JPS6250409B2 - - Google Patents

Info

Publication number
JPS6250409B2
JPS6250409B2 JP58017407A JP1740783A JPS6250409B2 JP S6250409 B2 JPS6250409 B2 JP S6250409B2 JP 58017407 A JP58017407 A JP 58017407A JP 1740783 A JP1740783 A JP 1740783A JP S6250409 B2 JPS6250409 B2 JP S6250409B2
Authority
JP
Japan
Prior art keywords
furnace
carbon
fluidized bed
chlorination
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58017407A
Other languages
Japanese (ja)
Other versions
JPS59146941A (en
Inventor
Juji Tauchi
Kyoshi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1740783A priority Critical patent/JPS59146941A/en
Publication of JPS59146941A publication Critical patent/JPS59146941A/en
Publication of JPS6250409B2 publication Critical patent/JPS6250409B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、酸化ジルコニウム(ZrO2)を還元剤
カーボンの存在下で流動層において塩素と反応さ
せることにより四塩化ジルコニウム(ZrCl4)ガス
を製造する流動塩化法に関するものであり、特に
は過剰カーボン燃焼による酸化ジルコニウム流動
塩化方法の改善に関係する。 酸化ジルコニウムの流動塩化方法は、生成四塩
化ジルコニウム中に鉄やアルミニウムの塩化物の
ような不純物の混入を有効に防止し、高純度の四
塩化ジルコニウムの回収を可能ならしめる点で、
有用な方法とされている。酸化ジルコニウムの流
動塩化は、基本的には、シヤフト炉に酸化ジルコ
ニウムと還元剤カーボンを装入し、炉底から塩素
を吹込んで高温流動層を形成し、生成する四塩化
ジルコニウムガスを炉頂から回収し、コンデンサ
に導入して、粉状四塩化ジルコニウムとして捕集
するものであり、次式による反応が関与する: ZrO2+C+2Cl2→ZrCl4+CO2 ……(1) ZrO2+2CO+2Cl2→ZrCl4+2CO2 ……(2) ZrO2+2C+2Cl2→ZrCl4+2CO ……(3) 副生COxは高温ではCOにそして低温ではCO2
となり、(3)式は1000℃以上の高温が必要である。
長期運転にはZrO2の炉内イツキの発生を抑える
ため1000℃以下で反応させる必要があり、従つて
1000℃以下の(1)および(2)の反応で流動塩化を実施
する必要がある。 ところで、上記反応を進行させるためには、流
動層を高温に維持することが必要であるが、上記
反応による反応生成熟だけでは充分でないので補
熟を行つてやる必要がある。 この補熱法の一つとして電熱法があり、これは
抵抗加熱や誘導加熱方式に代表されるものである
が、いずれも塩素の強い浸食性に対して装置の材
質的対応において実用上の難点がある。抵抗法で
は耐食電熱材にそして誘導法では塩素リークを防
ぐ構造材に適切なものが得られない。誘導法では
炉筒をグラフアイト一体構造とし、グラフアイト
に誘導発熱材として機能させることで実用化はさ
れたが、グラフアイト炉筒材の製造上の限界によ
り一炉当りの能力が小さく工業的には数炉並列に
設備する必要があること、炉筒材の酸化物との反
応や摩耗による減耗が不可避であること等の重大
な欠点がある。また、電熱法は、設備コスト、保
守コスト、電力コストの観点からも有利な方法で
はない。 別の補熱法として過剰カーボン燃焼法があり、
これは装入物中にカーボンを還元反応用以外に追
加的に含ませ、炉底から塩素ガスと共に酸素を吹
込み、その反応熱をもつて補熱を行う方法であ
る。この方法は、上記電熱法に較べて設備の点か
らまた温度制御の点から非常に有利である。 しかし、この過剰カーボン燃焼法も実操業に適
用するに際してはいろいろと克服すべき問題は多
く、いまだ過剰カーボン燃焼方式での酸化での酸
化ジルコニウム流動塩化操業は長期間満足のいく
態様で実施されていない。 過剰カーボン燃焼式流動塩化法は、前述したよ
うに1000℃以上ではZrO2イツキが炉壁に付着し
て長期運転を困難ならしめるので、1000℃以下の
流動層温度の使用を前提とするが、そうなると
ZrO2およびCの粒子サイズを微粉にしなければ
実用的な塩素化効率が得られない。他方、ZrO2
およびCを微粉にすると、微粉の飛散防止のため
空筒速度が大きくとれないこと、キヤリーオーバ
ー防止のためフリーボードを大きくとると炉体放
散熱が大きくなること、微粉は互いにくつついて
非常に柔らかな擬似粒子(2―3mmφ)を形成す
る傾向があり、流動化が難しいことと云つた多く
の問題が生起される。酸素の吹込みも炉操業上重
大な不利益を呈する。第1に、ヒートスポツトの
発生による粒の溶結および流動障害が生じる。即
ち、吹込直後の局所的且つ急速なO2燃焼熱は本
来活発な流動混合により流動層全体に熱拡散され
るべきなのであるが、流動床粒の微細化は燃焼速
度を高める反面、流動混合力即ち熱拡散力を弱め
る結果として、局所過熱に起因する粒溶着や流動
障害を招きやすくする。第2に、ガス吹込整流板
直上の局所O2燃焼帯においてO2はZrO2およびC
混合流動層中からCのみを選択的に焼失させ、塩
化物を酸化して酸化物の擬似粒子(団粒)を造り
易い。このように、流動層温度の規制、所定の塩
素化率の確保、装入原料の微細化、酸素吹込みの
弊害その他について相反する条件の下で長期の効
率的操業を確保する為に改善の余地は多く残され
ている。 例えば特公昭36―21302号は、酸化ジルコニウ
ム及び炭素粉に結合剤を加えて混合成型し、これ
を燬焼して多孔質化し、燬焼体を粉砕しそして分
篩したものを装入物として用いることを記載して
いる。しかし、この方法は燬焼を要するため前処
理に多大の設備と費用を要しまた酸化ジルコニウ
ムと炭素の比率を維持する為の操業コントロール
が困難である。こうした燬焼を要しない方法の開
発が必要とされる。 本発明者は、流動化における混合状態、ヒート
バランス、O2吹込の副作用、流動状態等につい
て広範な検討を加えた結果、ここに、前述した欠
点を著しく軽減した過剰カーボン燃焼式流動塩化
操業の確立に成功した。 流動塩化の一般条件として、ZrO2粒にC粒が
近接して存在することが重要であり、固体間混合
とガス接触における流動混合との両方の意味で完
全な混合状態を得ることが必要である。固体間混
合の効果は粒度が小さい程比表面積と近接作用と
で飛躍的に増大する。他方、ガス接触における流
動混合は、微粉化する程流動化エネルギー低下と
流子間凝集で流動化障害を起して低下する。この
ような条件を調和する流動塩化用の装入物とし
て、微粒として調製したZrO2およびC粒子を完
全混合状態に混錬〓和した状態にした後のものを
使用するのが非常に好適であることを見出した。
微粒は強い凝集性を持つのでZrO2とC微粒の混
在した凝集粒が混錬中多数形成される。こうした
混合凝集粒は流動化可能である。こうして、微粒
の持つ凝集性を活用することにより、ZrO2とC
との固体間混合と流動混合両方を一挙に計ること
ができる。 上記微粉混合装入物中に、粗粒のC粒を添加す
ることも、塩化状態を管理しまた活発に凝粒流動
する微粉の流動を安定化する機能を持つことが見
出された。 炉内に吹込まれる酸素は可及的に少量とするこ
とが酸素による弊害を最小限にするために必要で
ある。微粒および粗粒のCを含んだ活発な流動層
が形成できれば補熱に必要な酸素量は最小限です
む。炉の断熱効果も最大限に得られるよう炉材を
選定すべきである。 多孔分散板から高速でガスを噴出し、そして所
定の流動化を得るに充分の流動ガス速度(空筒速
度)を確立することによつて安定した且つ活発な
流動層が形成される。分散板上に堆積した微粉は
高速ガス噴流によつて粉砕されて流動化される。 こうした配慮の下で、本発明は、基本的に、シ
ヤフト形塩化炉において過剰カーボン燃焼方式に
よる酸化ジルコニウムの流動塩化方法において、
微粉酸化ジルコニウムと微粉炭素とを充分混合し
そこに粗粒炭素を流動層構成炭素全体の重量比に
基いて10〜40%となるよう配合した混合物を塩化
炉への装入物とし、炉底噴孔から塩素ガスおよび
酸素ガスを高速で吹込んで活発な流動層を形成す
ることを特徴とする塩素化方法を提供する。 以下、本発明について詳述する。 第1図は、本発明を実施する塩化炉の概略を示
す。塩化炉1はその底部に多孔分散板3を備え、
分散部の下方室4には、塩素ガスおよび酸素ガス
が供給される。装入物給送用の給送装置5が炉中
央部に設けられている。炉体後述するように吹込
み酸素量を最小限にして発熱反応により発生する
熱を最大限に利用しうるようまた比較的大きいフ
リーボード部7からの逃散熱を最小限にとどめる
よう、最内側レンガ構造体9と、凝縮性塩化物に
対して不浸透性の断熱材10と、外周を覆う鋼板
11とから構成されている。断熱材10としては
例えば(1)材質的には塩素ガスにおかされ難い(硅
酸塩)無機質のもので(2)凝縮性のガスの浸透で断
熱機能を喪失することのない独立気泡構造をもつ
ものとして、発泡ガラス煉瓦(ブロツク)あるい
はバーライト、シラスバルン等のマイクロバルン
等を使用することができる。鋼板11は、ガスを
完全にシールする外套を構成するよう塩素ガスか
ら保護するために、200℃以下、好ましくは50℃
前後に断熱保持することが好ましい。 装入物は炉下方部のカラム20内で下から吹上げ
られる塩素ガスおよび酸素ガスによつて流動層を
形成する。生成四塩化ジルコニウムは出口6を通
して流出する。 本発明においては、装入物は、微粉、好ましく
は50μ以下の大きさの酸化ジルコニウムと炭素を
混練〓和し、そこに粗粒、好ましくは100〜1000
μの大きさの炭素粒を配合したものが給送装置5
を通して供給される。微粉は前述したように固有
に凝集傾向を有するから、混練中酸化ジルコニウ
ムと炭素とが混在した凝集粒を大半形成する。凝
集粒は流動化に際して見掛け上一つの粒として振
舞うから、微粉粒そのままと違い、適切な流動化
条件を与えてやると、活発な流動層を形成しう
る。特に粗粒炭素の混入は流動化を触発しつつそ
の凝粒流動を安定化するのにきわめて有用な作用
を果す。粗粒炭素は、その外の流動条件因子にも
依存するが、一般には流動層構成炭素全体の10〜
40%を構成することが望ましい。また、粗粒炭素
は、微粉炭素に較べて反応速度が非常に遅いので
僅かな装入混合比で、塩化状態を管理する。炭素
材としては、塩素化における反応特性上、焼成オ
イルコークスで不純物の少ないものを好適とす
る。 塩素ガスおよび酸素ガスは多孔分散板を通して
高速度で噴入される。従来、このガス噴入速度は
単にガスの均一分散の見地から選定されていたが
本発明においては凝集性粒子の粉砕による流動粒
度の制御の役割から、例えば90m/秒に増大され
る。高速度噴入ガスは、分散板上にどうしても堆
積する粗大凝粒21を粉砕してそれを吹上げ、流
動層上方まで安定化した流動状態の維持を促進す
る。安定化した流動条件を得るには流動ガス速度
(空筒速度)が分散板上の炉断面において0.2〜
0.8m/秒となることが好ましい。 流動層20は、よく観察すると、活発に流動を
起している層22と、微粉が比較的緩やかに浮遊
している層23とに区別しうる。層23の粒子
は、流動層から飛び出しても、フリーボード部7
と流動層を繋ぐ逆円錐部で沈降し、従つてキヤリ
ヤオーバーとして排出される量は最小限に抑えら
れる。 粗粒炭素は微粉炭素に較べてその消尽速度が非
常に遅いので、流動層において意図する粗粒炭素
混入率を維持するためには、供給する粗粒炭素量
を調節する必要がある。これは、流動層配合サン
プル孔から試料を抽出分析して、その結果に応じ
て供給原料を管理することにより行いうる。 本発明者は小規模プラント実験の結果、塩化炉
を第2図に示す形態に変更することにより、尚一
層の流動安定化を計りうることを見出した。第2
図において、第1図と同じ部材には同番号が符し
てある。第1図と第2図との相異は、第2図にお
いては流動層形成域がろう斗状になつていること
である。ろう斗の上径は下部の2〜5倍とするこ
とが望ましい。こうすることにより、一層流動層
は安定し、且つそこから飛び出る微粒量も著しく
軽減される。従つて、原料未反応の逸出が大巾に
低減される。 斯うして活発な流動層が形成される結果として
吹込み酸素量は従来の1/4〜1/3に減少でき、酸素
吹込みによる弊害が著しく軽減させる。即ち、ヒ
ートスポツトの発生は、酸素量の減少と活発な流
動化により抑制され、局所的酸素燃焼帯域21に
おける酸化物団粒の発生は微粉の使用と酸素量の
低減により最小限に抑えられる。酸化ジルコニウ
ムの微粉は、本件出願人を始めとして多くの提唱
方法により現在では容易に調製しうる。炭素微粉
も、微粉コークスを使用することにより可能であ
る。 斯うして、吹込み酸素量を最小限に抑えて、塩
素化効率を最大限にしての酸化ジルコニウムの流
動塩素化が可能となる。 実施例 1 流動層径200φ、フリーボード部径500φの第1
図の形態をした小型流動炉において、酸化ジルコ
ニウム50μ以下(平均20μ)、カーボン50μ以下
(平均20μ)の寸法のものをあらかじめミキサー
にて十分混合してC20〜30%の調合物として供給
し、そこに炉内滞留物の10〜40%になるように平
均500μ(100〜1000μ)の粗粒炭素を添加して操
業を行つた。吹込ガスCl250/分、O250/
分、合計100/分、整流板孔噴出速度90m/
sec、空筒速度0.2m/sec、流動層内温度900〜
1000℃の条件で炉頂ガス中の未反応塩素はゼロ又
は痕跡量であつた。また10日間順調に運転でき、
流動層壁あるいは整流板にイツキの発生もなかつ
た。 産出塩化物は第1表のようにZrO2、Cのキヤ
リーオーバーを若干含むが、実用上問題のないレ
ベルにあつた。
The present invention relates to a fluidized chlorination process for producing zirconium tetrachloride ( ZrCl4 ) gas by reacting zirconium oxide (ZrO2) with chlorine in a fluidized bed in the presence of a reducing agent carbon, and in particular, it relates to a fluidized chlorination process for producing zirconium tetrachloride ( ZrCl4 ) gas by reacting zirconium oxide (ZrO2) with chlorine in the presence of a reducing agent carbon. Concerning improvements in the process of fluidized chlorination of zirconium oxide by combustion. The fluidized chlorination method of zirconium oxide effectively prevents the contamination of impurities such as iron and aluminum chlorides into the produced zirconium tetrachloride, and makes it possible to recover high-purity zirconium tetrachloride.
It is considered a useful method. Fluidized chlorination of zirconium oxide basically involves charging zirconium oxide and reducing agent carbon into a shaft furnace, injecting chlorine from the bottom of the furnace to form a high-temperature fluidized bed, and then releasing the generated zirconium tetrachloride gas from the top of the furnace. It is recovered, introduced into a condenser, and collected as powdered zirconium tetrachloride, and the reaction according to the following formula is involved: ZrO 2 +C + 2Cl 2 →ZrCl 4 +CO 2 ...(1) ZrO 2 +2CO + 2Cl 2 →ZrCl 4 +2CO 2 ……(2) ZrO 2 +2C+2Cl 2 →ZrCl 4 +2CO ……(3) By-product COx becomes CO at high temperature and CO 2 at low temperature
Therefore, equation (3) requires a high temperature of 1000℃ or higher.
For long-term operation, it is necessary to carry out the reaction at a temperature below 1000℃ in order to suppress the occurrence of ZrO 2 in the furnace.
It is necessary to carry out fluid salination in reactions (1) and (2) at 1000°C or lower. By the way, in order to advance the above reaction, it is necessary to maintain the fluidized bed at a high temperature, but since the reaction biomaturation by the above reaction is not sufficient, it is necessary to carry out ripening. One of these reheating methods is the electric heating method, which is typified by resistance heating and induction heating methods, but both have practical difficulties in dealing with the material of the equipment against the strong corrosivity of chlorine. There is. The resistance method cannot produce materials suitable for corrosion-resistant electrical heating materials, and the induction method cannot produce materials suitable for structural materials that prevent chlorine leakage. The induction method has been put to practical use by making the furnace tube an integral structure of graphite and making the graphite function as an induction heating material, but due to manufacturing limitations of the graphite furnace tube material, the capacity per furnace is small and it is not industrially possible. This method has serious drawbacks, such as the need to install several furnaces in parallel, and the unavoidable wear and tear of the furnace cylinder material due to reaction with oxides and abrasion. Furthermore, the electrothermal method is not an advantageous method from the viewpoints of equipment cost, maintenance cost, and power cost. Another reheating method is the excess carbon combustion method.
This is a method in which carbon is additionally included in the charge other than for the reduction reaction, oxygen is blown into the furnace together with chlorine gas from the bottom of the furnace, and the reaction heat is used for heat supplementation. This method is very advantageous compared to the above electrothermal method in terms of equipment and temperature control. However, there are many problems that need to be overcome when this excess carbon combustion method is applied to actual operations, and zirconium oxide fluidized chlorination operation using oxidation using the excess carbon combustion method has not been carried out satisfactorily for a long time. do not have. The excess carbon combustion type fluidized chlorination method is based on the assumption that a fluidized bed temperature of 1000°C or lower is used, since as mentioned above, ZrO 2 buildup will adhere to the furnace wall at temperatures above 1000°C, making long-term operation difficult. If that happens
Practical chlorination efficiency cannot be obtained unless the particle size of ZrO 2 and C is reduced to fine powder. On the other hand, ZrO2
When C is made into fine powder, the cylinder velocity cannot be increased to prevent the fine powder from scattering, and if the free board is made large to prevent carry over, the heat dissipated from the furnace body increases.The fine powder sticks to each other and becomes extremely There is a tendency to form soft pseudo-particles (2-3 mmφ), which causes many problems such as difficulty in fluidization. Oxygen injection also presents significant disadvantages in furnace operation. First, grain welding and flow disturbances occur due to the generation of heat spots. In other words, the local and rapid combustion heat of O 2 immediately after injection should be thermally diffused throughout the fluidized bed by active fluidized mixing. That is, as a result of weakening the thermal diffusion force, grain welding and flow disturbance due to local overheating are likely to occur. Second, in the local O 2 combustion zone directly above the gas injection baffle plate, O 2 is converted into ZrO 2 and C
It is easy to selectively burn out only C from the mixed fluidized bed, oxidize chloride, and create oxide pseudoparticles (agglomerates). In this way, improvements have been made to ensure long-term efficient operation under conflicting conditions such as regulating the fluidized bed temperature, ensuring a predetermined chlorination rate, making the charging material finer, and the adverse effects of oxygen injection. There is a lot of room left. For example, in Japanese Patent Publication No. 36-21302, a binder is added to zirconium oxide and carbon powder, the mixture is molded, this is fired to make it porous, the fired body is crushed and sifted, and the resulting material is used as a charge. It states that it is used. However, this method requires a large amount of equipment and cost for pretreatment because it requires kiln calcination, and it is difficult to control the operation to maintain the ratio of zirconium oxide and carbon. There is a need to develop a method that does not require this kind of charring. As a result of extensive studies on the mixing state, heat balance, side effects of O 2 injection, fluidization state, etc. in fluidization, the present inventor has hereby proposed a fluidized chlorination operation using excess carbon combustion that significantly reduces the above-mentioned drawbacks. successfully established. As a general condition for fluidized chlorination, it is important that the C grains be present in close proximity to the two ZrO grains, and it is necessary to obtain a complete mixed state in terms of both solid-solid mixing and fluidized mixing in gas contact. be. The effect of solid-solid mixing increases dramatically as the particle size decreases due to the specific surface area and proximity effect. On the other hand, the fluidization mixing in gas contact deteriorates as the powder becomes finer due to a decrease in fluidization energy and agglomeration between fluids, which causes fluidization problems. As a charge for fluidized chlorination that balances these conditions, it is very suitable to use ZrO 2 and C particles prepared as fine particles that have been kneaded and summed to a completely mixed state. I discovered something.
Since the fine particles have strong cohesiveness, a large number of agglomerated particles containing a mixture of ZrO 2 and C fine particles are formed during kneading. Such mixed agglomerates can be fluidized. In this way, by utilizing the cohesive properties of fine particles, ZrO 2 and C
Both solid-solid mixing and fluid mixing can be measured at once. It has been found that adding coarse C grains to the above-mentioned fine powder mixed charge also has the function of controlling the chlorination state and stabilizing the flow of the fine powder, which is actively coagulating. It is necessary to keep the amount of oxygen blown into the furnace as small as possible in order to minimize the harmful effects of oxygen. If an active fluidized bed containing fine and coarse C particles can be formed, the amount of oxygen required for heat supplementation can be minimized. Furnace materials should be selected to maximize the heat insulation effect of the furnace. A stable and active fluidized bed is formed by ejecting gas from the porous distribution plate at high speed and establishing a fluidizing gas velocity (cavity velocity) sufficient to obtain the desired fluidization. The fine powder deposited on the dispersion plate is crushed and fluidized by the high-speed gas jet. Under these considerations, the present invention basically provides a method for fluidized chlorination of zirconium oxide using an excess carbon combustion method in a shaft type chlorination furnace.
A mixture of finely powdered zirconium oxide and finely divided carbon is thoroughly mixed, and then coarse grained carbon is added to the mixture in an amount of 10 to 40% based on the total weight ratio of the carbon constituting the fluidized bed. Provided is a chlorination method characterized by forming an active fluidized bed by blowing chlorine gas and oxygen gas through a nozzle hole at high speed. The present invention will be explained in detail below. FIG. 1 schematically shows a chlorination furnace in which the present invention is implemented. The chlorination furnace 1 is equipped with a porous dispersion plate 3 at its bottom,
Chlorine gas and oxygen gas are supplied to the lower chamber 4 of the dispersion section. A feeding device 5 for feeding the charge is provided in the center of the furnace. The innermost part of the furnace body is designed to minimize the amount of oxygen blown into the furnace body, to maximize the heat generated by the exothermic reaction, and to minimize the heat dissipated from the relatively large freeboard section 7. It is composed of a brick structure 9, a heat insulating material 10 impermeable to condensable chlorides, and a steel plate 11 covering the outer periphery. For example, the heat insulating material 10 is (1) made of an inorganic material (silicate) that is not easily affected by chlorine gas, and (2) has a closed cell structure that does not lose its heat insulating function due to the penetration of condensable gas. As the material, foamed glass bricks (blocks) or micro balloons such as barite and shirasu balloons can be used. The steel plate 11 is heated at temperatures below 200°C, preferably at 50°C, in order to protect against chlorine gas so as to constitute a completely gas-tight mantle.
It is preferable to maintain insulation between the front and back. The charge forms a fluidized bed in the column 20 in the lower part of the furnace with chlorine gas and oxygen gas blown up from below. The produced zirconium tetrachloride exits through outlet 6. In the present invention, the charge is made by kneading and mixing fine powder, preferably zirconium oxide with a size of 50μ or less, and carbon, and then adding coarse particles, preferably 100 to 1000
The feeding device 5 contains carbon particles with a size of μ.
supplied through. Since the fine powder has an inherent tendency to agglomerate as described above, most of the fine powder forms agglomerated particles in which zirconium oxide and carbon are mixed during kneading. Agglomerated grains apparently behave as a single grain when fluidized, so unlike fine powder grains as they are, they can form an active fluidized bed if appropriate fluidization conditions are applied. In particular, the mixing of coarse carbon has an extremely useful effect in stimulating fluidization and stabilizing the flow of aggregates. Although coarse carbon depends on other flow condition factors, it generally accounts for 10 to 10% of the total carbon that makes up the fluidized bed.
It is desirable to make up 40%. Further, since the reaction rate of coarse carbon is much slower than that of fine carbon, the chlorination state is controlled by a small charging/mixing ratio. As the carbon material, calcined oil coke with few impurities is preferred from the viewpoint of reaction characteristics in chlorination. Chlorine gas and oxygen gas are injected at high velocity through the porous distribution plate. Conventionally, this gas injection speed was selected simply from the viewpoint of uniform gas dispersion, but in the present invention, it is increased to, for example, 90 m/sec because of the role of controlling the fluid particle size by crushing cohesive particles. The high-velocity injection gas crushes and blows up the coarse particles 21 that inevitably accumulate on the dispersion plate, thereby promoting the maintenance of a stable fluidized state up to the upper part of the fluidized bed. To obtain stable flow conditions, the fluidizing gas velocity (void velocity) must be 0.2 to 0.2 at the furnace cross section on the dispersion plate.
Preferably, the speed is 0.8 m/sec. When the fluidized bed 20 is closely observed, it can be distinguished into a layer 22 in which the fluid is actively flowing and a layer 23 in which the fine powder is relatively loosely suspended. Even if the particles in the layer 23 fly out of the fluidized bed, they still remain in the freeboard section 7.
It settles in the inverted cone that connects the fluidized bed and the carrier overflow, thus minimizing the amount discharged as carrier overflow. Since the consumption rate of coarse carbon is much slower than that of fine carbon, it is necessary to adjust the amount of coarse carbon to be supplied in order to maintain the intended coarse carbon mixing rate in the fluidized bed. This can be done by extracting and analyzing samples from fluidized bed formulation sample holes and managing the feedstock accordingly. As a result of small-scale plant experiments, the present inventor found that by changing the chlorination furnace to the configuration shown in FIG. 2, it was possible to further stabilize the flow. Second
In the figures, the same members as in FIG. 1 are designated by the same numbers. The difference between FIG. 1 and FIG. 2 is that in FIG. 2, the fluidized bed formation region is funnel-shaped. It is desirable that the upper diameter of the funnel be 2 to 5 times that of the lower diameter. By doing so, the fluidized bed becomes more stable, and the amount of fine particles flying out from the bed is significantly reduced. Therefore, escape of unreacted raw materials is greatly reduced. As a result of the formation of an active fluidized bed, the amount of oxygen blown can be reduced to 1/4 to 1/3 of the conventional amount, and the adverse effects of oxygen blown are significantly reduced. That is, the generation of heat spots is suppressed by reducing the amount of oxygen and active fluidization, and the generation of oxide aggregates in the local oxyfuel combustion zone 21 is minimized by using fine powder and reducing the amount of oxygen. Fine powder of zirconium oxide can now be easily prepared by many methods proposed by the applicant. Carbon fines are also possible by using fine coke. In this way, fluid chlorination of zirconium oxide can be performed while minimizing the amount of blown oxygen and maximizing the chlorination efficiency. Example 1 First case with fluidized bed diameter of 200φ and freeboard part diameter of 500φ
In a small fluidized fluidized furnace as shown in the figure, zirconium oxide with dimensions of 50μ or less (average 20μ) and carbon of 50μ or less (average 20μ) are thoroughly mixed in advance in a mixer and supplied as a C20-30% mixture. The operation was carried out by adding an average of 500 microns (100 to 1000 microns) of coarse carbon to the furnace so that it accounted for 10 to 40% of the content in the furnace. Blowing gas Cl 2 50/min, O 2 50/min
min, total 100/min, rectifier plate hole jet speed 90m/
sec, cylinder speed 0.2m/sec, fluidized bed temperature 900~
Under the condition of 1000℃, there was no or trace amount of unreacted chlorine in the furnace top gas. It was also possible to drive smoothly for 10 days.
There was no occurrence of scratches on the fluidized bed wall or rectifying plate. The produced chloride contained some carry over of ZrO 2 and C as shown in Table 1, but it was at a level that would pose no problem for practical use.

【表】 実施例 2 流動層径200φ、フリーボード径500φの第2図
の形態をし、保温を強化した小型流動炉におい
て、吹込みガス、Cl285/分、O215/分、合
計100/分とし、他の条件は実施例1と同様に
操業したが、炉頂ガス中の未反応塩素はゼロ又は
痕跡量であつた。10日間順調に運転でき流動層
壁、整流板上にはイツキの発生がなかつた。産出
塩化物品位を第2表に示すが、実用上問題のない
品位の塩化ジルコニウムが得られた。
[Table] Example 2 In a small fluidized furnace having the configuration shown in Fig. 2 with a fluidized bed diameter of 200φ and a free board diameter of 500φ, and with enhanced heat retention, the blown gas, Cl 2 85/min, O 2 15/min, total 100/min, and the other conditions were the same as in Example 1, but the amount of unreacted chlorine in the furnace top gas was zero or a trace amount. The system operated smoothly for 10 days, and there were no stains on the fluidized bed walls or rectifier plates. The quality of the produced chloride is shown in Table 2, and zirconium chloride of a quality that poses no practical problems was obtained.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する塩化炉の概略断面図
であり、第2図はみその改良炉の断面図である。 1:塩化炉、3:分散板、4:ガス吹込み下方
室、5:原料給送装置、7:フリーボード部、
9:レンガ層、10:耐火層、11:鋼板、2
0:カラム(流動層)。
FIG. 1 is a schematic sectional view of a chlorination furnace in which the present invention is implemented, and FIG. 2 is a sectional view of a miso improving furnace. 1: Chlorination furnace, 3: Dispersion plate, 4: Gas blowing lower chamber, 5: Raw material feeding device, 7: Freeboard section,
9: Brick layer, 10: Fireproof layer, 11: Steel plate, 2
0: Column (fluidized bed).

Claims (1)

【特許請求の範囲】 1 シヤフト型塩化炉において過剰カーボン燃焼
方式による酸化ジルコニウムの流動塩化方法にお
いて、微粉酸化ジルコニウムと微粉炭素とを充分
混練し、そして生成する混練物に粗粒炭素を流動
層構成炭素全体の重量比に基いて10〜40%となる
よう配合した混合物を塩化炉への装入物とし、炉
底から塩素ガスおよび酸素ガスを高速で吹込んで
活発な流動層を形成することを特徴とする流動塩
化方法。 2 微粉酸化ジルコニウムおよび炭素が50μオー
ダ以下である特許請求の範囲第1項記載の方法。 3 粗粒炭素が100〜1000μの寸法を有する特許
請求の範囲第1項記載の方法。 4 塩化炉が凝縮性塩化物ガスに対して不浸透性
の断熱材で覆われている特許請求の範囲第1項記
載の方法。 5 塩化炉のフリーボードが流動層粒子のキヤリ
ーオーバーを防止するに充分の大きさを有してい
る特許請求の範囲第1項記載の方法。 6 流動ガス速度が流動床下部における空筒速度
で表わして0.2〜0.8m/秒(1000℃換算)である
特許請求の範囲第1項記載の方法。 7 塩化炉の底部をじようご状とし、そこに流動
層を形成する特許請求の範囲第1項記載の方法。 8 炉底整流板孔からのガス吹込み速度が90m/
秒以上である特許請求の範囲第1項記載の方法。
[Claims] 1. In a method for fluidized chlorination of zirconium oxide using an excess carbon combustion method in a shaft-type chlorination furnace, finely powdered zirconium oxide and finely divided carbon are thoroughly kneaded, and coarse particles of carbon are added to the resulting kneaded material to form a fluidized bed. A mixture of 10 to 40% carbon based on the total weight ratio is charged to a chlorination furnace, and chlorine gas and oxygen gas are blown in from the bottom of the furnace at high speed to form an active fluidized bed. Characteristic fluid chlorination method. 2. The method according to claim 1, wherein the finely divided zirconium oxide and carbon are on the order of 50 μm or less. 3. The method according to claim 1, wherein the coarse carbon has a size of 100 to 1000 microns. 4. The method according to claim 1, wherein the chlorination furnace is covered with a heat insulating material impermeable to condensable chloride gas. 5. The method according to claim 1, wherein the freeboard of the chlorination furnace has a size sufficient to prevent carryover of fluidized bed particles. 6. The method according to claim 1, wherein the fluidized gas velocity is 0.2 to 0.8 m/sec (calculated at 1000°C) expressed as a cavity velocity at the bottom of the fluidized bed. 7. The method according to claim 1, wherein the bottom of the chlorination furnace is funnel-shaped and a fluidized bed is formed there. 8 The gas injection speed from the furnace bottom rectifier plate hole is 90m/
The method according to claim 1, wherein the time is longer than seconds.
JP1740783A 1983-02-07 1983-02-07 Method for fluidizing and chlorinating zirconium oxide Granted JPS59146941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1740783A JPS59146941A (en) 1983-02-07 1983-02-07 Method for fluidizing and chlorinating zirconium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1740783A JPS59146941A (en) 1983-02-07 1983-02-07 Method for fluidizing and chlorinating zirconium oxide

Publications (2)

Publication Number Publication Date
JPS59146941A JPS59146941A (en) 1984-08-23
JPS6250409B2 true JPS6250409B2 (en) 1987-10-24

Family

ID=11943140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1740783A Granted JPS59146941A (en) 1983-02-07 1983-02-07 Method for fluidizing and chlorinating zirconium oxide

Country Status (1)

Country Link
JP (1) JPS59146941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037212A (en) * 2010-08-12 2012-02-23 Ihi Corp Oxygen flow combustion device in circulating fluidized bed system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719952B1 (en) * 2000-02-21 2004-04-13 Westinghouse Electric Company Llc Fluidized bed reaction design

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170805A (en) * 1981-04-09 1982-10-21 Hiroshi Ishizuka Manufacture of metallic chloride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170805A (en) * 1981-04-09 1982-10-21 Hiroshi Ishizuka Manufacture of metallic chloride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037212A (en) * 2010-08-12 2012-02-23 Ihi Corp Oxygen flow combustion device in circulating fluidized bed system

Also Published As

Publication number Publication date
JPS59146941A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
SU1169995A1 (en) Method of producing pig iron and reducing gas in melting gasifier and device for effecting same
US2621118A (en) Process for fluid bed operation
KR100325652B1 (en) Production method of metallic iron
CA1337921C (en) Method and apparatus for reduction of material containing metal oxide
US2750277A (en) Process and apparatus for reducing and smelting iron
JP2001506315A (en) Direct reduction of metal oxide nodules
CN1033264A (en) The method of preparing titanic chloride using carbon-containing slag
US3022989A (en) Hydraulic cement process
US2855273A (en) Method of preparing titanium tetrachloride
AU597432B2 (en) Process for the continuous production of high purity, ultra-fine, aluminum nitride powder by the carbo- nitridization of alumina
US4571259A (en) Apparatus and process for reduction of metal oxides
GB2068769A (en) Method and apparatus for reducing an iron oxide material in a fluidized bed
KR910008142B1 (en) Method for smelting reduction of iron ore
JP3057576B2 (en) Method and apparatus for heat treatment of particulate material
US2874950A (en) Hydraulic cement process
US2593398A (en) Method of reducing ores without melting
US3015852A (en) Process of spheroidizing irregularly shaped particles
US3979168A (en) Apparatus for the manufacture of light granulates
US3723608A (en) Production of phosphorus
US2418394A (en) Method of and means for reducing ores
JPS6250409B2 (en)
US2072072A (en) Iron metallurgy
Khraisha et al. Coal combustion and limestone calcination in a suspension reactor
US3518052A (en) Process of producing metal oxide in vapour phase oxidation of a metal chloride
US3188173A (en) Process for the production of oxides of al, si and ti