JPS6250452A - Manufacture of aluminum alloy material - Google Patents

Manufacture of aluminum alloy material

Info

Publication number
JPS6250452A
JPS6250452A JP19136085A JP19136085A JPS6250452A JP S6250452 A JPS6250452 A JP S6250452A JP 19136085 A JP19136085 A JP 19136085A JP 19136085 A JP19136085 A JP 19136085A JP S6250452 A JPS6250452 A JP S6250452A
Authority
JP
Japan
Prior art keywords
alloy material
corrosion
alloy
aluminum alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19136085A
Other languages
Japanese (ja)
Inventor
Miki Kanbayashi
神林 幹
Atsushi Yanagisawa
柳沢 篤
Chiaki Ara
荒 千明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP19136085A priority Critical patent/JPS6250452A/en
Publication of JPS6250452A publication Critical patent/JPS6250452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To prevent the intergranular corrosion of an alloy material and to improve the reliability of a structure using the alloy material by homogenizing and heat treating an alloy contg. prescribed percentages of Mg, Ti, B, Mn, Cr and Al under prescribed conditions. CONSTITUTION:An alloy consisting of, by weight, 3-6% Mg, 0.001-0.3% Ti, 0.0001-0.005% B, 0.1-1% Mn, 0.05-0.3% Cr and the balance Al is manufactured. An ingot of the alloy is homogenized at 400-570 deg.C, rolled, heat treated at 400-550 deg.C and cooled at >=3 deg.C/min cooling rate. The resulting alloy material does not undergo intergranular corrosion and the reliability of a structure using the alloy material is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、構造用、特に腐食雰囲気において使用される
構゛造物に用いられるA1〜Mg系合金材の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing an A1-Mg alloy material used for structures, particularly structures used in corrosive atmospheres.

(従来の技術) A 1〜Mg系合金は強度ならびに溶接性にすぐれた構
造用材料として実績をおさめている。これら合金厚板は
一般的に熱間圧延より得られたままの状態で使用される
か、あるいは加工性を向上させるために焼鈍処理して用
いられる。また、熱間圧延したのち、冷間圧延加工を施
すことにより、加工硬化させて用いられることもある。
(Prior Art) A1-Mg alloys have a proven track record as structural materials with excellent strength and weldability. These alloy thick plates are generally used as they are after hot rolling, or after being annealed to improve workability. Further, after hot rolling, the material may be work-hardened by cold rolling.

(発明が解決しようとする問題点) しかし、いずれめ製造法による場合でも、A11〜Mg
系合金は海水あるいは他の腐食性雰囲気中で長時間使用
されると結晶粒界に沿って腐食が発生かつ進行すること
がある。特に圧延時に導入される加工歪が残留している
熱間圧延上りのままあるいは冷間加工されたのち、高温
にて安定化処理した材料の場合にその傾向が顕著である
。それ故、腐食雰囲気にても腐食孔、とりわけ結晶粒界
に沿った腐食孔の発生しない材料の開発が望まれてきた
が、いまだこれを満足させるものは開発されていない。
(Problem to be solved by the invention) However, even if the manufacturing method is used, A11~Mg
When these alloys are used for long periods of time in seawater or other corrosive atmospheres, corrosion may occur and progress along grain boundaries. This tendency is particularly noticeable in the case of materials that have been subjected to hot-rolling, where processing strains introduced during rolling remain, or materials that have been cold-worked and then stabilized at high temperatures. Therefore, it has been desired to develop a material that does not generate corrosion holes, particularly along grain boundaries, even in a corrosive atmosphere, but no material has been developed that satisfies this requirement.

なお、特公昭59−19987号公報にはAfLMg(
−Zn)系合金の耐応力腐食割れ件数Rのために、熱間
圧延後直ちに急速冷却する方法が記載されているが、こ
の方法では応力負荷されない状態での一般腐食の向上に
ついては何も開示がない。
Note that AfLMg (
- In order to increase the stress corrosion cracking resistance R of Zn) alloys, a method of rapid cooling immediately after hot rolling is described, but this method does not disclose anything about improving general corrosion in a state where no stress is applied. There is no.

ところで結晶粒界に発生する腐食孔は1粒界に匣続的に
析出しているMgとAQとの化合物(Mg2A、Q。)
に起因することが従来より指摘されている。すなわち、
Mg2An3の析出は金属状態図から約70〜200 
”Cの範囲の:/区度に材料を保持したときに促進され
る。従来法によって製造された材#1は熱間圧延終了後
放冷されることが多いため、冷却過程においてMg2A
n3が粒界に連続析出し、かつ、使用時に溶接をともな
う場合には溶接時に発生する熱の影響により析出はさら
に進行し、腐食を誘発することになる。
By the way, corrosion holes that occur at grain boundaries are caused by compounds of Mg and AQ (Mg2A, Q) that are continuously precipitated at one grain boundary.
It has been pointed out that this is caused by. That is,
The precipitation of Mg2An3 is approximately 70 to 200 from the metal phase diagram.
This is promoted when the material is held in the :/ section of the C range. Because material #1 produced by the conventional method is often left to cool after hot rolling, Mg2A
If n3 is continuously precipitated at grain boundaries and welding is involved during use, the precipitation will further progress due to the influence of the heat generated during welding, inducing corrosion.

これを防止するためには熱間圧延終了後直ちに圧延され
た板を冷却する方法が考えられるが(例えば、前記特公
昭59−19987号公報記載の方法)、圧延ラインに
て冷却するため冷却速度を−・定とすることが難しく、
板全面に亘って均質な板を製造することは実際上困難で
あった。
In order to prevent this, a method of cooling the rolled plate immediately after hot rolling is considered (for example, the method described in the above-mentioned Japanese Patent Publication No. 59-19987), but since cooling is performed in the rolling line, the cooling rate is It is difficult to make −・ constant,
It is actually difficult to manufacture a board that is uniform over the entire surface of the board.

したがって本発明の目的は、構造物、特に腐食性雰囲気
において使用される構造物に用いられるA文−Mg系合
金材であって、耐食性とりわけ粒界腐食性が改善され、
構造物の信頼性を向トさせるAfL−Mg系合金材の製
造方法を提供することにある。
Therefore, an object of the present invention is to provide an A-Mg alloy material for use in structures, especially structures used in corrosive atmospheres, which has improved corrosion resistance, particularly intergranular corrosion, and
An object of the present invention is to provide a method for manufacturing an AfL-Mg alloy material that improves the reliability of structures.

(問題点を解決するための手段) 本発明者らは上記目的を達成するため種々検討を重ねた
結果、Mg2A文31コ熱間圧延終了後もしくは圧延さ
れた板を焼鈍処理したのち冷却する過程において析出す
るのはもちろんのこと、鋳塊製造時に結晶粒界に偏析し
ているMgが均質化処理条件を適切に選択しないと結晶
粒界に十分固溶せず圧延時においてずでにMg2AM。
(Means for Solving the Problems) As a result of various studies to achieve the above object, the inventors of the present invention found that the process of cooling Mg2A text 31 after hot rolling or after annealing the rolled plate. Not only does Mg precipitate at the grain boundaries during ingot production, but unless the homogenization treatment conditions are appropriately selected, Mg2AM will not dissolve sufficiently at the grain boundaries and will become Mg2AM during rolling.

が形成されてしまうとの知見を得た。そしてこの知見に
基づきさらに検討した結果、Mg2A文3の結晶粒界へ
のi!I!続的な析出を防1ヒするには熱間圧延条件の
制御あるいは焼鈍処理条件の選択のみでは不十分であり
、鋳塊の均質化処理ならびに熱間圧延の条件を選択する
とともに、圧延終了後さらに熱処理を行うことが必要で
あり、これによりMgの固溶を促)■させその後焼入処
理することにより粒界へのMg2An。の析出を軽減さ
せ、腐食の発生を抑制しうろことを見出した。本発明は
この知見にノ、(づきなされるに至ったものである。
We obtained the knowledge that the formation of As a result of further investigation based on this knowledge, we found that i! I! Control of hot rolling conditions or selection of annealing treatment conditions alone is not sufficient to prevent continued precipitation.In addition to homogenizing the ingot and selecting hot rolling conditions, it is necessary to Furthermore, it is necessary to perform heat treatment, which promotes the solid solution of Mg. We have discovered that scales can reduce the precipitation of corrosion and suppress the occurrence of corrosion. The present invention has been made based on this knowledge.

すなわち本発明はMg3〜6重t4%、Ti0.001
〜0.3重量%、B 0.0001〜0.005屯埴%
、M n 0.1〜1.0 爪1%及びCr 0.05
〜0.3重j5%(以下、徂清%を単に%と略記する)
を含み、残部が不可避的に含まれる不純物とA文からな
る合金tJ’を塊を400〜570℃で均質化処理後、
圧延し、次いで400〜550 ”0で熱処理したのち
3°C/分以上の速度で冷却することを特徴どする耐食
性にすぐれたアルミニウム合金材の製造方法を提供する
ものである゛。
That is, in the present invention, Mg3-6t4%, Ti0.001
~0.3% by weight, B 0.0001~0.005 tonpu%
, M n 0.1-1.0 Nail 1% and Cr 0.05
~0.3 weight j5% (hereinafter, % is simply abbreviated as %)
After homogenizing a lump of alloy tJ' consisting of impurities and A text, the remainder of which is unavoidably contained, at 400 to 570°C,
The present invention provides a method for producing an aluminum alloy material having excellent corrosion resistance, which comprises rolling the material, heat-treating the material at 400 to 550"0, and cooling at a rate of 3 DEG C./min or more.

本発明方法をさらに詳細に説明する。The method of the present invention will be explained in more detail.

本発明方法に用いられるアルミニウム合金においてMg
は硬化要素であるが、3%未満では十分な効果がなく、
6%を越えると加工性が悪くなるとともに応力腐食割れ
を誘発しやすくなる。
Mg in the aluminum alloy used in the method of the present invention
is a curing element, but if it is less than 3% it is not sufficiently effective;
If it exceeds 6%, workability deteriorates and stress corrosion cracking is likely to occur.

Tiは結晶粒を微細化する作用をするが、0.001%
未満では微細化が促進されず、 0.3%を越えるとA
Iとの粗大な化合物を形成し、靭性を損う。
Ti has the effect of refining crystal grains, but at 0.001%
If it is less than 0.3%, refinement will not be promoted, and if it exceeds 0.3%, it will be A.
Forms coarse compounds with I, impairing toughness.

BはTiと共存して結晶粒を微細化する作用があるが、
0.0001%未満では効果がない。また微細化は0.
005%を越えても促進されることはなく。
B coexists with Ti and has the effect of refining crystal grains, but
There is no effect if it is less than 0.0001%. Also, the miniaturization is 0.
Even if it exceeds 0.005%, it will not be promoted.

逆に0.005%を越えると材料の靭性を損うことにな
る。
Conversely, if it exceeds 0.005%, the toughness of the material will be impaired.

Mnは硬化要素の一つであるとともに耐食性を改善する
効果を有するが、0.1%未満では効果がなく、1.0
%を越えるとAMとの粗大な金属間化合物を形成し、材
料の加工性ならびに靭性を損う。
Mn is one of the hardening elements and has the effect of improving corrosion resistance, but if it is less than 0.1%, it has no effect;
%, a coarse intermetallic compound is formed with AM, impairing the workability and toughness of the material.

Crは耐食性の改善効果があるが、0.05%未満では
効果がなく、0.3%を越えるとAnとの巨大な金属間
化合物を形成し延性ならびに靭性を低下させる。
Cr has the effect of improving corrosion resistance, but if it is less than 0.05%, it has no effect, and if it exceeds 0.3%, it forms a huge intermetallic compound with An, reducing ductility and toughness.

本発明方法において、均質化処理は含有されている元素
を固溶もしくは微細に析出させるために行うが、400
 ′0を下回る温度では腐食孔の発生要因となるMgの
粒界偏析が緩和されず粒内への固溶が促進されない、5
70℃を上回る温度では粒界に偏析している低融滑、化
合物の溶融をともない材料の品質を低下させるとともに
A文とMn及びFeとの粗大化合物が形成され内部品質
の低下を招く。
In the method of the present invention, the homogenization treatment is performed to dissolve or finely precipitate the contained elements.
At temperatures below '0, the grain boundary segregation of Mg, which is a factor in the formation of corrosion holes, is not alleviated and solid solution within the grains is not promoted.5
At temperatures above 70° C., the quality of the material deteriorates due to the melting of low-melting compounds segregated at grain boundaries, and coarse compounds of A-texture, Mn, and Fe are formed, leading to a decrease in internal quality.

本発明方法において、均質化処理したアルミニウム合金
を熱間圧延もしくは冷間圧延処理後400〜550℃で
熱処理することが必要である。
In the method of the present invention, it is necessary to heat-treat the homogenized aluminum alloy at 400 to 550°C after hot rolling or cold rolling.

圧延後熱処理することにより板材製造時に粒界に析出し
たMgとAMとの化合物を粒内に固溶させることができ
るが、400℃未満では効果がなく、550°Cを越え
ると固溶は促進されるものの結晶粒が二次成長し粗大化
するために荷重が負荷されたときに粒界に応力集中し易
くなり強度ならびに延性の低下を招き、かつ粒界腐食を
助長する。
By heat-treating after rolling, the compound of Mg and AM that precipitated at the grain boundaries during plate manufacturing can be dissolved in the grains, but it is not effective below 400°C, and solid solution is accelerated when the temperature exceeds 550°C. When a load is applied, stress tends to concentrate at the grain boundaries due to secondary growth and coarsening of the crystal grains, which leads to a decrease in strength and ductility and promotes intergranular corrosion.

このように、熱処理したアルミニウム合金材料を急速に
冷却することによりMg2AM、が粒界に連続的に析出
するのを防止できるが、3°C/分未満の冷却速度では
、その効果は期待できない。
As described above, by rapidly cooling the heat-treated aluminum alloy material, it is possible to prevent Mg2AM from continuously precipitating at the grain boundaries, but this effect cannot be expected at a cooling rate of less than 3°C/min.

本発明方法によれば耐食性にすぐれたA文−Mg系合金
材を得ることができるが、本発明の効果は熱間圧延条件
ならびに冷間圧延条件に影響されない。また焼入処理後
、軽度の冷間加工を施しても損われることはない。
According to the method of the present invention, an A-Mg alloy material with excellent corrosion resistance can be obtained, but the effects of the present invention are not affected by hot rolling conditions or cold rolling conditions. Further, after the quenching treatment, it will not be damaged even if it is subjected to mild cold working.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1 厚さ600+nm、幅1400mmの、JIS5083
相当組成のアルミニウム合金鋳塊(Mg4.6%、Ti
0.01%、B  0.0005%、Mn0.7%、C
r0.11%、残部A見)を均質化処理後熱間圧延し厚
さ20mmの板とした。これを熱処理後室温まで冷却し
試料No、1〜9を製造し、腐食試験を行った。結果を
製造条件と併せて第1表に示す。
Example 1 JIS5083 with thickness 600+nm and width 1400mm
Aluminum alloy ingot with equivalent composition (Mg4.6%, Ti
0.01%, B 0.0005%, Mn0.7%, C
r0.11%, balance A) was homogenized and then hot rolled into a plate with a thickness of 20 mm. After heat treatment, this was cooled to room temperature to produce samples Nos. 1 to 9, and a corrosion test was conducted. The results are shown in Table 1 together with the manufacturing conditions.

なお、腐食試験は5%食塩水中に厚さ20mm、幅及び
長さをそれぞれ40mm、100mmに機械加工した試
験片を浸漬して行った0判定は目視及び光学顕微鏡によ
って行なった。
The corrosion test was performed by immersing a test piece machined into a 5% saline solution with a thickness of 20 mm and a width and length of 40 mm and 100 mm, respectively. Zero judgment was performed visually and with an optical microscope.

第1表の結果より、本発明方法により製造した試料No
、1〜9は、比較方法により製造した試j−4No、1
0〜13と比較して、粒界腐食が発生せず、すぐれた耐
食性を示していることがわか実施例2 厚さ600mm、幅1600mmの実施例1とfiTI
 42のJ l55083相当の組成のアルミニウム合
金鋳塊を530℃で2時間均質化処理後450〜550
°Cの温度にて熱間圧延して厚さ20mmの板とし、次
いで470°Cで1時間熱処理したのち70°Cまでの
平均冷却速度を3〜b才゛lに対し、実施例1と同様に
して腐食試験を行った。この結果を製造条件と併せて第
2表に示した。
From the results in Table 1, sample No. manufactured by the method of the present invention
, 1 to 9 are samples j-4 No. 1 manufactured by the comparative method.
It was found that intergranular corrosion did not occur and excellent corrosion resistance was exhibited compared to Example 1 and fiTI, which had a thickness of 600 mm and a width of 1600 mm.
450-550 after homogenizing an aluminum alloy ingot with a composition equivalent to J155083 at 530°C for 2 hours.
Example 1 was hot-rolled to a thickness of 20 mm at a temperature of 20°C, then heat-treated at 470°C for 1 hour, and then cooled to 70°C at an average cooling rate of 3 to 100 ml. A corrosion test was conducted in the same manner. The results are shown in Table 2 together with the manufacturing conditions.

第2表の結果より明らかな如く、試料No、14〜17
のいずれも耐食性にすぐれ、引張加工着に関係なく粒界
腐食を発生しないことがわかる。すなわち本発明方法に
よって製造した板材は熱処理後、軽度の冷間加工を行っ
てもその特性が損われることはない。
As is clear from the results in Table 2, sample Nos. 14 to 17
It can be seen that all of these have excellent corrosion resistance and do not cause intergranular corrosion regardless of the tensile bonding. That is, the properties of the plate material manufactured by the method of the present invention are not impaired even if the plate material is subjected to mild cold working after heat treatment.

実施例3 厚さ600mm、幅1100mmの実施例1で用いたと
同様のJIS5083相当組成のアルミニウム合金鋳塊
を550°Cで2時間均質化処理後、270〜500 
’Cの温度にて熱間圧延し、厚さ5mmの板とした。次
いで350℃にて2時間焼鈍処理したのち冷間圧延にて
厚さ2mmとした板を所定の熱処理に付したのち冷却し
て試料No。
Example 3 An aluminum alloy ingot having a composition equivalent to JIS 5083 similar to that used in Example 1 and having a thickness of 600 mm and a width of 1100 mm was homogenized at 550°C for 2 hours, and then
It was hot rolled at a temperature of 'C to form a plate with a thickness of 5 mm. Next, the plate was annealed at 350°C for 2 hours, cold-rolled to a thickness of 2 mm, subjected to a prescribed heat treatment, and then cooled to obtain sample No.

18〜23を製造した。試料No、18〜23(7)耐
食性を実施例1と同様にして試験した。この腐食試験の
結果を、熱処理及び冷却処理条件と併せて第3表に示し
た。
Nos. 18 to 23 were produced. Sample No. 18-23 (7) Corrosion resistance was tested in the same manner as in Example 1. The results of this corrosion test are shown in Table 3 together with the heat treatment and cooling treatment conditions.

第3表の結果より、本発明による試料No、18〜21
の板は比較例として示した試料No、22及び23と比
較して粒界腐食が発生せず、すぐれた耐食性を示してい
ることがわかる。
From the results in Table 3, sample Nos. 18 to 21 according to the present invention
It can be seen that intergranular corrosion did not occur in the plate compared to Sample Nos., 22, and 23 shown as comparative examples, and the plate exhibited excellent corrosion resistance.

(を(引の希央) 第3表 注) O:粒界腐食孔発生せず ×:粒界腐食孔発生 ルミニウム合金材の粒界腐食を防止することができ、構
造物の信頼性を向上させるとともにアルミニウム合金の
利用範囲を拡大し、構造物の軽量化に効を奏する。
(Note to Table 3) O: No intergranular corrosion porosity occurs ×: Intergranular corrosion pores occur Intergranular corrosion of aluminum alloy materials can be prevented, improving the reliability of structures. At the same time, it expands the scope of use of aluminum alloys and is effective in reducing the weight of structures.

Claims (1)

【特許請求の範囲】[Claims] (1)Mg3〜6重量%、Ti0.001〜0.3重量
%、B0.0001〜0.005重量%、Mn0.1〜
1.0重量%及びCr0.05〜0.3重量%を含み、
残部が不可避的に含まれる不純物とAlからなる合金鋳
塊を400〜570℃で均質化処理後、圧延し、次いで
400〜550℃で熱処理したのち3℃/分以上の速度
で冷却することを特徴とする耐食性にすぐれたアルミニ
ウム合金材の製造方法。
(1) Mg 3-6% by weight, Ti 0.001-0.3% by weight, B 0.0001-0.005% by weight, Mn 0.1-0.
1.0% by weight and 0.05-0.3% by weight of Cr,
An alloy ingot consisting of impurities and Al, the remainder of which is unavoidably included, is homogenized at 400 to 570°C, then rolled, then heat treated at 400 to 550°C, and then cooled at a rate of 3°C/min or more. A manufacturing method for aluminum alloy material with excellent corrosion resistance.
JP19136085A 1985-08-30 1985-08-30 Manufacture of aluminum alloy material Pending JPS6250452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19136085A JPS6250452A (en) 1985-08-30 1985-08-30 Manufacture of aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19136085A JPS6250452A (en) 1985-08-30 1985-08-30 Manufacture of aluminum alloy material

Publications (1)

Publication Number Publication Date
JPS6250452A true JPS6250452A (en) 1987-03-05

Family

ID=16273280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19136085A Pending JPS6250452A (en) 1985-08-30 1985-08-30 Manufacture of aluminum alloy material

Country Status (1)

Country Link
JP (1) JPS6250452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382745A (en) * 1989-08-25 1991-04-08 Sumitomo Light Metal Ind Ltd Production of hard aluminum alloy sheet excellent in corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382745A (en) * 1989-08-25 1991-04-08 Sumitomo Light Metal Ind Ltd Production of hard aluminum alloy sheet excellent in corrosion resistance

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
US5059257A (en) Heat treatment of precipitation hardenable nickel and nickel-iron alloys
JPS62124218A (en) Manufacture of high strength stainless steel material having superior workability without softening by welding
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
EP0171132B1 (en) Method for producing a weldable austenitic stainless steel in heavy sections
JPH0641623B2 (en) Controlled expansion alloy
JPS58167757A (en) Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
KR20200066925A (en) High entropy alloy and manufacturing method of the same
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPS6250452A (en) Manufacture of aluminum alloy material
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH0469220B2 (en)
JP3843021B2 (en) Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability
JPS5919987B2 (en) Manufacturing method of Al-Mg alloy
JPS63270446A (en) Production of al-mg base alloy thick plate for welded structure
Wood et al. The all-beta titanium alloy (Ti-13V-11Cr-3Al)
JPS616244A (en) High strength alloy for forming having fine grain and its manufacture
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JPS6114207B2 (en)