JPS6250413A - Flattening annealing method for grain-oriented silicon steel strip - Google Patents

Flattening annealing method for grain-oriented silicon steel strip

Info

Publication number
JPS6250413A
JPS6250413A JP18996285A JP18996285A JPS6250413A JP S6250413 A JPS6250413 A JP S6250413A JP 18996285 A JP18996285 A JP 18996285A JP 18996285 A JP18996285 A JP 18996285A JP S6250413 A JPS6250413 A JP S6250413A
Authority
JP
Japan
Prior art keywords
steel strip
annealing
elongation
grain
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18996285A
Other languages
Japanese (ja)
Inventor
Yoshiaki Iida
飯田 嘉明
Katsuo Iwamoto
岩本 勝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18996285A priority Critical patent/JPS6250413A/en
Publication of JPS6250413A publication Critical patent/JPS6250413A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/125Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with application of tension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To improve shape and to minimize iron-loss value by heat-treating a steel strip in the temp. range of 400-700 deg.C while applying a tension producing an elongation of <=1% to the steel strip to carry out flattening and then by subjecting the steel strip to annealing at 600-1,200 deg.C in the temp. range higher than that of the preceding heat treatment by >=200 deg.C without causing tensile elongation. CONSTITUTION:In subjecting a grain-oriented silicon steel strip after high-temp. batch annealing to flattening annealing in a continuous annealing furnace, the steel strip is first heat-treated in the temp. range of 400-700 deg.C with the application of a tension producing an elongation of <=1% and flattened. Subsequently, the above strip is subjected to annealing at 600-1,200 deg.C in the temp. range higher than that of the preceding heat treatment by at least 200 deg.C for a period necessary to relieve stress sufficiently without practically causing the elongation of strip.

Description

【発明の詳細な説明】 (産業上の利用分野) 方向性けい素鋼板の製造に関し、該製品のひずみを極力
少なくして、鉄損特性の改善を一層有利に図ることにつ
いての開発研究の成果に関連して以下に述べる。 方向性けい素鋼帯には、 (110) (001)方位いわゆるゴス方位の2次再
結晶粒を十分発達させること、 鋼中不純物を除去すること、 及びフォルスチライト被膜を鋼板表面に形成させること を目的として、一般にコイル状に巻いた状態で通常10
00℃以上の高温で長時間のバッチ焼鈍が施される。こ
のバッチ焼鈍後の鋼帯には、長手方向の反りの他、巾方
向中央部や耳部に波打ち状の形状不良が生じる。 これらの形状不良を矯正するため、通常、連続焼鈍炉に
て、綱帯に張力を付与しつつ、800℃程度で熱処理し
、この処理によって鋼帯がいくぶん伸張し、その結果鋼
帯は平たん化する。 しかるに、調帯が伸張することにより、鋼帯内部にひず
みが残留して磁気特性の劣化を来すため、方向性珪素鋼
帯の使用に際して通常、800℃程度のひずみ取り焼鈍
を施し磁気特性の改善が図られる。しかしながら、80
0℃程度の平坦化焼鈍で鋼中に導入されたひずみは、同
程度の温度でひずみ取り焼鈍をしても、ひずみの回復は
十分に行われず、したがって、磁気特性の改善も不十分
であったのである。 (従来の技術) この問題を解消することを目的とする技術手段について
は次に示す文献の開示が参照される。 すなわち、特公昭48−14530号公報においては、
高温ハツチ焼鈍後の張力焼鈍を伸び率0.3%以下で行
なうこと、さらには、張力焼鈍時に鋼帯のエッヂ部を中
央部より20°C以上高く保持することがそれである。 この点発明者らの調査によれば、0.3%以下の伸び率
では鋼帯の形状を満足しうる程度に平たん化することは
困難であった。 一方、特開昭49−5820号公報においては、704
℃〜1093’Cで1%以下の伸びを生じるように伸張
し、704’C〜1093℃にて応力を殆んど除去する
に十分な時間だけ、加熱を続けること、また815℃〜
982℃で1%以下の伸びを生ずるように伸張し、70
4〜815℃で殆んど完全な応力除去焼なましを行なう
こと が開示されている。 発明者らの調査によれば、鋼帯形状は、十分良好になる
が、704°C以上の高温で伸張されたことに伴い鋼中
に導入されるひずみは、704℃〜1093℃の焼なま
しでは、十分に除去することができず、そのため、磁気
特性を満足しうる程度に改善することができなかった。 (発明が解決しようとする問題点) この発明の目的は、鋼帯の平坦度を満足しうる程度にす
るとともに、残留ひずみを殆んど完全に除去して、磁気
特性を十分に改善することのできる、方向性珪素鋼帯の
平たん化焼鈍方法を提供することにある。 (問題点を解決するための手段) この目的は、高温バッチ焼鈍後の方向性けい素鋼帯を連
続焼鈍炉中において平たん化焼鈍する際、先ず、400
℃〜700℃の温度領域で、1%以下の伸びを生しる張
力を鋼帯に付与しつつ熱処理して平たん化させること、 ついで、600℃〜1200℃でかつ先行の熱処理より
少なくとも200℃冑い温度領域にて事実」二鋼帯の伸
張を生じさせずに、応力を十分除去し得る時間焼鈍する
ことの順序結合より成る方向性けい素鋼帯の平たん化焼
鈍方法である。 従来、平坦化焼鈍は、所定温度領域内の一定温度で施さ
れていたのに対し、この発明では、上述の如く二段階処
理として前段の温度を低(、後段の温度を前段より少な
くとも200°C高めることにより著大な効果を生んだ
ものである。 この発明による成功を導いた実験の経緯に則りこの発明
の内容をより詳しく述べる。 高温ハツチ焼鈍績の、Si3.3χ含有、板厚0.23
m1の方向性珪素調帯を、まず200’C〜1000℃
の温度範囲で、張力を与えつつ連続焼鈍炉で熱処理し、
鋼帯が十分満足しうる程度の平たん度になるように鋼帯
を伸張した。 ついで、850’Cで鋼帯の伸張がほとんど生じないよ
うに、連続焼鈍炉で熱処理した。 処理後の鋼帯からサンプルを採取し、ひずみ取り焼鈍を
施さずに磁気特性を測定した。 得られた結果と、前段の熱処理温度および鋼帯の伸び率
との関係を第1図に示す。 400℃〜700℃の温度範囲で、鋼帯の伸び率1%以
下で初めの熱処理を施すと良好な磁気特性が得られてい
る。因みに700℃〜1000℃で初めの熱処理を施し
た後、直ちにサンプルを採取して、磁気特性を測定した
、従来技術に対応するものでは、鉄…匈17150の最
良値は0.91W/kgであり、第1図点線で囲んだ領
域の鉄損より劣っている。 次に高温バッチ焼鈍法のSi3.32含有、板厚0,2
31mの方向珪素鋼帯を、こんどは300℃〜800℃
の温度範囲で、調帯の伸び率1%以下で連続焼鈍炉で熱
処理を施し、平たん度が良好な鋼帯のみを、次に、40
0℃〜1200℃の温度範囲で、鋼帯をほとんど伸張さ
せないように、i!続焼鈍炉で熱処理した。 この鋼帯からサンプリングし、ひずみ取り焼鈍を施さず
に磁気特性を測定した。 得られた特性と、初めおよび2回目の熱処理温度との関
係を第2図に示す。 同図から、初めの熱処理を400 ”C〜700 ’C
の温度範囲で、2回目の熱処理を600 ”C〜120
0”cの温度範囲で、かつ2回目は初めより、少なくと
も200℃高い温度で熱処理するのが良好な鉄損値を得
るのに有効であることが判る。 後段と前段の温度差が200 ’C未満の場合は磁性改
善効果が少なく、又、後段温度が120[Cを越える場
合は設備が高価となり現実的ではない。 本発明においては、素材成分、製鋼、鋳造、加熱、熱延
、冷延、焼鈍について、方向性珪素鋼帯を製造するため
のいかなる技術によるものであっても、ゴス方位の2次
再結晶粒を発達させるために、コイル状に巻いて、高温
バッチ焼鈍を施すものであれば、全て対象となる。  
  2つの部分から成る本発明の平たん化焼鈍の実施方法と
しては、各々異なる連続焼鈍炉で行なうか、あるいは、
一つの連続炉の前半と後半に分けて、中間にプライドル
ロール等の、前半と後半の鋼帯にかかる張力を変更でき
る装置を設け1連に行なうこともできる。 また、最近では、製品の鉄損値を改善するために綱帯表
面に張力コーティングを施すことが一般的であるが、そ
の場合には、っぎのように処理することができる。 平たん化焼鈍の初めの熱処理を■、2番目の熱処理を■
、張力コーティングの乾燥を■、張力コーティングの焼
付を■のように記号化すると、これらの熱処理の順序と
して、 1)■−〇−■−■ 2)■−〇−■兼■ 3)■兼■−■兼■ 4)■−■−■兼■ などが可能であり、各々の段階を異なる連続炉で処理す
るか、同一連続炉内に各々の処理領域を設けて、1回で
処理することができる。 なお、上記1)の■、■の段階において、鋼帯をさらに
伸張させないよ・)にしなければならないのは勿論であ
る。 (作用) 前段熱処理では、温度領域は400〜700℃で伸び1
%以下を限定するのは400℃未満及び700℃超過並
びに1χ超過では第1図のように鉄損の低減効果が十分
に生じないからであり、また後段熱処理は前段熱処理温
度より200℃以上高い、600〜1200℃の温度領
域としたときに限って著しい鉄損低減効果を生じること
が、その限定理由である。 (実施例) 例1.3.35χSiを含有し、0.30m■の最終厚
に冷延された方向性珪素鋼帯用冷延鋼帯を脱炭焼鈍した
のち、焼鈍分離剤を塗布し、コイル状に巻いて、120
0℃10’高温バツチ焼鈍した。 この綱帯を巻き戻して分離剤を除去してから、連続焼鈍
炉の前段で先ず、鋼帯張力1.5 kg/ +n”を与
え650℃1″″″の焼鈍により、鋼帯を十分子たんに
した。この時の伸び率は、0.5χであった。 ついで、後段で鋼帯張力0.1 kg/ m112を与
え850℃1′″”・の焼鈍を施した。鋼帯の伸びは事
実上無視しうる程度であった。 一方、比較のため、分離剤の除去までを上例と同様に処
理した鋼帯に、鋼帯張力0.5 kg/ mm”を付与
し800℃1 mir+の平たん化焼鈍を施した。この
時の伸び率は0.25χであった。 画調帯から採取したサンプルの鉄損は以下のとおりであ
り、本発明例の方が優れていた。 例I  W17150=0.99胃/kg比較I  W
17150=1.Q訃へg例29分離剤除人までを実施
例1と同様に処理した鋼帯に、張力コーティングを塗布
し、ついで連続乾燥炉で鋼帯張力2.5 kg/ mm
2を付与しつつ、400℃〜500℃の間を1 min
間で除熱した。鋼帯の形状は良好になり、その伸び率は
0.4χであった。 さらに、この鋼帯に張力0.1 kg7 mm”を付与
しツツ、850℃で308連続焼鈍した。 一方、比較のため、缶カコーティング塗布までを上例と
同様に処理した調帯を、400’C30’均熱の乾燥炉
と800℃1′″f″均熱の焼付炉が連結された連続焼
鈍炉を、鋼帯張力0.5 kg/ 1m2を付与しつつ
通板した。鋼帯の形状は良好で、その伸び率は0.3χ
であった。 両鋼帯から採取したサンプルの鉄損値は以下のとおりで
本発明例が優れている。 例2  讐17150 = 0.96匈/kg比較2 
 w17150=1.01iy/kg(発明の効果) この発明によれば、方向性珪素鋼帯の形状を良好にし、
かつ鉄損値を従来法に比べ格段に低(改良しうろことが
できる。
[Detailed Description of the Invention] (Industrial Application Field) Results of research and development regarding the production of grain-oriented silicon steel sheets to minimize the distortion of the product to more advantageously improve iron loss characteristics. The following is related to this. For grain-oriented silicon steel strips, the following steps are required: to fully develop secondary recrystallized grains with (110) (001) orientation, the so-called Goss orientation, to remove impurities in the steel, and to form a forstilite film on the surface of the steel sheet. For the purpose of
Batch annealing is performed for a long time at a high temperature of 00°C or higher. In addition to warpage in the longitudinal direction, the steel strip after batch annealing has wavy shape defects in the widthwise central portion and edge portions. In order to correct these shape defects, the steel strip is usually heat treated at approximately 800°C in a continuous annealing furnace while applying tension to the steel strip. become However, as the tension strip stretches, strain remains inside the steel strip and causes deterioration of the magnetic properties. Therefore, when grain-oriented silicon steel strips are used, they are usually subjected to strain relief annealing at about 800°C to improve the magnetic properties. Improvements will be made. However, 80
The strain introduced into the steel by flattening annealing at about 0°C is not fully recovered even if it is subjected to strain relief annealing at the same temperature, and therefore the magnetic properties are not sufficiently improved. It was. (Prior Art) For technical means aimed at solving this problem, the disclosures of the following documents are referred to. That is, in Japanese Patent Publication No. 48-14530,
This means performing tension annealing after high-temperature hatch annealing at an elongation rate of 0.3% or less, and furthermore, maintaining the edge portion of the steel strip at a temperature higher than the central portion by 20° C. or more during tension annealing. In this regard, according to the inventors' investigation, it was difficult to flatten the shape of the steel strip to a satisfactory extent at an elongation rate of 0.3% or less. On the other hand, in Japanese Patent Application Laid-open No. 49-5820, 704
Stretch to produce less than 1% elongation at 704'C to 1093'C, continue heating for a sufficient time to remove most of the stress at 704'C to 1093'C;
Stretched at 982°C to produce an elongation of 1% or less,
Almost complete stress relief annealing at 4-815°C is disclosed. According to the inventors' investigation, the shape of the steel strip becomes sufficiently good, but the strain introduced into the steel due to elongation at high temperatures of 704°C or higher is greater than annealing at 704°C to 1093°C. However, it has not been possible to remove it sufficiently, and therefore it has not been possible to improve the magnetic properties to a satisfactory extent. (Problems to be Solved by the Invention) The purpose of the present invention is to improve the flatness of the steel strip to a satisfactory extent, almost completely eliminate residual strain, and sufficiently improve the magnetic properties. An object of the present invention is to provide a method for flattening and annealing a grain-oriented silicon steel strip. (Means for solving the problem) This purpose is to first flatten a grain-oriented silicon steel strip after high-temperature batch annealing in a continuous annealing furnace.
Flattening by heat treatment in the temperature range of 600°C to 1200°C and at least 200% higher than the previous heat treatment while applying tension to the steel strip that produces an elongation of 1% or less in the temperature range of 600°C to 1200°C. This is a flattening annealing method for grain-oriented silicon steel strips, which consists of a sequential combination of annealing for a time sufficient to remove the stress without causing elongation of the steel strip in the temperature range of 0.5 °C. Conventionally, flattening annealing was performed at a constant temperature within a predetermined temperature range, but in the present invention, as described above, as a two-stage process, the temperature of the first stage is lowered (the temperature of the second stage is lowered by at least 200° than the first stage). This invention produced a significant effect by increasing C. The contents of this invention will be described in more detail in accordance with the background of the experiment that led to the success of this invention. .23
First, the directional silicon tone band of m1 is heated to 200'C to 1000C.
Heat treated in a continuous annealing furnace under tension at a temperature range of
The steel strip was stretched so that it had a satisfactory degree of flatness. Then, the steel strip was heat treated in a continuous annealing furnace at 850'C so that almost no elongation occurred. Samples were taken from the treated steel strips and their magnetic properties were measured without strain relief annealing. FIG. 1 shows the relationship between the obtained results, the heat treatment temperature in the first stage, and the elongation rate of the steel strip. Good magnetic properties have been obtained when the initial heat treatment is performed in a temperature range of 400° C. to 700° C. and the elongation of the steel strip is 1% or less. By the way, according to the conventional technology in which samples were taken immediately after the initial heat treatment at 700°C to 1000°C and the magnetic properties were measured, the best value for iron 17150 was 0.91W/kg. This is inferior to the iron loss in the area surrounded by the dotted line in Figure 1. Next, high-temperature batch annealing method with Si3.32 content and plate thickness of 0.2
A 31m directional silicon steel strip is heated to 300℃ to 800℃.
Only steel strips with good flatness are heat-treated in a continuous annealing furnace at a temperature range of 1% or less and the elongation rate of the strip is 1% or less.
i! in a temperature range of 0°C to 1200°C so that the steel strip is hardly stretched. Heat treatment was performed in a subsequent annealing furnace. A sample was taken from this steel strip and its magnetic properties were measured without strain relief annealing. FIG. 2 shows the relationship between the obtained properties and the first and second heat treatment temperatures. From the same figure, the initial heat treatment was performed at 400'C to 700'C.
The second heat treatment was carried out at a temperature range of 600"C to 120"C.
It can be seen that heat treatment in a temperature range of 0''c and at a temperature at least 200℃ higher for the second time than the first is effective in obtaining a good iron loss value. If the temperature is less than 120[C], the effect of improving magnetism will be small, and if the temperature in the subsequent stage exceeds 120[C], the equipment will be expensive and it is not practical. Regarding rolling and annealing, whatever technology is used to produce grain-oriented silicon steel strip, it is wound into a coil and subjected to high-temperature batch annealing in order to develop secondary recrystallized grains in the Goss orientation. If so, all are eligible.
The flattening annealing of the present invention can be carried out in two parts, each in a different continuous annealing furnace, or
It is also possible to separate one continuous furnace into a first half and a second half, and install a device such as a priddle roll in the middle that can change the tension applied to the steel strips in the first half and the second half. In addition, recently it has become common to apply tension coating to the surface of the rope to improve the core loss value of the product, and in that case, it can be treated as described below. The first heat treatment of flattening annealing is ■, and the second heat treatment is ■
, the drying of the tension coating is symbolized as ■, and the baking of the tension coating is symbolized as ■.The order of these heat treatments is: 1) ■-〇-■-■ 2) ■-〇-■cum■ 3) ■cum ■-■combined■ 4)■-■-■combin■ etc. are possible, and each stage can be processed in a different continuous furnace, or each processing area can be set up in the same continuous furnace and processed at once. be able to. In addition, it goes without saying that the steel strip must not be further stretched in steps (1) and (2) above. (Function) In the first stage heat treatment, the temperature range is 400 to 700℃ and the elongation is 1
% or less because if it is less than 400°C, more than 700°C, or more than 1χ, the iron loss reduction effect will not be sufficiently achieved as shown in Figure 1, and the temperature of the second stage heat treatment is 200°C or more higher than the first stage heat treatment temperature. The reason for this limitation is that a significant iron loss reduction effect is produced only in the temperature range of 600 to 1200°C. (Example) Example 1. A cold-rolled steel strip for a grain-oriented silicon steel strip containing 3.35χSi and cold-rolled to a final thickness of 0.30 m is decarburized and annealed, and then an annealing separator is applied, Wrap it into a coil, 120
Batch annealing was carried out at 0°C 10' high temperature. After unwinding this rope and removing the separating agent, the steel strip is first subjected to a tension of 1.5 kg/+n'' at the front stage of a continuous annealing furnace and annealed at 650°C 1''''. I did it. The elongation rate at this time was 0.5χ. Then, in the latter stage, a steel strip tension of 0.1 kg/m112 was applied and annealing was performed at 850°C 1'''. The elongation of the steel strip was virtually negligible. On the other hand, for comparison, a steel strip that had been treated in the same manner as in the above example up to the removal of the separating agent was subjected to flattening annealing at 800°C and 1 mir+ with a steel strip tension of 0.5 kg/mm. The elongation rate at time was 0.25χ. The iron loss of the sample taken from the drawing band was as follows, and the example of the present invention was superior. Example I W17150 = 0.99 stomach/kg comparison IW
17150=1. Example 29 A tension coating was applied to a steel strip that had been treated in the same manner as in Example 1 up to the removal of the separating agent, and then the steel strip was heated in a continuous drying oven at a tension of 2.5 kg/mm.
2 for 1 min between 400°C and 500°C.
The heat was removed in between. The shape of the steel strip was improved, and its elongation rate was 0.4χ. Furthermore, this steel strip was subjected to a tension of 0.1 kg 7 mm" and annealed continuously at 850°C for 308 hours. On the other hand, for comparison, a steel strip treated in the same manner as in the above example up to the application of the can coating was annealed at 400 degrees Celsius. The steel strip was passed through a continuous annealing furnace in which a drying furnace with a 'C30' soaking temperature and a baking furnace with a soaking temperature of 800°C 1''f'' were connected while applying a tension of 0.5 kg/1 m2 to the steel strip. The shape is good and the elongation rate is 0.3χ
Met. The iron loss values of samples taken from both steel strips are as follows, and the example of the present invention is superior. Example 2 Enemies 17150 = 0.96 匈/kg Comparison 2
w17150=1.01iy/kg (effect of the invention) According to this invention, the shape of the grain-oriented silicon steel strip is improved,
In addition, the iron loss value is significantly lower (improved) compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、平坦化焼鈍後の鉄損値と平坦化焼鈍の前段温
度および調帯伸び率との関係を示す図表、第2図は、平
坦化焼鈍後の鉄損値と平坦化焼鈍151段温度合よび後
段温度との関係を示す図表である。 第1図
Figure 1 is a chart showing the relationship between the iron loss value after flattening annealing, the pre-stage temperature of flattening annealing, and the zone elongation rate, and Figure 2 shows the relationship between the iron loss value after flattening annealing and the flattening annealing 151 It is a chart showing the relationship between the stage temperature range and the subsequent stage temperature. Figure 1

Claims (1)

【特許請求の範囲】 1、高温バッチ焼鈍後の方向性けい素鋼帯を連続焼鈍炉
において平たん化焼鈍する際、 まず、400℃〜700℃の温度領域で、1%以下の伸
びを生じる張力を鋼帯に付与しつつ熱処理して、平たん
化させること、ついで600℃〜1200℃で、かつ先
行の熱処理より少なくとも200℃高い温度領域にて、
事実上鋼帯の伸張を生じさせずに応力を十分除去しうる
時間、焼鈍すること の順序結合に成ることを特徴とする方向性 珪素鋼帯の平たん化焼鈍方法。
[Claims] 1. When flattening a grain-oriented silicon steel strip after high-temperature batch annealing in a continuous annealing furnace, first, an elongation of 1% or less occurs in a temperature range of 400°C to 700°C. heat treating the steel strip while applying tension to flatten it, then at a temperature range of 600°C to 1200°C and at least 200°C higher than the previous heat treatment;
A flattening annealing method for a grain-oriented silicon steel strip, characterized in that it consists of a sequential combination of annealing for a time sufficient to remove stress without substantially causing elongation of the steel strip.
JP18996285A 1985-08-30 1985-08-30 Flattening annealing method for grain-oriented silicon steel strip Pending JPS6250413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18996285A JPS6250413A (en) 1985-08-30 1985-08-30 Flattening annealing method for grain-oriented silicon steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18996285A JPS6250413A (en) 1985-08-30 1985-08-30 Flattening annealing method for grain-oriented silicon steel strip

Publications (1)

Publication Number Publication Date
JPS6250413A true JPS6250413A (en) 1987-03-05

Family

ID=16250101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18996285A Pending JPS6250413A (en) 1985-08-30 1985-08-30 Flattening annealing method for grain-oriented silicon steel strip

Country Status (1)

Country Link
JP (1) JPS6250413A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002823A1 (en) * 1988-02-16 1991-03-07 Nippon Steel Corporation Production method of unidirectional electromagnetic steel sheet having excellent iron loss and high flux density
EP0432732A2 (en) * 1989-12-11 1991-06-19 Armco Inc. Thermal flattening semi-processed electrical steel
CN111868272A (en) * 2018-03-20 2020-10-30 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002823A1 (en) * 1988-02-16 1991-03-07 Nippon Steel Corporation Production method of unidirectional electromagnetic steel sheet having excellent iron loss and high flux density
EP0432732A2 (en) * 1989-12-11 1991-06-19 Armco Inc. Thermal flattening semi-processed electrical steel
EP0432732A3 (en) * 1989-12-11 1994-06-22 Armco Inc Thermal flattening semi-processed electrical steel
CN111868272A (en) * 2018-03-20 2020-10-30 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
CN111868272B (en) * 2018-03-20 2022-11-15 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
EP2878687A1 (en) Method for producing oriented electromagnetic steel sheet
EP0334223A2 (en) Ultra-rapid heat treatment of grain oriented electrical steel
KR900013089A (en) Manufacturing method of non-oriented electronic steel strip
US3415696A (en) Process of producing silicon steel laminations having a very large grain size after final anneal
JPS6250413A (en) Flattening annealing method for grain-oriented silicon steel strip
US4116729A (en) Method for treating continuously cast steel slabs
JP4119635B2 (en) Method for producing mirror-oriented electrical steel sheet with good decarburization
US3849214A (en) Cold roller leveling treatment of cube oriented silicon steel to remove coil set
JPH03226525A (en) Method for thermally smoothing grain-oriented silicon steel
JP3309862B2 (en) Continuous annealing equipment for grain-oriented electrical steel strip before final cold rolling
JP3415379B2 (en) Insulating coating on grain-oriented silicon steel sheet and method of forming the same
JPH03120318A (en) Continuous annealing equipment for grain-oriented magnetic steel strip
JPS5922771B2 (en) Method for manufacturing grain-oriented silicon steel sheet with excellent repeated bending properties
US1873659A (en) Process of treating silicon steel
JPS6342331A (en) Production of low iron loss grain oriented electrical steel sheet
JPH01234524A (en) Continuous annealing method for non-oriented silicon steel sheet
US2083275A (en) Manufacture of silicon steel sheets
US2533394A (en) Method of obtaining large grain size in silicon steel
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JP2757695B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JPS6086211A (en) Continuous annealing process for non-directional electromagnetic steel plate
JPH07252531A (en) Production of grain oriented silicon steel sheet
JPS63137122A (en) Production of non-oriented silicon steel sheet having excellent magnetic characteristic
US1393880A (en) Method of producing silicon-steel sherts
JPS5852425A (en) Continuous treatment equipment of hot rolling base plate for electric steel plate