all turned on, and switch S1' is turned on.
, 82', S3'--...Sn' are all released. That is, an operation will be described in which the reactive power adjusting device of the present invention is brought into a state in which the maximum advanced reactive power is taken from the power source, and from this state, the reactive power is gradually decreased. First, the rotation angle θ of the wire-wound rotor 1 of the phase shift WM is adjusted to zero degrees so that the delayed reactive power taken by the delayed reactive power adjusting device 6 becomes small. Then, switch S+' is turned on. Then, the rotation angle of the wire-wound rotor 1 of the phase shifter M is increased to 180 degrees so that the delayed reactive power taken by the delayed reactive power adjusting device 6 becomes larger.

そしてSlを開放する。次いで81′を開放する。Then, SL is opened. Then, 81' is opened.

このようにすると、電源から取っていった進み無効電力
が次第に減少して、コンデンサC1の取っていた進み無
効電力部だけ減少したことになる。
By doing this, the lead reactive power taken from the power supply is gradually reduced, and only the lead reactive power part taken by the capacitor C1 is reduced.

以下同様な手順でコンデンサC2,C3・・・・・・O
nの取っていた進み無効電力を減少させて行く。
Following the same procedure, capacitors C2, C3...O
The leading reactive power taken by n is reduced.

このようにすれば、遅れ無効電力調整装置6の言回を軽
減することができる。すなわち、第1図に示す移相器M
と変圧器Tの合計の容量をコンデンサにの容量の1/n
に軽減することができる。
In this way, the wording of the delayed reactive power adjustment device 6 can be reduced. That is, the phase shifter M shown in FIG.
and the total capacitance of the transformer T is 1/n of the capacitance of the capacitor.
can be reduced to

なお、上記実施例は3相の例で説明したが、移°相器、
変圧器を単相にし、単相電源において使用してもよい。
Although the above embodiment has been explained using a three-phase example, a phase shifter,
The transformer may be single-phase and used in a single-phase power supply.

発明の効果 本発明は以上述べたように、移相器の巻線型回転子と固
定子を相対的に回動し位置決めするだけで、簡単に無効
電力のなめらかな調整ができ、受電端の電圧を簡単に調
整することを可能にする。
Effects of the Invention As described above, the present invention makes it possible to easily and smoothly adjust the reactive power by simply rotating and positioning the wire-wound rotor and stator of the phase shifter relative to each other, thereby reducing the voltage at the receiving end. allows for easy adjustment.

そして、スイッチを使用しないから消耗が少なく保守が
簡単である。
And since no switches are used, there is less wear and tear and maintenance is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は同実施例
による無効電力と巻線型回転子の位置との関係を示す図
、第3図は受電端電圧の調整の説明図、第4図は無効電
力調整装置の容量を軽減する方法を示す図である。 1・・・巻線型回転子、2・・・固定子、3・・・回転
子軸、4・・・ウオーム歯車、5・・・ウオーム、6・
・・無効電力調整装置、M、・、移相器、T・・・変圧
器、K・・・コンデンサ、C1〜Cn・・・コンデンサ
、81〜3n。 S+’〜Sn′・・・開閉器。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is a diagram showing the relationship between reactive power and the position of the wire-wound rotor according to the same embodiment, and Fig. 3 is an explanatory diagram of adjustment of receiving end voltage. , FIG. 4 is a diagram showing a method of reducing the capacity of the reactive power adjustment device. DESCRIPTION OF SYMBOLS 1... Wire-wound rotor, 2... Stator, 3... Rotor shaft, 4... Worm gear, 5... Worm, 6...
... Reactive power adjustment device, M, ... Phase shifter, T... Transformer, K... Capacitor, C1-Cn... Capacitor, 81-3n. S+'~Sn'...Switch.

Claims (9)

【特許請求の範囲】[Claims] (1)巻線型回転子と固定子から成る移相器と変圧器と
を有し、上記移相器の巻線型回転子及び固定子には各々
巻線が巻装され、巻線型回転子に巻装された巻線の端子
と上記変圧器の2次側端子は接続され、上記変圧器の1
次側端子と上記固定子に巻装された巻線の端子は並列に
電源に接続され、上記巻線型回転子と上記固定子のどち
らか一方を相対的に回動させ位置決めさせる手段を有す
る無効電力調整装置。
(1) It has a phase shifter and a transformer consisting of a wire-wound rotor and a stator, and the wire-wound rotor and stator of the phase shifter are each wound with a winding, and the wire-wound rotor is wound with a winding. The terminals of the wound winding and the secondary terminal of the transformer are connected, and
The next terminal and the terminal of the winding wound on the stator are connected to a power source in parallel, and the rotor has means for relatively rotating and positioning either the wire-wound rotor or the stator. Power regulator.
(2)上記無効電力調整装置と並列にコンデンサが接続
された特許請求の範囲第1項記載の無効電力調整装置。
(2) The reactive power adjusting device according to claim 1, wherein a capacitor is connected in parallel with the reactive power adjusting device.
(3)複数のコンデンサが各々第1の開閉器を介して並
列に電源に接続され、上記無効電力調整装置は複数の第
2の開閉器を介して上記複数のコンデンサに並列に各々
接続される特許請求の範囲第1項記載の無効電力調整装
置。
(3) A plurality of capacitors are each connected to a power supply in parallel via a first switch, and the reactive power adjustment device is connected in parallel to each of the plurality of capacitors via a plurality of second switches. A reactive power adjustment device according to claim 1.
(4)上記固定子に巻装された巻線を1次巻線とし、上
記巻線型回転子に巻装された巻線を2次巻線とした特許
請求の範囲第1項、第2項または第3項記載の無効電力
調整装置。
(4) Claims 1 and 2, in which the winding wound around the stator is the primary winding, and the winding around the wire-wound rotor is the secondary winding. Or the reactive power adjustment device according to item 3.
(5)上記固定子に巻装された巻線を2次巻線とし、上
記巻線型回転子に巻装された巻線を1次巻線とした特許
請求の範囲第1項、第2項または第3項記載の無効電力
調整装置。
(5) Claims 1 and 2, in which the winding wound around the stator is a secondary winding, and the winding around the wire-wound rotor is a primary winding. Or the reactive power adjustment device according to item 3.
(6)上記回動させ位置決めする手段は上記固定子を固
定し上記巻線型回転子を固定子に対し回動し位置決めで
きるようにした特許請求の範囲第1項、第2項、第3項
、第4項または第5項記載の無効電力調整装置。
(6) Claims 1, 2, and 3, wherein the rotating and positioning means fixes the stator and rotates and positions the wire-wound rotor relative to the stator. , the reactive power adjustment device according to item 4 or 5.
(7)上記回動させ位置決めする手段は上記巻線型回転
子を固定し該巻線型回転子に対し固定子を回動位置決め
できるようにした特許請求の範囲第1項、第2項、第3
項、第4項または第5項記載の無効電力調整装置。
(7) The rotating and positioning means fixes the wire-wound rotor and is capable of rotationally positioning the stator with respect to the wire-wound rotor.
5. The reactive power adjustment device according to item 4, item 5, or item 5.
(8)上記各巻線及び変圧器は単相であり、単相電源に
接続される特許請求の範囲第1項、第2項、第3項、第
4項、第5項、第6項または第7項記載の無効電力調整
装置。
(8) Each of the above-mentioned windings and transformers are single-phase and connected to a single-phase power source. The reactive power adjustment device according to item 7.
(9)上記各巻線及び変圧器は3相であり、3相電源に
接続される特許請求の範囲第1項、第2項、第3項、第
4項、第5項、第6項または第7項記載の無効電力調整
装置。
(9) Each of the windings and the transformer is three-phase, and is connected to a three-phase power source. The reactive power adjustment device according to item 7.
JP60189692A 1985-08-30 1985-08-30 Invalid electric power adjusting device Pending JPS6250913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189692A JPS6250913A (en) 1985-08-30 1985-08-30 Invalid electric power adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189692A JPS6250913A (en) 1985-08-30 1985-08-30 Invalid electric power adjusting device

Publications (1)

Publication Number Publication Date
JPS6250913A true JPS6250913A (en) 1987-03-05

Family

ID=16245588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189692A Pending JPS6250913A (en) 1985-08-30 1985-08-30 Invalid electric power adjusting device

Country Status (1)

Country Link
JP (1) JPS6250913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152947A (en) * 1994-11-29 1996-06-11 Winbond Electron Corp Dual-purpose printer interface device
US6806688B2 (en) 2001-05-10 2004-10-19 Kabushiki Kaisha Toshiba Difference power adjustment apparatus having a capacitor and reactor connected power-system bus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152947A (en) * 1994-11-29 1996-06-11 Winbond Electron Corp Dual-purpose printer interface device
US6806688B2 (en) 2001-05-10 2004-10-19 Kabushiki Kaisha Toshiba Difference power adjustment apparatus having a capacitor and reactor connected power-system bus

Similar Documents

Publication Publication Date Title
Sen et al. Introducing the family of" Sen" transformers: A set of power flow controlling transformers
US5300870A (en) Three-phase motor control
EP1573878B1 (en) Hybrid power flow controller and method
Gyugyi Unified power-flow control concept for flexible AC transmission systems
US6335613B1 (en) Versatile power flow transformers for compensating power flow in a transmission line
US6356472B1 (en) Interconnection system for transmitting power between electrical systems
CA1055116A (en) Reactive power compensator for arc furnaces
JPH10511839A (en) Transmission line power flow controller with unequal amounts of change in transmission angle leading and lagging directions
JPH0667122B2 (en) Method and apparatus for interconnecting three-phase AC power lines with variable reactance
Chan Performance analysis of a three-phase induction generator connected to a single-phase power system
US6384581B1 (en) Versatile power flow transformers for compensating power flow in a transmission line
US6396248B1 (en) Versatile power flow transformers for compensating power flow in a transmission line
CN106849115A (en) Reduce power attenuation device
JPS6250913A (en) Invalid electric power adjusting device
WO2008073034A1 (en) An induction regulator and use of such regulator
CN112054528B (en) Distributed power flow controller topology suitable for power distribution network and control method
US6420856B1 (en) Versatile power flow transformers for compensating power flow in a transmission line
CN201611831U (en) Capacitance speed regulating type wound rotor composition motor
WO2014107802A1 (en) Grid-connected induction machine with controllable power factor
WO1997016885A1 (en) Interconnection system for transmitting power between electrical systems
CN109802407B (en) Commutation switch device and control method thereof
RU2035107C1 (en) Power supply system
CN107104450B (en) Control method for three-phase to single-phase balance transformer
JPS62130415A (en) Reactive power adjustment system
CN117578479A (en) Topological structure and capacity configuration method for improved electromagnetic hybrid power flow controller