JPS6250435B2 - - Google Patents

Info

Publication number
JPS6250435B2
JPS6250435B2 JP54002347A JP234779A JPS6250435B2 JP S6250435 B2 JPS6250435 B2 JP S6250435B2 JP 54002347 A JP54002347 A JP 54002347A JP 234779 A JP234779 A JP 234779A JP S6250435 B2 JPS6250435 B2 JP S6250435B2
Authority
JP
Japan
Prior art keywords
carbon
base material
seal ring
sintering
ethyl silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54002347A
Other languages
Japanese (ja)
Other versions
JPS5597557A (en
Inventor
Kazuki Ogawa
Mitsuhiko Furukawa
Takashi Kitahira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP234779A priority Critical patent/JPS5597557A/en
Publication of JPS5597557A publication Critical patent/JPS5597557A/en
Publication of JPS6250435B2 publication Critical patent/JPS6250435B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

最近メカニカルシールのシールリングとして耐
食、耐摩耗性に富んだセラミツクス材が多く使わ
れている。 従来セラミツクシールリングを台金に結合する
方法としては焼結、ろう付及び軟質はんだ材料を
用いる方法があつた。焼結方法は部材が非常に高
温となり少なくとも部材の材料の一方の融点に接
近する欠点を伴い、ろう付技術の使用はセラミツ
クの対向面又は表面が高価なメタライズ層を必要
とし、ろう付に必要な温度がろう付過程により生
ずる応力によりセラミツクス材料にクラツクを生
じ得る欠点をしばしば伴う。またこの工程では先
づセラミツクリングを焼結成形した後シールリン
グ台金母材に接合するためその工程が煩雑であり
しかも薄手のセラミツクシールリングをろう付け
又は接着する場合には、セラミツクス材にクラツ
クを生ずる事もあつた。また、ろう材あるいは接
着剤使用による為耐食性が劣る欠点もあつた。一
方セラミツクスを台金に接合させる方法として上
記方法とは別に接合面を機械的に処理してからみ
合せて接合したり、この2つの物体にネジを切り
接合する方法がしばしば用いられている。しかし
この場合セラミツク部材の加工は非常に困難であ
り、また加工時に生じた微細なクラツクが原因で
セラミツクスの破損をもたらす事が多く、価格的
に高くなるという欠点があつた。 本発明では、B4C粉末の表面をエチルシリケー
トにて被覆した粉末をホツトプレス法によりカー
ボン母材上で焼結すると同時に母材に対する接着
をも行なつて得られるメカニカルシールのシール
リング及びその製造方法に係るものであり、焼結
温度は1900〜1950℃焼結圧力は100〜200Kg/cm2
好ましいものである。 なおエチルシリケートとは、その構造式は下記
する如き単量体の他に、上記単量体が4〜6個直 鎖状または分岐状に数分子縮合した低縮合体構造
をしている。このエチルシリケートは通常は無色
透明の油状液体である。 以下本願発明を開発するに至つた一連の実験及
びその結果について述べる。 〔実験 1〕 B4C粉末:350メツシユ以下のB4C粉末粒子表面に
水とアルコールで希釈し、かつ触媒として
希塩酸を入れたエチルシリケートをシリコ
ン量で(B4C+Si)に対し第1表で示す各
量となる様配合した粉末。 台母材:カーボン ホツトプレス焼結接着 :焼結接着温度 1950℃ 焼結接着時間 60分 加圧力 200Kg/cm2 の条件下で焼結接着した。次いで各々のB4C焼結
体を#200ダイヤモンド砥石で研削し、焼結体の
表面状態、硬さを測定すると共にB4Cとカーボン
との接着状態を観察した。その結果を同じく第1
表に示す。
Recently, ceramic materials with excellent corrosion and wear resistance have been widely used as seal rings for mechanical seals. Conventional methods for bonding a ceramic seal ring to a base metal include sintering, brazing, and using soft solder materials. The sintering method has the disadvantage that the part becomes very hot, approaching the melting point of at least one of the materials of the part, and the use of brazing techniques requires an expensive metallized layer on the facing or surface of the ceramic, which is not necessary for brazing. High temperatures are often associated with the disadvantage that stress caused by the brazing process can cause cracks in the ceramic material. In addition, in this process, the ceramic ring is sintered and then bonded to the base metal of the seal ring, which is a complicated process.Moreover, when brazing or gluing a thin ceramic seal ring, it is difficult to crack the ceramic material. Sometimes this occurred. Additionally, due to the use of brazing filler metal or adhesive, corrosion resistance was poor. On the other hand, as a method for joining ceramics to a base metal, in addition to the above-mentioned method, methods are often used, such as mechanically processing the joining surfaces and intertwining them to join them, or joining these two objects by cutting threads. However, in this case, machining of the ceramic member is extremely difficult, and minute cracks generated during machining often cause damage to the ceramic, resulting in a high price. In the present invention, a seal ring of a mechanical seal obtained by sintering B 4 C powder whose surface is coated with ethyl silicate on a carbon base material by a hot pressing method and simultaneously adhering to the base material, and its manufacture. The sintering temperature is preferably 1900 to 1950°C and the sintering pressure is 100 to 200 kg/cm 2 . The structural formula of ethyl silicate is that in addition to the monomers shown below, 4 to 6 of the above monomers are directly present. It has a low condensate structure in which several molecules are condensed in a chain or branched form. This ethyl silicate is usually a colorless and transparent oily liquid. A series of experiments that led to the development of the present invention and their results will be described below. [Experiment 1] B 4 C powder: Ethyl silicate diluted with water and alcohol and diluted with dilute hydrochloric acid as a catalyst was applied to the surface of B 4 C powder particles of 350 mesh or less in terms of silicon content (B 4 C + Si) as shown in Table 1. Powder blended to give each amount shown. Base material: Carbon hot press Sintering bonding: Sintering bonding was carried out under the conditions of sintering bonding temperature: 1950°C, sintering bonding time: 60 minutes, and pressure: 200 kg/cm 2 . Next, each B 4 C sintered body was ground with a #200 diamond grindstone, and the surface condition and hardness of the sintered body were measured, and the adhesion state between B 4 C and carbon was observed. The result is also the same as the first one.
Shown in the table.

【表】【table】

〔実験 2〕[Experiment 2]

B4C粉末:350メツシユ以下のB4C粉末に350メツ
シユ以下のSiおよびSiC粉末を第2表に示
す様に配合した粉末 台母材:カーボン ホツトプレス焼結接着 :焼結接着温度 1950℃ 焼結接着時間 60分 加圧力 200Kg/cm2 の条件下で焼結接着した。次いで各々のB4C焼結
体を#200ダイヤモンド砥石で研削し、焼結体の
表面状態、硬さを測定すると共にB4Cとカーボン
との接着状態を観察した。その結果を同じく第2
表に示す。
B 4 C powder: B 4 C powder of 350 mesh or less and Si and SiC powder of 350 mesh or less are blended as shown in Table 2. Powder base material: Carbon hot press Sintering bonding: Sintering bonding temperature 1950℃ Sintering and bonding was carried out under conditions of a sintering bonding time of 60 minutes and a pressure of 200 kg/cm 2 . Next, each B 4 C sintered body was ground with a #200 diamond grindstone, and the surface condition and hardness of the sintered body were measured, and the adhesion state between B 4 C and carbon was observed. The result is also shown in the second
Shown in the table.

〔実験 3〕[Experiment 3]

350メツシユ以下のB4C粉末を使用し、第1表
第2表に示す如く配合した粉末を黒鉛型を用い
て、1800℃、1900℃、1950℃の各温度、圧力200
Kg/cm2焼結時間60分間の条件下で50×50×5.5
(mm)の焼結体を得た。次いで各々の焼結体をダ
イヤモンド砥石で切断後研削して各4個の5×8
×24(mm)の試験片を作成し、比重、硬さ、曲げ
強さを測定した。得られた測定値を第3表に示
す。
B 4 C powder of 350 mesh or less was used, and the powder was mixed as shown in Table 1 and Table 2.
Kg/ cm2 50×50×5.5 under the condition of 60 minutes sintering time
(mm) of the sintered body was obtained. Next, each sintered body was cut and ground with a diamond grindstone to form four 5×8 pieces.
A test piece of ×24 (mm) was prepared, and its specific gravity, hardness, and bending strength were measured. The measured values obtained are shown in Table 3.

【表】 以上の実験結果から次の事が判る。即ちB4C粉
末にエチルシリケートを被覆してホツトプレス法
によりカーボン製リング台母材上で焼結すると同
時に台母材に対する接着したものでは無添加のも
の(試料No.8)に比べてB4C焼結体の表面状態お
よび台母材に対する接着性に優れている。第1表
および第3表から見て、カーボン母材への接着性
またB4Cの焼結性に優れているのはエチルシリケ
ートの添加量がSi分として2重量%以上は必要で
あることが判る。また多くなりすぎて30重量%に
なると曲げ強さが著しく低下してくるし接着状態
も30重量%になるとエチルシリケートのSiとCと
の反応が激しくなりC母材接着層にいくらか巣が
みられる。 なお、本願方法によつて製造された試料No.5の
B4CとCとの接着層をX線分析により調べた。X
線回析図形を第1図〜第3図に示す。第1図の
B4C焼結層においては添加されたエチルシリケー
トは殆んどβ―SiCとなつておりB4Cと均一に混
合している。第2図のB4CとCとの接着部では
B4Cとβ―SiCが主成分となり、Cが微量みえ
る。第3図C層ではCとβ―SiCが主成分となつ
ている。即ちエチルシリケートの添加によりB4C
は焼結が促進され低温で焼結可能となる。またエ
チルシリケートのSiはC母材として一部反応しβ
―SiCとなつておりB4C―β―SiC―C間の結合を
強固なものとしていることが判る。 また比較の為に行つた実験2を見ても本願方法
によつて製造したものの方が優れていることが判
る。 メカニカルシールリングのホツトプレス製造方
法として次に製造方法の具体例を示せば第4図に
示すようにカーボン製シールリング台母材を一方
の端面に凹溝1が周設された形状のものとし、該
凹溝内で表面をエチルシリケートで被覆したB4C
粉末2を充填し、このB4C粉末を加圧すると同時
に加熱を行ないB4Cの焼結とこれをカーボン製シ
ールリング台母材へ接着した後第5図に示す様に
凹溝内外周面3,4(点斜線部)のカーボンを研
削加工により除去してメカニカルシールリングを
製造する方法や、第6図に示す様に内周面にカー
ボン芯材5を挿入し、外周面をカーボン円筒6で
覆われた円輪状カーボン台母材7上に表面をエチ
ルシリケートで被覆したB4C粉2を充填しB4C粉
末をホツトプレス法により焼結すると同時に台母
材に対する接着をも行なう方法等があり、後者の
場合は円輪状カーボン台母材外周面を覆つている
円筒内面とB4Cとの反応を防ぐためBN等による
離形剤8を塗布しホツトプレス法を行う必要があ
る。 この発明のメカニカルシールリングは、B4Cの
もつ耐衝撃性に弱い性質をカーボン台で補い、耐
衝撃性の強いメカニカルシールリングとしてB4C
単味のメカニカルシールリングに較べ苛酷な条件
で使用できる。また通常使用されている超硬合金
(WC―CO)製単味のメカニカルシールリングに
較べ耐摩耗性に優れしかも重量が約1/7と著しく
軽量化され従来使用出来なかつた大型シールリン
グの製造も可能であり、カーボン台母材は機械的
な加工がし易い為必要形状にする事が容易である
という効果がある。 この発明の方法によれば、ホツトプレス法によ
りB4Cの焼結とこれをカーボン母材に対する接着
とを同時にしかもB4C焼結完了の製品において
B4Cがカーボン母材と反応し母材に対し強固に接
着でき、このB4C―カーボン構造体のカーボンを
機械的に処理しメカニカルシールとして使用出来
るため、従来のセラミツクスを加工したりまたロ
ー付による方法に較べ、製造作業を著しく容易と
することができるばかりでなく、ロー付接着剤不
用のためB4C材のもの優れた性質高密度、耐摩耗
性及び耐食性を保持できる効果があり、またB4C
厚さをいかようにも調整でき薄膜状の場合でもク
ラツクを生ぜず確実な接着が出来る効果がある。
更に本発明のシールリングを構成するB4Cは従来
のB4Cに比べて硬さが大で、曲げ強さも大きく、
ポロシテイは殆んどない耐摩耗性及び耐食性の高
いものを1950℃という比較的低温で得られるとい
う効果もあり、メカニカル用セラミツクシールリ
ングとして優れたものを得ることができる。
[Table] From the above experimental results, the following can be seen. That is, when B 4 C powder was coated with ethyl silicate and sintered on a carbon ring base material by hot pressing, and at the same time adhered to the base material, B 4 The surface condition of the C sintered body and the adhesion to the base material are excellent. From Tables 1 and 3, the reason why the adhesion to the carbon base material and the sinterability of B 4 C are excellent is that the amount of ethyl silicate added must be at least 2% by weight as Si content. I understand. If the amount is too high, reaching 30% by weight, the bending strength will drop significantly, and if the adhesion state also reaches 30% by weight, the reaction between Si and C in ethyl silicate will be intense, and some voids will be seen in the C base material bonding layer. . In addition, sample No. 5 manufactured by the method of the present application
The adhesive layer between B 4 C and C was examined by X-ray analysis. X
Line diffraction patterns are shown in FIGS. 1 to 3. Figure 1
In the B 4 C sintered layer, most of the added ethyl silicate becomes β-SiC and is uniformly mixed with B 4 C. At the bonded part between B 4 C and C in Figure 2,
B 4 C and β-SiC are the main components, with a trace amount of C visible. In the C layer shown in FIG. 3, C and β-SiC are the main components. i.e. B 4 C by the addition of ethyl silicate
sintering is promoted and can be sintered at low temperatures. In addition, Si in ethyl silicate partially reacts as a C matrix and becomes β
-SiC, and it can be seen that the bond between B 4 C-β-SiC-C is strong. Also, from Experiment 2 conducted for comparison, it can be seen that the product produced by the method of the present invention is superior. As a hot press manufacturing method for a mechanical seal ring, a specific example of the manufacturing method will be shown below. As shown in FIG. B 4 C whose surface was coated with ethyl silicate in the groove
Powder 2 is filled, and this B 4 C powder is pressed and heated at the same time to sinter the B 4 C and adhere it to the base material of the carbon seal ring base. As shown in Fig. 5, the inner and outer peripheries of the concave groove are formed. There is a method of manufacturing a mechanical seal ring by removing carbon on surfaces 3 and 4 (dotted shaded area) by grinding, or inserting a carbon core material 5 into the inner circumferential surface and carbonizing the outer circumferential surface as shown in Fig. 6. A circular carbon base material 7 covered with a cylinder 6 is filled with B 4 C powder 2 whose surface is coated with ethyl silicate, and the B 4 C powder is sintered by hot pressing and at the same time bonded to the base material. In the latter case, it is necessary to apply a mold release agent 8 such as BN and perform hot pressing in order to prevent the reaction between B 4 C and the inner surface of the cylinder that covers the outer peripheral surface of the circular carbon base base material. . The mechanical seal ring of this invention compensates for the weak impact resistance of B 4 C with a carbon base, and uses B 4 C as a mechanical seal ring with strong impact resistance.
Can be used under harsher conditions than simple mechanical seal rings. In addition, we manufacture large seal rings that have superior wear resistance and are significantly lighter at approximately 1/7 of the weight of the normally used single mechanical seal rings made of cemented carbide (WC-CO), which could not be used in the past. This is also possible, and since the carbon base material is easy to mechanically process, it has the effect of being easy to form into the required shape. According to the method of the present invention, sintering of B 4 C and adhesion to the carbon base material can be simultaneously performed using the hot pressing method, and in addition, in a product that has completed the sintering of B 4 C.
B 4 C reacts with the carbon base material and can be strongly bonded to the base material, and the carbon in this B 4 C-carbon structure can be mechanically treated and used as a mechanical seal, making it possible to process conventional ceramics or Compared to the brazing method, it not only makes the manufacturing process much easier, but since it does not require brazing adhesives, B4C material retains its excellent properties such as high density, wear resistance, and corrosion resistance. Yes, also B 4 C
The thickness can be adjusted as desired, and even in the case of a thin film, it has the effect of ensuring reliable adhesion without causing cracks.
Furthermore, B 4 C that constitutes the seal ring of the present invention has greater hardness and bending strength than conventional B 4 C.
It also has the effect of being able to obtain a product with almost no porosity and high wear resistance and corrosion resistance at a relatively low temperature of 1950°C, making it possible to obtain an excellent ceramic seal ring for mechanical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ試料No.5のB4C焼結
体、B4C接着層、C層のX線回析図形、第4図〜
第6図は本発明メカニカルシールのシールリング
台母材に対するB4C被覆方法の実施状態を示す拡
大断面図を示す。
Figures 1 to 3 are X-ray diffraction patterns of the B 4 C sintered body, B 4 C adhesive layer, and C layer of sample No. 5, and Figures 4 to 3 respectively.
FIG. 6 is an enlarged cross-sectional view showing how the B 4 C coating method is applied to the seal ring base material of the mechanical seal of the present invention.

Claims (1)

【特許請求の範囲】 1 円輪状カーボン体の片端面に円輪状B4C―
SiC焼結体が強固に接合されたことを特徴とする
メカニカルシールリング。 2 表面にエチルシリケートが被覆されたB4C粉
末をホツトプレス法によりカーボン製シールリン
グ台母材上で焼結すると同時に台母材に対する接
着をも行なう事を特徴とするメカニカルシールリ
ングの製造方法。 3 カーボン製シールリング台母材を一方の端面
に凹溝が周設された形状のものとし、該凹溝内で
表面にエチルシリケートが被覆されたB4C粉末の
ホツトプレス焼結を行うことを特徴とする特許請
求の範囲第2項記載のメカニカルシールリングの
製造方法。 4 内周面にカーボン芯材を挿入し、外周面をカ
ーボン円筒で覆われた円輪状カーボン台母材上で
表面にエチルシリケートが被覆されたB4C粉末の
ホツトプレス焼結を行うことを特徴とする特許請
求の範囲第2項記載のメカニカルシールリングの
製造方法。
[Claims] 1. A circular ring B 4 C— on one end surface of the circular carbon body.
A mechanical seal ring characterized by a strongly bonded SiC sintered body. 2. A method for producing a mechanical seal ring, which comprises sintering B 4 C powder whose surface is coated with ethyl silicate on a carbon seal ring base material using a hot press method, and at the same time bonding the base material to the base material. 3 A carbon seal ring base base material is shaped with a concave groove around one end surface, and hot press sintering of B 4 C powder whose surface is coated with ethyl silicate is carried out within the concave groove. A method for manufacturing a mechanical seal ring according to claim 2, characterized in that: 4. Hot press sintering of B 4 C powder whose surface is coated with ethyl silicate is performed on a circular carbon base material with a carbon core material inserted on the inner peripheral surface and a carbon cylinder on the outer peripheral surface. A method for manufacturing a mechanical seal ring according to claim 2.
JP234779A 1979-01-13 1979-01-13 Mechanical seal ring and its production method Granted JPS5597557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP234779A JPS5597557A (en) 1979-01-13 1979-01-13 Mechanical seal ring and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP234779A JPS5597557A (en) 1979-01-13 1979-01-13 Mechanical seal ring and its production method

Publications (2)

Publication Number Publication Date
JPS5597557A JPS5597557A (en) 1980-07-24
JPS6250435B2 true JPS6250435B2 (en) 1987-10-24

Family

ID=11526737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP234779A Granted JPS5597557A (en) 1979-01-13 1979-01-13 Mechanical seal ring and its production method

Country Status (1)

Country Link
JP (1) JPS5597557A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792585A (en) * 1980-11-27 1982-06-09 Ngk Spark Plug Co Method of bonding ceramics and metal plate
JP4024946B2 (en) * 1998-09-11 2007-12-19 東洋炭素株式会社 Mechanical seal member
CN112374905A (en) * 2020-11-16 2021-02-19 南通三责精密陶瓷有限公司 Low-temperature welding process of high-pressure-resistant silicon carbide micro-reaction assembly

Also Published As

Publication number Publication date
JPS5597557A (en) 1980-07-24

Similar Documents

Publication Publication Date Title
EP0090658B1 (en) Abrasive bodies
JPH02107580A (en) Method for bonding silicon carbide part and composite silicon carbide structure
US3911188A (en) High strength composite ceramic structure
JP2000511867A (en) Method for joining parts made of SiC-based material using thick joints by heat-resistant brazing, and heat-resistant thick joints obtained by the method
JPH0723264B2 (en) Method for joining silicon carbide molded body members
US4419161A (en) Method of producing composite ceramic articles
JPS6250435B2 (en)
GB2066291A (en) Ternary alloys
JPS5925754B2 (en) Adhesive for ceramics and its adhesion method
JPS60200868A (en) Method of bonding silicon carbide or silicon nitride sintered body
JPS60122774A (en) Method of bonding silicon carbide sintered body
JPH06155112A (en) Diamond tool and its manufacture
JPH0565470B1 (en)
Nakamura et al. Joining of Si-Ti-CO fibre-assembled ceramic composites with 72Ag-26Cu-2Ti filler metal
JP2550070B2 (en) High hardness composite sintered body
US1858244A (en) Refractory composition
JPS60263601A (en) Composite sintered tool
JPS63191505A (en) High hard sintered body tool
JP2803379B2 (en) Manufacturing method of gas-phase synthetic diamond coated cutting tool
JPS61132562A (en) Manufacture of silicon carbide sintered body
JPS6254856B2 (en)
Nakamura et al. Joining of a Si-Ti-CO fiber-bonded ceramic and an Fe-Cr-Ni stainless steel with a Ag-Cu-Ti brazing alloy
JPS58130173A (en) Manufacture of ceramic cement and composite ceramic material
Rossi et al. Joining of SiC parts by polishing and hipping
JPS6094204A (en) Composite diamond sintered body and manufacture thereof