JPS6250798B2 - - Google Patents

Info

Publication number
JPS6250798B2
JPS6250798B2 JP54106252A JP10625279A JPS6250798B2 JP S6250798 B2 JPS6250798 B2 JP S6250798B2 JP 54106252 A JP54106252 A JP 54106252A JP 10625279 A JP10625279 A JP 10625279A JP S6250798 B2 JPS6250798 B2 JP S6250798B2
Authority
JP
Japan
Prior art keywords
end plug
nuclear fuel
thermocouple
well
fuel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54106252A
Other languages
Japanese (ja)
Other versions
JPS5630689A (en
Inventor
Toshihiro Yamaguchi
Sadamitsu Kashima
Shinichi Horii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP10625279A priority Critical patent/JPS5630689A/en
Publication of JPS5630689A publication Critical patent/JPS5630689A/en
Publication of JPS6250798B2 publication Critical patent/JPS6250798B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は、高速炉や熱中性子炉などの原子炉に
おいて、その核燃料要素の発熱温度測定に用いる
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus used for measuring the exothermic temperature of a nuclear fuel element in a nuclear reactor such as a fast reactor or a thermal neutron reactor.

従来、原子炉用燃料要素の発熱温度測定には、
熱電対シース管一重封止構造の試験用核燃料要素
が用いられてきた。この概略構造は第1図に示す
通りであり、燃料要素本体の構造は通常用いられ
ているものとほぼ同様である。すなわち、ステン
レス、ジルコニウム、チタン、およびこれら主成
分とした被覆管2内に、核燃料物質たとえば混合
酸化物粉末(U,Pu)O2をプレス成型したのち
焼結した円柱状燃料(ペレツト)3が軸方向に複
数個装填され、さらにプレナム部6にペレツト3
の移動を防止するためのスプリング5が装着され
ていて、被覆管2の両端部を端栓1,7で閉じ、
溶接密封した構造である。燃料要素の発熱温度を
検出するために、上部端栓7に設けた貫通孔を通
して燃料要素内部までシース型熱電対4を挿入
し、上部端栓7の貫通孔内面8においてロウ付
け、溶接等の手段により密封接合している。
Conventionally, to measure the exothermic temperature of fuel elements for nuclear reactors,
A test nuclear fuel element with a single thermocouple sheath tube seal has been used. This schematic structure is as shown in FIG. 1, and the structure of the fuel element main body is almost the same as that normally used. That is, a cylindrical fuel (pellet) 3 made of stainless steel, zirconium, titanium, and a cladding tube 2 mainly made of these materials is filled with a nuclear fuel material, such as a mixed oxide powder (U, Pu) O 2 , which is press-molded and then sintered. A plurality of pellets are loaded in the axial direction, and a plurality of pellets 3 are loaded in the plenum part 6.
A spring 5 is installed to prevent movement of the cladding tube 2, and both ends of the cladding tube 2 are closed with end plugs 1 and 7.
It has a welded and sealed structure. In order to detect the heat generation temperature of the fuel element, the sheath type thermocouple 4 is inserted into the fuel element through the through hole provided in the upper end plug 7, and the inner surface 8 of the through hole of the upper end plug 7 is subjected to brazing, welding, etc. They are hermetically joined by means.

一般に熱電対シース等は2000℃前後での耐久性
はあまり良くないため、原子炉内で使用する場合
は、破損を前提に考えた方がよい。しかるに、前
記従来の構造では、熱電対シースが破損した場
合、核燃料物質および核分裂生成物ガスが燃料要
素外ひいては原子炉容器内外に漏洩するのを防止
できない。従つて、現在ではこのような構造の燃
料要素を用いて燃料要素内発熱温度測定を実施す
ることができない。
In general, thermocouple sheaths and the like do not have very good durability at temperatures around 2000°C, so when using them inside a nuclear reactor, it is better to assume that they will break. However, the conventional structure cannot prevent nuclear fuel material and fission product gases from leaking out of the fuel element, and thus into and out of the reactor vessel, if the thermocouple sheath is damaged. Therefore, at present, it is not possible to measure the heat generated within the fuel element using a fuel element having such a structure.

しかし、被覆管内における核燃料物質の発熱温
度を測定することは核燃料要素の諸特性を調べる
上で重要なことであるから、高温雰囲気(〜700
℃)および高速・熱中性子照射条件下で、核燃料
要素内から発生する核分裂生成物ガスあるいは核
燃料物質等の漏洩を防止できるような発熱温度測
定センサー付き核燃料要素の実現が強く望まれて
いた。
However, since measuring the exothermic temperature of the nuclear fuel material inside the cladding tube is important for investigating various properties of nuclear fuel elements,
It has been strongly desired to realize a nuclear fuel element equipped with an exothermic temperature measurement sensor that can prevent the leakage of fission product gas or nuclear fuel material generated from within the nuclear fuel element under conditions of high velocity and thermal neutron irradiation.

本発明は、上記のような従来技術の実情に鑑み
なされたものであつて、その目的は、核燃料要素
内から発生する核分裂生成物ガスや核燃料物質等
の漏洩を防止できることは無論のこと、核燃料要
素内に熱電対を組込む時に能率よく行うことがで
き、熱電対の損傷も少なく、信頼性の高い発熱温
度測定用計装付き核燃料要素を提供することにあ
る。
The present invention has been made in view of the actual state of the prior art as described above, and its purpose is to prevent the leakage of nuclear fission product gases and nuclear fuel materials generated from within nuclear fuel elements, as well as to prevent nuclear fuel It is an object of the present invention to provide a nuclear fuel element with an instrumentation for measuring heat generation temperature, which can be efficiently incorporated into the element, has less damage to the thermocouple, and has high reliability.

以下図面に基づき本発明について詳述する。第
2図は本発明の一実施例を示す説明図である。内
部に核燃料物質3を装填した被覆管2の両端を下
部端栓1、上部端栓11で密封し、上部端栓11
を貫通して核燃料物質3までシース型熱電対4が
挿入される形式の核燃料要素である。なお、符号
5はスプリング、符号6はプレナム部である。こ
のような基本的構成は、前述した従来型のものと
ほぼ同様である。
The present invention will be explained in detail below based on the drawings. FIG. 2 is an explanatory diagram showing one embodiment of the present invention. Both ends of the cladding tube 2 loaded with nuclear fuel material 3 are sealed with a lower end plug 1 and an upper end plug 11.
This is a nuclear fuel element in which a sheath type thermocouple 4 is inserted through the nuclear fuel material 3 up to the nuclear fuel material 3. Note that reference numeral 5 represents a spring, and reference numeral 6 represents a plenum portion. This basic configuration is almost the same as that of the conventional type described above.

上部端栓11は、上方部が凹陥した断面凹状の
形状をなし、中心部に孔が設けられ、ウエル9が
挿入される。ウエル9と上部端栓11とは、該上
部端栓11の燃料側の箇所10でロウ付け(ニク
ロプレーズ等)によつて密封接合される。ウエル
9がプレナム部6を貫通し、核燃料物質3の内部
に達した状態で上部端栓11を被覆管2にTIG溶
接により密封接合する。
The upper end plug 11 has a concave cross section with a concave upper part, and has a hole in the center, into which the well 9 is inserted. The well 9 and the upper end plug 11 are hermetically joined together by brazing (Nicroprase or the like) at a fuel side location 10 of the upper end plug 11. With the well 9 penetrating the plenum portion 6 and reaching the inside of the nuclear fuel material 3, the upper end plug 11 is hermetically joined to the cladding tube 2 by TIG welding.

ウエル9に挿入する熱電対の構造の一例を第4
図に示す。熱電対は、耐高温性を必要とするので
タングステン−レニウム(W/Re)素線を
BeO,MgO2等で絶縁されて、W,Re,Mo,
Nb,Zrおよびこれらを主成分とした合金のシー
ス20内に収納したものであつて、素線の先端が
シースに接触したものと、接触していないものと
がある。コネクタ部21において、シース20は
ステンレス製のシース管22と、また素線は
Alloy−405,426というNiを主成分とした補償導
線23と接合されている。
An example of the structure of the thermocouple inserted into the well 9 is shown in the fourth example.
As shown in the figure. Thermocouples require high temperature resistance, so tungsten-rhenium (W/Re) wires are used.
Insulated with BeO, MgO 2, etc., W, Re, Mo,
The wires are housed in a sheath 20 made of Nb, Zr, or an alloy containing these as main components, and some wires have their tips in contact with the sheath, while others do not. In the connector part 21, the sheath 20 is connected to a stainless steel sheath tube 22, and the wire is
It is connected to a compensating conductor 23 whose main component is Ni called Alloy-405, 426.

このような熱電対4の補償導線23は、気密端
子13の端子12にスポツト溶接、ニクロブレー
ズ等で接合する。気密端子13は、一般に市販さ
れているものであつて、第5図に示すように、ア
ルミナ粉末をプレス成型し、その表面にMo−Mu
等を塗り焼結を行い、その後ニツケルメツキ17
等を行い、端子18間の絶縁が保たれるように加
工されている。端子線は気密端子とロウ付け、ニ
クロブレーズ等で密封されている。
The compensating lead wire 23 of the thermocouple 4 is joined to the terminal 12 of the airtight terminal 13 by spot welding, nicro-brazing, or the like. The airtight terminal 13 is generally commercially available, and as shown in FIG.
etc. and sintered, then Nickel Metsuki 17
etc., so that the insulation between the terminals 18 is maintained. The terminal wire is sealed with an airtight terminal, brazed, or with Nicroblaze.

気密端子13のついた熱電対4はウエル9の中
に挿入され、上部端栓11の凹陥部直下の位置2
4で、上部端栓11とウエル9と熱電対4とを該
端栓外周面から高周波融着することによつて密封
接合する(第3図参照)。更に、気密端子13の
外周は上部端栓11の凹陥部内周面に接合し、気
密端子13の端子と補償導体14を接続する。そ
して、補償導体14を副端栓16にロウ付け(ニ
クロブレーズ等)で密封接合し、最後に、副端栓
16と上部端栓11とを該副端栓16の先端部位
置25でTIG溶接で密封してなる。なお、上記の
ロウ付け、ニクロブレーズ等の溶材には、銀、ニ
ツケルおよびこれらを主成分とした合金が用いら
れるが、これらの溶材は中性子吸収断面積が小さ
く、高速中性子および熱中性子による損傷を受け
ることはない。
A thermocouple 4 with an airtight terminal 13 is inserted into the well 9 and placed at a position 2 directly below the concave portion of the upper end plug 11.
At step 4, the upper end plug 11, well 9, and thermocouple 4 are hermetically joined by high frequency welding from the outer peripheral surface of the end plug (see FIG. 3). Further, the outer periphery of the airtight terminal 13 is joined to the inner peripheral surface of the recessed portion of the upper end plug 11, and the terminal of the airtight terminal 13 and the compensation conductor 14 are connected. Then, the compensating conductor 14 is hermetically joined to the sub-end plug 16 by brazing (Niclobraze, etc.), and finally, the sub-end plug 16 and the upper end plug 11 are welded together by TIG welding at the tip position 25 of the sub-end plug 16. It will be sealed. Note that silver, nickel, and alloys containing these as main ingredients are used as the welding materials for brazing, nicro-blazing, etc. mentioned above, but these welding materials have a small neutron absorption cross section and are susceptible to damage from fast neutrons and thermal neutrons. Never.

なお、本発明には含まれないが、場合によつて
は第2図の構成において、ウエルを用いず、熱電
対シースを直接挿入するような構成を採ることも
可能である。その場合には、信頼性に欠ける点は
あるが、気密端子があるので核分裂生成物ガス等
の漏出を防止できる。
Although not included in the present invention, in some cases it is possible to adopt a configuration in which a thermocouple sheath is directly inserted without using a well in the configuration shown in FIG. In that case, although there is a lack of reliability, since there is an airtight terminal, leakage of fission product gas etc. can be prevented.

本発明は上記のようにウエルを用いた耐高温多
重気密構造であるから、熱電対シース部が破損し
た場合でも、核燃料物質が燃焼する時に発生する
核分裂生成物ガスおよび核燃料物質等が核燃料要
素外、原子炉容器内外に漏洩することはないし、
また核燃料要素、特に混合酸化物〔(U,Pu)
O2〕の燃料要素に熱電対を挿入する場合にもスム
ーズに行え、グローブボツクス外で作業可能なた
め、作業能率が良く、熱電対の損傷も軽減できる
し、熱電対のもつ性能を十分活用でき、かつ製作
コストを低減することができる効果がある。その
上、本発明は集合体に組込んでも照射可能である
し、核燃料要素1本当り3本以上の熱電対を使用
できるなど、従来構造からはとうてい期待できな
い顕著な効果を奏しうるものである。
Since the present invention has a high-temperature resistant multiple airtight structure using a well as described above, even if the thermocouple sheath is damaged, fission product gas and nuclear fuel material generated when nuclear fuel material burns will be removed from the nuclear fuel element. , there will be no leakage inside or outside the reactor vessel,
Also, nuclear fuel elements, especially mixed oxides [(U, Pu)
When inserting a thermocouple into the fuel element of the O 2 ], it can be done smoothly and can be done outside the glove box, improving work efficiency, reducing damage to the thermocouple, and making full use of the performance of the thermocouple. This has the effect of reducing production costs. Furthermore, the present invention can be irradiated even when incorporated into an assembly, and three or more thermocouples can be used per nuclear fuel element, which can produce remarkable effects that cannot be expected from conventional structures. .

なお、本発明の実施例では円柱状焼結燃料(ペ
レツト)を用いているが、粉末、塊状、粒状の核
燃料物質を充填した燃料要素であつてもよいこと
勿論である。
In the embodiment of the present invention, a cylindrical sintered fuel (pellet) is used, but it goes without saying that a fuel element filled with powdered, lumpy, or granular nuclear fuel material may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の説明図、第2図は本発明に
係る核燃料要素の一実施例の説明図、第3図は第
2図におけるA部拡大図、第4図は熱電対の一例
を示す図、第5図は気密端子の断面図である。 1……下部端栓、2……被覆管、3……核燃料
物質、4……熱電対、7,11……上部端栓、9
……ウエル、13……気密端子、16……副端
栓、23……補償導線。
Fig. 1 is an explanatory diagram of the prior art, Fig. 2 is an explanatory diagram of an embodiment of the nuclear fuel element according to the present invention, Fig. 3 is an enlarged view of part A in Fig. 2, and Fig. 4 is an example of a thermocouple. The figure shown in FIG. 5 is a sectional view of the airtight terminal. 1... Lower end plug, 2... Cladding tube, 3... Nuclear fuel material, 4... Thermocouple, 7, 11... Upper end plug, 9
... Well, 13 ... Airtight terminal, 16 ... Sub-end plug, 23 ... Compensation lead wire.

Claims (1)

【特許請求の範囲】[Claims] 1 被覆管内に核燃料物質を装填し、その両端部
を端栓で密封し、該端栓を貫通して核燃料物質ま
でシース型熱電対が挿入される形式の核燃料要素
において、シース型熱電対はウエルで覆われた状
態で断面凹状の端栓を貫通して核燃料物質中に位
置し、該端栓の燃料側にて端栓とウエル間を密封
接合すると共に、ウエル開口端部においてウエル
とシースおよび端栓の三者間を密封接合し、熱電
対素線は、前記端栓凹部側で気密的に保持された
気密端子によつて中継されて、副端栓を貫通する
補償導線に接続され、該副端栓は前記端栓に気密
的に接合されると共に、該副端栓と補償導線を内
蔵するシース管とは密封接合されてなる発熱温度
測定用計装付き核燃料要素。
1 In a nuclear fuel element in which nuclear fuel material is loaded into a cladding tube, both ends of which are sealed with end plugs, and a sheathed thermocouple is inserted through the end plugs to the nuclear fuel material, the sheathed thermocouple is inserted into the well. It passes through an end plug with a concave cross-section and is located in the nuclear fuel material while being covered with the end plug, and sealingly connects the end plug and the well on the fuel side of the end plug, and connects the well and the sheath and The three ends of the end plug are hermetically joined, and the thermocouple wire is relayed by an airtight terminal held airtightly on the side of the end plug recess and connected to a compensating conductor passing through the sub-end plug; The auxiliary end plug is hermetically joined to the end plug, and the auxiliary end plug and a sheath pipe containing a compensating conductor are hermetically joined.
JP10625279A 1979-08-21 1979-08-21 Nuclear fuel element with heattgeneration temperature measuring instrumentation Granted JPS5630689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10625279A JPS5630689A (en) 1979-08-21 1979-08-21 Nuclear fuel element with heattgeneration temperature measuring instrumentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10625279A JPS5630689A (en) 1979-08-21 1979-08-21 Nuclear fuel element with heattgeneration temperature measuring instrumentation

Publications (2)

Publication Number Publication Date
JPS5630689A JPS5630689A (en) 1981-03-27
JPS6250798B2 true JPS6250798B2 (en) 1987-10-27

Family

ID=14428901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10625279A Granted JPS5630689A (en) 1979-08-21 1979-08-21 Nuclear fuel element with heattgeneration temperature measuring instrumentation

Country Status (1)

Country Link
JP (1) JPS5630689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615289A (en) * 1990-12-10 1994-01-25 Ebara Infilco Co Ltd Biological treatment apparatus of solid-liquid separation integral type

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20041215D0 (en) 2004-03-24 2004-03-24 Quickflange As Method of calculations for attaching coupling elements to rudder
JP5864270B2 (en) * 2012-01-05 2016-02-17 日立Geニュークリア・エナジー株式会社 Nuclear plant temperature measurement system and nuclear plant instrumentation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615289A (en) * 1990-12-10 1994-01-25 Ebara Infilco Co Ltd Biological treatment apparatus of solid-liquid separation integral type

Also Published As

Publication number Publication date
JPS5630689A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
EP0400813B1 (en) Reference electrode probe
US3898431A (en) Tubular electric heater with a thermocouple assembly
JPS5853759B2 (en) Local power measurement device within the reactor fuel assembly
GB923343A (en) Improvements in or relating to nuclear reactor fuel elements
US5571394A (en) Monolithic sensor switch for detecting presence of stoichiometric H2 /O2 ratio in boiling water reactor circuit
US3716450A (en) Device for remote positioning of thermocouples in a nuclear reactor
JPH05196593A (en) Electrode probe suitable for use in water environment of high-temperature high radiation
US6058155A (en) Corrosion and hydride resistant Nuclear fuel rod
JPS60168067A (en) Neutron sensor
JPS6250798B2 (en)
US5473644A (en) Apparatus for measuring power of nuclear reactor and method for manufacturing the same
US3625823A (en) Nuclear fuel rod
Laurie et al. New temperature monitoring devices for high-temperature irradiation experiments in the High Flux Reactor Petten
Vitanza et al. Assessment of fuel thermocouple decalibration during in-pile service
Rempe et al. High temperature thermocouples for in-pile applications
JPS63300924A (en) Thermoelectric thermometer
CN220381154U (en) Strong-irradiation-resistant piezoelectric acceleration sensor
US3198711A (en) Thermoelectric nuclear fuel element
US4652420A (en) Hydrogen measuring device
Kuhlman THERMOCOUPLE RESEARCH AT GE-NMPO
CN218729916U (en) Reactor core neutron and temperature measurement detector assembly
Cannon A 2200° C Fuel Centerline Johnson Noise Power Thermometer
Laurie et al. New fixed-point mini-cell to investigate thermocouple drift in a high-temperature environment under neutron irradiation
JP2597917Y2 (en) Reactor neutron detector
JPS6125117B2 (en)