JPS6250626B2 - - Google Patents

Info

Publication number
JPS6250626B2
JPS6250626B2 JP55149717A JP14971780A JPS6250626B2 JP S6250626 B2 JPS6250626 B2 JP S6250626B2 JP 55149717 A JP55149717 A JP 55149717A JP 14971780 A JP14971780 A JP 14971780A JP S6250626 B2 JPS6250626 B2 JP S6250626B2
Authority
JP
Japan
Prior art keywords
eaves gutter
ear
synthetic resin
hard synthetic
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55149717A
Other languages
Japanese (ja)
Other versions
JPS5774463A (en
Inventor
Hideomi Yamamoto
Masaharu Yamamoto
Hiramasu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP55149717A priority Critical patent/JPS5774463A/en
Publication of JPS5774463A publication Critical patent/JPS5774463A/en
Publication of JPS6250626B2 publication Critical patent/JPS6250626B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は薄肉鋼板に硬質合成樹脂を被覆してな
るいわゆるメタルコア型の硬質合成樹脂被覆金属
軒樋に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called metal core type hard synthetic resin-coated metal eaves gutter made of a thin steel plate coated with a hard synthetic resin.

従来第1図に示すように断面半円弧状の金属製
軒樋本体25を軟質合成樹脂23にて被覆すると
共に、軒樋本体25の両側上端部2の外面に軒樋
の両側に突出する耳部10を形成してなる軟質合
成樹脂被覆金属軒樋が開発されている。このよう
に従来の金属軒樋において金属面の外側を軟質合
成樹脂23にて被覆していたのは主として防錆の
ためであるが、軟質合成樹脂は変形或いは劣化し
易いために硬質合成樹脂にて被覆された軒樋を開
発することが強く望まれている。しかるに軒樋と
いうものは元来家屋の軒先に取り付けられて直射
日光に晒されるものであるために、夏場などにお
いては軒樋の温度が70℃前後に上昇することは決
して珍しくない。このような高温度の環境におか
れたときに従来のように金属軒樋の外側に軟質合
成樹脂を被覆している場合には金属の熱膨張に順
応して軟質合成樹脂もまた熱膨張するので何ら問
題は生じないが、硬質合成樹脂を被覆した場合に
は被覆体となる硬質合成樹脂とその芯体となる金
属材との熱膨張係数の差が特に問題となる。例え
ばPVC(ポリ塩化ビニル樹脂)の線膨張係数は
7×0-5/℃であり、軒樋として用いられている
1金属材の線膨張係数が1.1×10-5℃程度である
のに比べて約6倍である。もちろん軒樋の半径方
向への熱膨張は寸法的にはわずかなものであるの
で全く無視してしまつても差し支えないものであ
るが、軒樋の長手方向への熱膨張は寸法的に相当
大きなものとなるために無視できないものとな
る。具体的に例を示すと、例えば長さ3.6mの金
属軒樋に第1図に示すように硬質合成樹脂を被覆
し、60cmおきに控具24にて支持した場合、軒樋
の温度がある臨界温度以上に高くなると第8図a
に示すように耳部10が波打ちするようになると
いう問題点が挙げられる。これを通常耳波現象と
称しているが、かかる耳波現象は後述のように軒
樋の耳部10の熱膨張係数と腹部20の熱膨張係
数とが一致していないために生じるものと考えら
れている。すなわち一般に硬質合成樹脂被覆鋼板
の線膨張係数は芯体となる金属材の線膨張係数と
被覆体となる硬質合成樹脂の線膨張係数との平均
として与えられるが、硬質合成樹脂を第1図に示
すように被覆した場合、耳部10は硬質合成樹脂
が多く存在するために熱膨張係数が大きいが、腹
部20は硬質合成樹脂が少ないために耳部10に
比べて熱膨張係数が小さくなつており、このため
に耳波現象が生じるものである。本発明は従来例
のこのような問題点に鑑みてなされたものであ
り、軒樋の耳部と腹部との熱膨張係数の差を極力
小さくすることにより上述のような高温度環境に
おけるいわゆる耳波現象の発生を防止できるよう
にした硬質合成樹脂被覆金属軒樋を提供すること
を目的とするものである。
Conventionally, as shown in FIG. 1, a metal eaves gutter body 25 having a semicircular arc cross section is coated with a soft synthetic resin 23, and ears protruding from both sides of the eaves gutter are provided on the outer surface of both upper end portions 2 of the eaves gutter body 25. A soft synthetic resin-coated metal eaves gutter having a portion 10 formed therein has been developed. The reason why the outside of the metal surface of conventional metal eaves gutters is coated with soft synthetic resin 23 is mainly for rust prevention, but since soft synthetic resin easily deforms or deteriorates, hard synthetic resin is used. There is a strong desire to develop eaves gutters covered with However, since eaves gutters are originally attached to the eaves of houses and are exposed to direct sunlight, it is not uncommon for the temperature of eaves gutters to rise to around 70 degrees Celsius in the summer. When placed in such a high-temperature environment, if a soft synthetic resin is coated on the outside of the metal eaves gutter as in the past, the soft synthetic resin will also thermally expand in accordance with the thermal expansion of the metal. Therefore, no problem arises, but when a hard synthetic resin is coated, the difference in coefficient of thermal expansion between the hard synthetic resin serving as the covering and the metal material serving as the core becomes a particular problem. For example, the linear expansion coefficient of PVC (polyvinyl chloride resin) is 7 x 0 -5 /℃, compared to the linear expansion coefficient of the metal material used for eaves gutters, which is about 1.1 x 10 -5 ℃. It is about 6 times as large. Of course, the thermal expansion in the radial direction of eaves gutters is so small that it can be completely ignored, but the thermal expansion in the longitudinal direction of eaves gutters is quite large in terms of dimensions. Because it becomes something, it becomes something that cannot be ignored. To give a specific example, if a metal eaves gutter with a length of 3.6 m is coated with hard synthetic resin as shown in Figure 1 and supported with restraints 24 at intervals of 60 cm, the temperature of the eaves gutter will be If the temperature rises above the critical temperature, Figure 8a
There is a problem in that the ears 10 become wavy as shown in FIG. This is usually called the ear wave phenomenon, but it is thought that this ear wave phenomenon occurs because the coefficient of thermal expansion of the ear part 10 of the eaves gutter and the coefficient of thermal expansion of the abdomen 20 do not match, as described later. It is being In other words, the linear expansion coefficient of a steel plate coated with a hard synthetic resin is generally given as the average of the linear expansion coefficient of the metal material serving as the core and the linear expansion coefficient of the hard synthetic resin serving as the coating. When coated as shown, the ear portion 10 has a large coefficient of thermal expansion due to the presence of a large amount of hard synthetic resin, but the abdominal portion 20 has a smaller coefficient of thermal expansion than the ear portion 10 because there is less hard synthetic resin. This is why the ear wave phenomenon occurs. The present invention has been made in view of the above-mentioned problems of the conventional example, and by minimizing the difference in the coefficient of thermal expansion between the ear part and the belly part of the eaves gutter, the so-called ear part in the above-mentioned high temperature environment can be improved. The object of the present invention is to provide a hard synthetic resin-coated metal eaves gutter that can prevent the occurrence of wave phenomena.

以下本発明の構成を図示実施例について説明す
ると、第2図および第3図に示すように断面半円
弧状の硬質合成樹脂製軒樋本体1の両側上端部2
に長手方向の全長に亘つて軒樋本体1の両側に突
出する中空状の耳部10を一体形成し、中空状耳
部10の外側下半分26と軒樋本体1の腹部20
の全周とに亘つてインサートされた薄肉鋼板12
の両側上端部27を上記中空状耳部10の内側に
折り返したものである。第2図a,bに示す実施
例にあつては中空状の耳部10の中央部に硬質合
成樹脂5よりなる補強リブ22が一体に形成され
ており、薄肉鋼板12のエツジ部28は上記補強
リブ22内に延出されている。第2図a乃至cに
示すいずれの実施例の場合にも薄肉鋼板12のエ
ツジ部28は中空状耳部10の内部に内挿されて
いるものであるが、後述の第9図の特性図に示す
ように上記内挿の度合の大きいものほど耳部10
と腹部20との線膨張係数の差が小さくなり、耳
波現象を起こす臨界温度差Δtが大きくなつてい
る。さらに第3図a,bの実施例に示すように、
薄肉鋼板12のエツジ部28の下方または上方に
折り曲げたり、あるいは第3図cの実施例に示す
ように逆S字状に折曲したりすれば、耳部10に
おいて薄肉鋼板12の占める割合が一層大きくな
り、補強度的にも強くなるものである。かかる軒
樋を製造するためには、第6図に示すようにロー
ル11に巻き取られた薄肉鋼板12を順次繰り出
して成形ロール13によつてロールフオーミング
を施し、予熱装置19により上記薄肉鋼板12を
加熱したのち、硬質合成樹脂被覆金型14に導入
する。上記金型14には押出機15が付設されて
おり、薄肉鋼板12の表面に連続的に樹脂被覆を
施すものである。16は冷却装置であり、金型1
4において高温の樹脂を被覆されて高温に加熱さ
れた軒樋本体1を常温付近まで冷却するものであ
る。このようにして製造された硬質合成樹脂被覆
軒樋は無限軌道状の引取機17にて引き取られ、
切断機18にて適宜長さに切断されるものであ
る。この際切断機18は切断工程中は軒樋本体1
と共に移動して連続的な製造工程を中断すること
なく軒樋本体1を切断することができるようにな
つているものである。
The structure of the present invention will be described below with reference to the illustrated embodiment. As shown in FIGS. 2 and 3, both upper ends 2 of a hard synthetic resin eaves gutter main body 1 having a semicircular arc cross section
Hollow ears 10 projecting from both sides of the eaves gutter body 1 over the entire length in the longitudinal direction are integrally formed, and the outer lower half 26 of the hollow ears 10 and the abdomen 20 of the eaves gutter body 1 are integrally formed.
Thin steel plate 12 inserted over the entire circumference of
The upper end portions 27 of both sides are folded back inside the hollow ear portion 10. In the embodiment shown in FIGS. 2a and 2b, a reinforcing rib 22 made of hard synthetic resin 5 is integrally formed in the center of the hollow ear 10, and the edge portion 28 of the thin steel plate 12 is It extends into the reinforcing rib 22. In any of the embodiments shown in FIGS. 2a to 2c, the edge portion 28 of the thin steel plate 12 is inserted inside the hollow ear portion 10, but the characteristic diagram shown in FIG. As shown in FIG.
The difference in linear expansion coefficient between the body and the abdomen 20 becomes smaller, and the critical temperature difference Δt that causes the ear wave phenomenon becomes larger. Furthermore, as shown in the embodiments of FIGS. 3a and 3b,
By bending the edge portion 28 of the thin steel plate 12 downward or upward, or by bending it in an inverted S-shape as shown in the embodiment shown in FIG. It becomes larger and stronger in terms of the degree of reinforcement. In order to manufacture such eaves gutters, as shown in FIG. 12 is heated and then introduced into a hard synthetic resin-coated mold 14. An extruder 15 is attached to the mold 14, and the resin coating is continuously applied to the surface of the thin steel plate 12. 16 is a cooling device, and mold 1
4, the eaves gutter body 1, which has been coated with high-temperature resin and heated to a high temperature, is cooled to around room temperature. The hard synthetic resin-coated eaves gutters manufactured in this way are taken up by a track-shaped take-up machine 17,
It is cut into an appropriate length by a cutting machine 18. At this time, the cutting machine 18 cuts the eaves gutter body 1 during the cutting process.
The eaves gutter body 1 can be cut without interrupting the continuous manufacturing process.

ところで第6図の製造工程において示したよう
に薄肉鋼板12を成形ロール13にてロールフオ
ーミングする際には薄肉鋼板12のエツジ部28
に歪が残りやすく、樹脂を被覆した後に表面にそ
の跡が残ることが多いものであるが、本発明の第
2図a乃至cの実施例に示すように薄肉鋼板12
のエツジ部28を中空状耳部10の中に内挿した
ものにあつては、かかるエツジ部28の歪が表面
に現われにくくなるものである。また一般に薄肉
鋼板12のエツジ部28には応力が集中し易く、
この部分から亀裂が入り易いという欠点がある
が、第2図a乃至cの実施例に示すようにエツジ
部28を中空状耳部10の内方に保護したものに
あつては、エツジ部28に応力が加わりにくく、
該応力によつて薄肉鋼板12に割れ目が入る虞れ
が少なくなるものである。
By the way, as shown in the manufacturing process of FIG. 6, when the thin steel plate 12 is roll-formed with the forming rolls 13,
However, as shown in the embodiments of FIGS. 2a to 2c of the present invention, thin-walled steel plates 12
In the case where the edge portion 28 is inserted into the hollow ear portion 10, the distortion of the edge portion 28 is less likely to appear on the surface. Additionally, stress tends to concentrate on the edge portion 28 of the thin steel plate 12,
Although there is a drawback that cracks are likely to occur from this part, in the case where the edge part 28 is protected inside the hollow ear part 10 as shown in the embodiment shown in FIGS. 2a to 2c, the edge part 28 It is difficult to apply stress to
This reduces the possibility that cracks will form in the thin steel plate 12 due to the stress.

ところで上述のように軒樋が高温度の環境の下
に置かれたときに耳波現象を起こす原因は軒樋の
耳部10と腹部20との線膨張係数の差に基づく
挫屈現象のためであると考えられているが、本発
明者等は第4図に示すように軒樋を耳部10と腹
部20との結合された柱体として取扱い、第5図
a〜jに示すような線膨張係数の異なる10種類の
耳部の構造について柱体の挫屈現象に基づく耳波
現象が発生する臨界温度を計算することにより最
も優れた耳部の構造を検討したものである。まず
長さL、線膨張係数αの柱体がΔtの温度差によ
つて熱膨張したときの伸張量λは次式で与えられ
る。
By the way, as mentioned above, the cause of the ear wave phenomenon when the eaves gutter is placed in a high temperature environment is the buckling phenomenon caused by the difference in linear expansion coefficient between the ear part 10 and the abdomen 20 of the eaves gutter. However, the present inventors treated the eaves gutter as a pillar body with an ear part 10 and an abdomen 20 combined as shown in FIG. The most excellent ear structure was investigated by calculating the critical temperature at which the ear wave phenomenon based on the buckling phenomenon of the column occurs for 10 types of ear structures with different coefficients of linear expansion. First, when a column having a length L and a coefficient of linear expansion α thermally expands due to a temperature difference Δt, the amount of expansion λ is given by the following equation.

λ=α・Δt・L ……(1) また長さLの柱体をλだけ伸張させるために必
要とされる荷重Pは、柱体のヤング率をE、断面
積をAとすると次式で与えられる。
λ=α・Δt・L...(1) Also, the load P required to extend a column of length L by λ is given by the following formula, where E is the Young's modulus of the column and A is the cross-sectional area. is given by

P=A・E・λ/L ……(2) さらに柱体の挫屈モードをn、曲げ剛性をEi
とすると柱体の挫屈荷重Pcrは次式で与えられ
る。
P=A・E・λ/L ...(2) Furthermore, let n be the buckling mode of the column and Ei be the bending stiffness.
Then, the buckling load Pcr of the column is given by the following formula.

Pcr=n2π2Ei/L2 ……(3) したがつて上記(1)(2)(3)の3式より次式が導かれ
る。
Pcr=n 2 π 2 Ei/L 2 ...(3) Therefore, the following equation is derived from the three equations (1), (2), and (3) above.

Δt=n2π2Ei/EAαL2 ……(4) ところで温度差Δtによつて生じる耳部10と
腹部20との線膨張係数α,αの差による耳
部10の応力は第7図cに示すように耳部10と
腹部20との伸縮が平衝した時の線膨張係数αe
qと耳部の線膨張係数αとの差(α−αe
q)によつて現われるものである。すなわち第7
図aに示すように常温において平衡している耳部
10と腹部20とが温度上昇時にそれぞれ第7図
bに示すようにλ,λだけ伸張し、Δλだけ
の伸張差が生じるものとすると、耳部10には第
7図cに示すように圧縮応力S2が加わり、腹部2
0には引張応力S1が加わつて平衡に達するもので
あるから耳部10にλ′に示す量だけ無理な応力
が加わつており、該応力は平衡時の線膨張係数α
eqと耳部の線膨張係数αとの差によつて表わ
される。平衡時の線膨張係数αeqは耳部10お
よび腹部20のヤング率をそれぞれE2,E1
し、断面積をそれぞれA2,A1とすると次式によ
り与えられる。
Δt=n 2 π 2 Ei/EAαL 2 ...(4) By the way, the stress in the ear 10 due to the difference in linear expansion coefficients α 1 and α 2 between the ear 10 and the abdomen 20 caused by the temperature difference Δt is the seventh As shown in Figure c, the linear expansion coefficient α e when the expansion and contraction of the ear portion 10 and the abdomen 20 are balanced
The difference between q and the linear expansion coefficient α 2 of the ear (α 2 − α e
q). That is, the seventh
Assume that the ear 10 and abdomen 20, which are in equilibrium at room temperature as shown in Figure a, expand by λ 2 and λ 1 , respectively, as shown in Figure 7b when the temperature rises, resulting in a difference in expansion of Δλ. Then, compressive stress S 2 is applied to the ear portion 10 as shown in FIG. 7c, and the abdomen 2
Since equilibrium is reached when tensile stress S 1 is applied to 0, an unreasonable stress is applied to the ear portion 10 by the amount shown by λ', and this stress is equal to the coefficient of linear expansion α at equilibrium.
It is expressed by the difference between e q and the linear expansion coefficient α 2 of the ear. The coefficient of linear expansion α e q at equilibrium is given by the following equation, where the Young's moduli of the ear portion 10 and the abdomen 20 are E 2 and E 1 , respectively, and the cross-sectional areas are A 2 and A 1 , respectively.

αeq=(E1A1α+E2A2α)/(E1A1+E2A2) ……(5) したがつて温度差Δtによつて耳部10に加わ
る荷重P2は次式により与えられる。
α e q = (E 1 A 1 α 1 + E 2 A 2 α 2 ) / (E 1 A 1 + E 2 A 2 ) ...(5) Therefore, the load P applied to the ear part 10 due to the temperature difference Δt 2 is given by the following equation.

P2=A2E2(λ−λ′)/L =A2E2(α−αeq)・Δt ……(6) ゆえにP2が挫屈荷重Pcrよりも大きくなつたと
きに挫屈現象を生じるものである。本発明者等は
第5図a〜jに示すような10種類の耳部の構造に
ついてかかる挫屈現象の生じる臨界温度差Δtを
計算して最も優れた耳部の構造を見出したもので
ある。一例として軒樋の長さをL=3.6m、控具
の支持点間距離を60cmとして第8図aに示すよう
に挫屈モード次数をn=6とし、PVC(ポリ塩
化ビニル樹脂)および薄肉鋼板12の線膨張係数
をそれぞれ7×10-5/℃、1.1×10-5/℃、ヤン
グ率をそれぞれ320Kg/mm2、21000Kg/mm2、板厚を
それぞれ0.86mm、0.14mmとして外形をほぼ等しく
する10種類の軒樋について挫屈現象の生じる臨界
温度差Δtを計算した結果を示すと第9図のよう
になる。同図に示すように耳部10の内に薄肉鋼
板12が全く含まれていない第5図a,hに示す
ような構造のものや、耳部10への薄肉鋼板12
の侵入の度合い低いの第5図f,g,iに示すよ
うな構造のものではわずかな温度上昇ですぐに挫
屈現象が生じてしまうために全く実用にならない
ことがわかる。また第5図b,jに示すように略
U字状の耳部10の下半分に薄肉鋼板12が入つ
ているものでは、挫屈現象の生じる臨界温度差Δ
tがいくらか大きくなつてはいるが、従来例の説
明において述べたように軒樋の温度は70℃程度と
なるので常温との臨界温度差Δtは少なくとも60
℃以上ないと軒樋として充分なものとは言えな
い。これらに比較すると第5図c,d,eに示す
ように耳部10の中央部に補強リブ22を設け
て、該補強リブ22の中にまで薄肉鋼板12を侵
入せしめたものにあつては臨界温度差Δtが70℃
乃至90℃程度まで改善されており、充分に実用に
なるものであることがわかる。
P 2 = A 2 E 22 - λ')/L = A 2 E 22 - α e q)・Δt...(6) Therefore, when P 2 becomes larger than the buckling load Pcr This causes a buckling phenomenon. The present inventors calculated the critical temperature difference Δt at which the buckling phenomenon occurs for 10 types of ear structures as shown in Figure 5 a to j, and found the most excellent ear structure. . As an example, the length of the eaves gutter is L = 3.6 m, the distance between the support points of the restraint is 60 cm, and the buckling mode order is n = 6 as shown in Figure 8a. The linear expansion coefficients of the steel plate 12 are 7×10 -5 /℃ and 1.1× 10 -5 /℃, respectively, the Young's modulus is 320Kg/mm 2 and 21000Kg/mm 2 , and the plate thickness is 0.86mm and 0.14mm, respectively. Figure 9 shows the results of calculating the critical temperature difference Δt at which buckling occurs for 10 types of eaves gutters that are approximately the same. As shown in the same figure, there is a structure as shown in FIGS.
It can be seen that structures such as those shown in Fig. 5 f, g, and i, in which the degree of penetration is low, are completely impractical because buckling occurs immediately with a slight temperature rise. Furthermore, as shown in FIGS. 5b and 5j, in the case where the thin steel plate 12 is inserted in the lower half of the approximately U-shaped lug 10, the critical temperature difference Δ at which the buckling phenomenon occurs is
Although t is somewhat larger, as mentioned in the explanation of the conventional example, the temperature of the eaves gutter is about 70°C, so the critical temperature difference Δt from room temperature is at least 60°C.
If the temperature is less than ℃, it cannot be said to be sufficient as eaves gutters. Compared to these, as shown in FIG. Critical temperature difference Δt is 70℃
It can be seen that the temperature has been improved to about 90°C and is sufficiently usable for practical use.

なお実際に軒樋を第8図aに示すように控具2
4にて支持した場合には、軒樋の自重が作用する
ために第8図bに示すように1/2の周期で波打ち
現象を生じることが多いものであるが、このよう
な場合には挫屈モードの次数nは2倍のn=12と
なり、このため挫屈現象の生じる臨界温度差Δt
はnの2乗に比例して4倍となり、上述の計算結
果よりもはるかに臨界温度差は高くなる。もつと
もこのような場合においても挫屈現象を防止する
ための構造として第5図c,d,eに示すような
構造のものが最も優れていることには変わりがな
い。
In addition, the eaves gutter is actually attached to the restraining tool 2 as shown in Figure 8a.
4, the weight of the eaves gutter acts on the eaves, which often causes a waving phenomenon with a half period as shown in Figure 8b. The order n of the buckling mode is doubled, n = 12, and therefore the critical temperature difference Δt at which buckling occurs
increases by four times in proportion to the square of n, and the critical temperature difference becomes much higher than the above calculation result. However, even in such a case, the structures shown in FIGS. 5c, d, and e are still the most excellent structures for preventing the buckling phenomenon.

さらに第3図a,bの実施例に示すように、薄
肉鋼板12のエツジ部28を下方または上方に折
り曲げたり、あるいは第3図cの実施例に示すよ
うに逆S字状に折曲したりすれば、耳部10にお
いて薄肉鋼板12の占める割合が一層大きくな
り、強度的にも強くなるものである。
Furthermore, as shown in the embodiment shown in FIGS. 3a and 3b, the edge portion 28 of the thin steel plate 12 is bent downward or upward, or bent into an inverted S-shape as shown in the embodiment shown in FIG. 3c. If this is done, the proportion of the thin steel plate 12 in the ear portion 10 will be further increased, and the strength will also be increased.

以上のように本発明においては、断面半円弧状
の硬質合成樹脂製軒樋本体の両側上端部に長手方
向の全長に亘つて軒樋本体の両側に突出する中空
状の耳部を一体形成し、中空状耳部の外側下半分
と軒樋本体の腹部の全周とに亘つてインサートさ
れた薄肉鋼板の両側上端部を上記中空状耳部の内
側に折り返したものであるから、耳部内において
薄肉鋼板の占める割合が大きくなり、したがつて
耳部と腹部との線膨張係数の差が小さくなり、高
温度環境の下における耳波現象が起こりにくくな
るという利点があり、しかも薄肉鋼板のエツジ部
が中空状の内方に保護されることになるので、エ
ツジ部に応力が加わりにくく、したがつてこの部
分から亀裂が入る虞れが少ないという利点があ
り、また薄肉鋼板を成形ロールにてロールフオー
ミングする際に薄肉鋼板のエツジ部に生じる歪が
表面に現われにくくなるという利点がある。
As described above, in the present invention, hollow ears protruding from both sides of the eaves gutter body over the entire length in the longitudinal direction are integrally formed at the upper ends of both sides of the eaves gutter body made of hard synthetic resin and having a semi-circular cross section. , the upper ends of both sides of the thin steel plate inserted across the outer lower half of the hollow ear and the entire circumference of the abdomen of the eaves gutter body are folded back inside the hollow ear. This has the advantage that the ratio of thin-walled steel sheets increases, and therefore the difference in coefficient of linear expansion between the ears and the abdomen becomes smaller, making it difficult for the ear wave phenomenon to occur in high-temperature environments. Since the edges are protected inside the hollow, there is an advantage that stress is less likely to be applied to the edges, and there is therefore less risk of cracking from this area. This has the advantage that the strain that occurs at the edge of a thin steel plate during roll forming is less likely to appear on the surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2図a,b,cは
本発明のそれぞれ別の実施例の要部断面図、第3
図a,b,cはそれぞれ第2図aの実施例を変形
した本発明の他の実施例を示す断面図、第4図は
第2図aに示す軒樋を耳部と腹部とに分離した場
合の断面図、第5図a〜jは本発明において解析
の対象とした耳部の構造を示す断面図、第6図は
本発明の軒樋の製造装置を示す側面図、第7図
a,b,cは軒樋の耳部と腹部との伸縮を示す説
明図、第8図a,bは軒樋の波打ち現象を示す平
面図、第9図は本発明において解析の対象とした
各種の軒樋の耳部の構造の温度特性を示すグラフ
である。 1は軒樋本体、2は両側上端部、3は湾曲部、
4は開口面、5は硬質合成樹脂、6,7は開口端
部、8は被覆体、9は連結片、10は耳部、11
はロール、12は薄肉鋼板、13は成形ロール、
14は金型、15は押出機、16は冷却装置、1
7は引取機、18は切断機、19は予熱装置、2
0は腹部、21は延出片、22は中央部補強リ
ブ、23は軟質合成樹脂、24は控具、25は軒
樋本体、26は外側下半分、27は両側上端部、
28はエツジ部である。
FIG. 1 is a sectional view of a conventional example, FIGS. 2 a, b, and c are sectional views of main parts of different embodiments of the present invention, and FIG.
Figures a, b, and c are sectional views showing other embodiments of the present invention that are modified versions of the embodiment shown in Figure 2 a, respectively. Figure 4 shows the eaves gutter shown in Figure 2 a separated into an ear part and an abdomen. Figures 5a to 5j are cross-sectional views showing the structure of the ears analyzed in the present invention, Figure 6 is a side view showing the eaves gutter manufacturing apparatus of the present invention, and Figure 7 a, b, and c are explanatory diagrams showing the expansion and contraction of the ears and abdomen of the eaves gutter, Fig. 8 a, b are plan views showing the waving phenomenon of the eaves gutter, and Fig. 9 is the subject of analysis in the present invention. It is a graph which shows the temperature characteristic of the structure of the ear part of various eaves gutter. 1 is the eaves gutter body, 2 is the upper end on both sides, 3 is the curved part,
4 is an opening surface, 5 is a hard synthetic resin, 6 and 7 are opening ends, 8 is a covering body, 9 is a connecting piece, 10 is an ear part, 11
12 is a thin steel plate, 13 is a forming roll,
14 is a mold, 15 is an extruder, 16 is a cooling device, 1
7 is a pulling machine, 18 is a cutting machine, 19 is a preheating device, 2
0 is the abdomen, 21 is an extension piece, 22 is a central reinforcing rib, 23 is a soft synthetic resin, 24 is a restraint, 25 is a main part of the eaves gutter, 26 is an outer lower half, 27 is an upper end on both sides,
28 is an edge portion.

Claims (1)

【特許請求の範囲】[Claims] 1 断面半円弧状の硬質合成樹脂製軒樋本体の両
側上端部に長手方向の全長に亘つて軒樋本体の両
側に突出する中空状の耳部を一体形成し、中空状
耳部の外側下半分と軒樋本体の腹部の全周とに亘
つてインサートされた薄肉鋼板の両側上端部を上
記中空状耳部の内側に折り返して成ることを特徴
とする硬質合成樹脂被覆金属軒樋。
1 Hollow ears protruding from both sides of the eaves gutter body over the entire length in the longitudinal direction are integrally formed at the upper ends of both sides of the hard synthetic resin eaves gutter body having a semicircular arc shape in cross section, and the outside bottom of the hollow ears A metal eaves gutter coated with a hard synthetic resin, characterized in that the upper end portions of both sides of a thin steel plate inserted over the half and the entire circumference of the abdomen of the eaves gutter body are folded back inside the hollow ear portion.
JP55149717A 1980-10-25 1980-10-25 Hard synthetic resin covered metal eaves gutter Granted JPS5774463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55149717A JPS5774463A (en) 1980-10-25 1980-10-25 Hard synthetic resin covered metal eaves gutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55149717A JPS5774463A (en) 1980-10-25 1980-10-25 Hard synthetic resin covered metal eaves gutter

Publications (2)

Publication Number Publication Date
JPS5774463A JPS5774463A (en) 1982-05-10
JPS6250626B2 true JPS6250626B2 (en) 1987-10-26

Family

ID=15481276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55149717A Granted JPS5774463A (en) 1980-10-25 1980-10-25 Hard synthetic resin covered metal eaves gutter

Country Status (1)

Country Link
JP (1) JPS5774463A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985832U (en) * 1982-11-30 1984-06-09 松下電工株式会社 Thin metal strip buried eave gutter
JPS6025724A (en) * 1983-07-22 1985-02-08 Takiron Co Ltd Manufacture of synthetic resin gutter with reinforcing core

Also Published As

Publication number Publication date
JPS5774463A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
CA1124632A (en) Insulating pipe sheath
US4251973A (en) I-Beam construction and process therefor
US3395438A (en) Metal corrugated roofing sheets
US4424976A (en) Channel-shaped trim with disconnected core pieces
US4118543A (en) Reflectant foil insulated steel doors
JPH03505358A (en) Method for producing reinforcement for reinforced concrete structures and reinforcement obtained by the method
JPS6250626B2 (en)
JPS646849B2 (en)
US4509307A (en) Heat insulating panel
JPH06999B2 (en) Thermoplastic foam for heat insulation
JP2001032458A (en) Arched heat insulating roof structure
JPS642748B2 (en)
SU950873A2 (en) Reinforcement element for ferroconcrete structures
JP2000153301A (en) Hot rolled angle steel
JP3773736B2 (en) Method of predicting buckling limit bending radius, bending method of buckling limit width / thickness ratio, bending method of aluminum alloy profile and recording medium in bending of aluminum alloy profile
JPS6144714Y2 (en)
JP3670221B2 (en) Origami roof
JP3217332U (en) Roof construction
JP6599732B2 (en) Insulation panel and method for producing insulation panel
EP1298263A2 (en) Roofing fixing apparatus
JPS6011187B2 (en) curved architectural board
JPS592249Y2 (en) eaves gutter
JPH08326243A (en) Production method of square gutter
JP2798008B2 (en) Roll forming method
JPS5818503Y2 (en) eaves gutter