JPS62501423A - Fuel additive compositions containing soluble platinum group metal compounds - Google Patents

Fuel additive compositions containing soluble platinum group metal compounds

Info

Publication number
JPS62501423A
JPS62501423A JP61500068A JP50006886A JPS62501423A JP S62501423 A JPS62501423 A JP S62501423A JP 61500068 A JP61500068 A JP 61500068A JP 50006886 A JP50006886 A JP 50006886A JP S62501423 A JPS62501423 A JP S62501423A
Authority
JP
Japan
Prior art keywords
composition
platinum group
fuel
group metal
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61500068A
Other languages
Japanese (ja)
Other versions
JPH0653879B2 (en
Inventor
ボワーズ,ウエイン,イー
スプレイグ,バリー,エヌ
Original Assignee
フユーエル―テク エヌ.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フユーエル―テク エヌ.ブイ. filed Critical フユーエル―テク エヌ.ブイ.
Publication of JPS62501423A publication Critical patent/JPS62501423A/en
Publication of JPH0653879B2 publication Critical patent/JPH0653879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/02Position or arrangement of bristles in relation to surface of the brush body, e.g. inclined, in rows, in groups
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/06Arrangement of mixed bristles or tufts of bristles, e.g. wire, fibre, rubber
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1814Chelates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/301Organic compounds compounds not mentioned before (complexes) derived from metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/305Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/003Additives for gaseous fuels
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B2200/00Brushes characterized by their functions, uses or applications
    • A46B2200/30Brushes for cleaning or polishing
    • A46B2200/3066Brush specifically designed for use with street cleaning machinery
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1608Well defined compounds, e.g. hexane, benzene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • C10L1/1855Cyclic ethers, e.g. epoxides, lactides, lactones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1857Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/23Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
    • C10L1/231Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites nitro compounds; nitrates; nitrites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 可溶性白金族金属化合物を含む燃料添加物および燃料、ならびにそれらの内燃機 関内における使用方法 関連出願 この出願は、ここに記載する発明者、ボノーズならびにスプレイブによって共に 出願され、同一人に譲渡された1984年12月4日出願の米国出願番号677 .954ならびに1985年10月24日出願の出願番号790.788の同時 係属特許出願の、一部継続出願である。[Detailed description of the invention] Fuel additives and fuels containing soluble platinum group metal compounds and their internal combustion engines How to use in Kannai Related applications This application is jointly filed by the inventors named herein, Bonose and Sprave. U.S. Application No. 677, filed December 4, 1984, filed and assigned to the same person. .. 954 and concurrent application number 790.788 filed on October 24, 1985. This is a partial continuation of a pending patent application.

技術分野 この発明は、ガソリンおよびヂーゼルの両内燃機関の性能の向上に係り、さらに 詳しくは、燃料添加物および燃料の燃焼効率を向上し有害な放射物を減少させる ような配合と使用法に関するもの以前に行われた、内燃機関内に白金族金属を使 用する研究によって、放出物を減少させるための接触転化器が語発された。その 結果、エンジンの設計と燃料添加物とにより燃焼状態を改良することによって同 じ結果を安価に得ようとする先行技術の努力にもかかわらず、理想的とも好まし いとも言えないこの高価な機械的装置に依存することが標準になってしまった。Technical field This invention relates to improving the performance of both gasoline and diesel internal combustion engines; For more information, see Fuel Additives and Improving Fuel Combustion Efficiency and Reducing Harmful Emissions Prior to the use of platinum group metals in internal combustion engines, Research using catalytic converters to reduce emissions has led to the use of catalytic converters. the As a result, the same can be achieved by improving combustion conditions through engine design and fuel additives. Despite efforts in the prior art to obtain similar results at low cost, the results are neither ideal nor preferable. Reliance on this expensive mechanical device has become the norm.

エンジン設計の努力によってかなりの改良が行われたが、運転効率を上の目的を 同時に達成することは難かしい。Although engine design efforts have resulted in considerable improvements, operating efficiency It is difficult to achieve both at the same time.

今日までの経験では、燃料添加物の使用にはあまり成功していない。キの理由の ひとつは添加物を供給燃料に添加するために複雑な装置が必要であるということ と、またひとつには、特殊な触媒材料を必要とするためにコストが高(なるとい う燃料1kf当り9ダ以下の水準で燃焼室に送り込むために、水溶性白金族金属 塩類を内燃機関の空気取入れ口から導入するための複雑な送達システムを必要と する。Experience to date has shown limited success in the use of fuel additives. Ki's reason One is that complex equipment is required to add the additive to the feed fuel. Another problem is that the cost is high because special catalyst materials are required. Water-soluble platinum group metal Requires a complex delivery system to introduce salts through the internal combustion engine's air intake do.

米国特許2.Oa j775および2,151,482号でリョンズおよびマツ コーンは、0.001ないし0.085%(すなわち10ないし850け11) の有機金属化合物またはその混合物を、ガソリン、ベンゼン、燃料油、ケロシン 、またはそれらの混合物等のベース燃料に添加して、エンジンの性能を色いろな 態様で改良する方法を開示している。米国特許2,086.775で発表されて いる金属には、コバルト、ニッケル、マンガン、鉄、銅、ウラン、モリブデン、 バナジウム、ジルコニウム、ベリリウム、白金、パラジウム、クロム、アルミニ ウム、トリウムと、セリウムなどの希土類金属とがある。米国特許2,151, 432号で発表された金属には、セレニウム、アンチモン、砒素、ビスマス、カ ドミウム、テルル、タリウム、錫、バリウム、硼素、セシウム、ジジミウム、ラ ンタン、カリウム、ナトリウム、タンタル。US Patent 2. Ryons and pines in Oaj 775 and 2,151,482 Corn is 0.001 to 0.085% (i.e. 10 to 850 pieces 11) organometallic compounds or mixtures thereof, gasoline, benzene, fuel oil, kerosene , or mixtures thereof, to improve engine performance in a variety of ways. Discloses a method for improving aspects of the invention. Published in U.S. Patent 2,086.775 Metals include cobalt, nickel, manganese, iron, copper, uranium, molybdenum, Vanadium, zirconium, beryllium, platinum, palladium, chromium, aluminum There are rare earth metals such as umum, thorium, and cerium. U.S. Patent 2,151, The metals announced in issue 432 include selenium, antimony, arsenic, bismuth, and carbon. Domium, tellurium, thallium, tin, barium, boron, cesium, didymium, ra tantalum, potassium, sodium, tantalum.

チタン、タングステン、および亜鉛がある。両方の開示では、好ましい有機金属 化合物としては、βジケトン誘導体およびその同族体、例えば金属アセチルアセ トン酸塩、プロピオニルアセトン酸塩、ホルミルアセトン酸塩、その他がある。There is titanium, tungsten, and zinc. In both disclosures, the preferred organometallic Compounds include β-diketone derivatives and their homologs, such as metal acetylacetate. There are tonic acid salts, propionylacetonate salts, formyl acetonate salts, and others.

これらの化合物の主なものは、酸素対金属の比がl:lないし1:10の範囲内 にあるが、酸素の存在に結び付く重要な特徴は開示されていない。These compounds mainly contain oxygen to metal ratios in the range 1:1 to 1:10. , but the important features linked to the presence of oxygen are not disclosed.

リョンズおよびマツコーンの開示は0.001ないし0.04%(すなわち10 ないし400%)の導入では燃焼効率の向」二には十分でないが長期間使用する と触媒活性のある沈着物が燃焼室内に蓄積するので有効になるだろう、と記載し ている。この開示互生ずると、その損失を補充して沈着物の量を永続させるには 普通0,01%(100F )の有機金属化合物で十分であろうと述べている。The disclosure of lyons and pine cones is between 0.001 and 0.04% (i.e. 10 Although it is not sufficient to improve combustion efficiency with the introduction of and catalytically active deposits accumulate in the combustion chamber, making it effective. ing. When this disclosure occurs, it is necessary to replenish that loss and make the amount of deposit permanent. It is stated that normally 0.01% (100F) of the organometallic compound would be sufficient.

従って開示された化合物は、低濃度では即効性の触媒作用を生ずることはできな い。リョンズおよびデンプシーの米国特許2,460,780号は原理的には水 溶性の触媒に関するものであるが、第−欄、11〜36行でこのことを確認して いる。さらに、開示された金属類の好ましい酸化状態については何ら明示してい ない。Therefore, the disclosed compounds are not capable of producing immediate catalytic action at low concentrations. stomach. Lyons and Dempsey U.S. Patent No. 2,460,780 essentially Regarding soluble catalysts, this is confirmed in column 1, lines 11 to 36. There is. Furthermore, there is no specification regarding the preferred oxidation state of the disclosed metals. do not have.

リョンズおよびマツコーンの何れの特許も、酸素添加した溶媒を使用することも 開示せず金属に対す酸素の比率を上げることの重要性も指摘していない。米国特 許2,08 s、775号の説明15においては、アセチルアセトン酸パラジウ ムが、0.002%(2〇−)の水準で燃料(特定されていないが、おそらく説 明1で用いられた四塩化鉛添加65オクタンのガソリンであろう)に加えられて いる。酸素のパラジウムに対する重量比は示されていないが、計算の結果約1対 3であり、パラジウムの水準は約101?Ilと考えられる。実質的運転の後ま でも燃焼の改善は認められない。Both the Lyons and Matsukone patents also allow for the use of oxygenated solvents. Neither does it disclose the importance of increasing the ratio of oxygen to metal. US special In Explanation 15 of No. 2,08 s, No. 775, palladium acetylacetonate fuel (unspecified, but probably hypothesized) at a level of 0.002% (20-). It is probably the 65 octane gasoline with lead tetrachloride used in Meiji 1). There is. The weight ratio of oxygen to palladium is not shown, but calculations show that it is approximately 1:1. 3, and the palladium level is about 101? It is considered to be Il. After substantial driving However, no improvement in combustion was observed.

上記リョンズおよびデンプシーの米国特許2,460゜780は、主として水ま たは、アルコールなどの・内部液体冷媒″、水溶性グリコール類、またはこれら の水溶液に可溶な触媒の使用に関するものである。金属化合物重量を基準として 0.001%もの低い触媒水準が開示されている一方、直接の触媒効果が表れる ためには、運転燃料仕込重量の1%以上の水準で有効な触媒化合物が存在する必 要がある一ヰであろうと述べている。いくつかの実例では、燃料に可溶のコバル ト、セリウム、およびクロム触媒が、全触媒で0.01%の水準で燃料に加えら れている。0.01%未満の水準の燃料可溶の触媒″″−ゝての、または酸素添 加した溶媒番とつ0ての開示はなされていない。その上、アルコールやグリフー ルが水溶性触媒と共に使用される場合は、それらは主として触媒の可溶化担体と して、また高負荷における既知の内部冷却機能の担体として開示されている。Lyons and Dempsey U.S. Patent No. 2,460°780 is primarily concerned with or internal liquid refrigerants such as alcohol, water-soluble glycols, or The invention relates to the use of catalysts that are soluble in aqueous solutions. Based on metal compound weight While catalyst levels as low as 0.001% are disclosed, direct catalytic effects are visible. In order to achieve this, an effective catalyst compound must be present at a level of 1% or more of the operating fuel charge weight. It is said that there is a need for this. In some instances, the fuel may contain soluble cobal. chromium, cerium, and chromium catalysts were added to the fuel at a level of 0.01% for all catalysts. It is. Fuel-soluble catalysts at levels less than 0.01% - or oxygenated The number of solvents added is not disclosed. Moreover, alcohol and griff When catalysts are used with water-soluble catalysts, they primarily act as solubilizing supports for the catalyst. It is also disclosed as a carrier of known internal cooling functions at high loads.

ドイツ公開公報2,500,688において、Brantlは、さまざまな触媒 金属を炭化水素燃料に加えて、内燃機関内の燃焼の瞬間に一酸化窒素を還元し、 −酸化炭素を酸化させることができると述べている。In German Publication No. 2,500,688 Brantl describes various catalysts. Metals are added to hydrocarbon fuels to reduce nitric oxide at the moment of combustion in internal combustion engines, -States that carbon oxide can be oxidized.

開示によると、すなわちリチウム、ナトリウム。According to the disclosure, namely lithium, sodium.

鉛、ベリリウム、マグネシウム、アルミニウム。Lead, beryllium, magnesium, aluminum.

ガリウム、亜鉛、カドミウム、テルル、セレン。Gallium, zinc, cadmium, tellurium, selenium.

珪素、硼素、ゲルマニウム、アンチモン、および/または錫などの金属の有機金 属化合物又はグリニヤール化合物は、個々にまたは混合物として燃料に加えるこ とができる。同様に、スカンジウム。metal organic golds such as silicon, boron, germanium, antimony, and/or tin; or Grignard compounds may be added to the fuel individually or as a mixture. I can do it. Similarly, scandium.

チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、 ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銀、金、 ガリウム、モリブデン、鉛、および水銀の、異った配位子との金属錯化合物は、 個々にまたは混合物として燃料に加えることができる。Titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, Ruthenium, rhodium, palladium, osmium, iridium, platinum, silver, gold, Metal complexes of gallium, molybdenum, lead, and mercury with different ligands are Can be added to fuel individually or as a mixture.

白金族のオスミウム、イリジウム、および白金については、燃料1リツトルあた り0.847ないし3゜123グラムと広い範囲の濃度が、開示にリストアツブ された色いろな配合について提示されており、特に好ましい結果が、燃料1リッ トル当り0.868ないし1.715グラムで得られるとされている。これら× 金属のコストとそれらを含む組成を考慮すると、開示で有効としている高水準で それらを使用することには否定的にならざるを得ない。さらに、四メチル白金化 合物な名ものが存在するとは知られていない。For the platinum group osmium, iridium, and platinum, the A wide range of concentrations, from 0.847 to 3°123 grams, was found in the disclosure. A variety of formulations have been presented, with particularly favorable results for 1 liter of fuel. It is said to yield between 0.868 and 1.715 grams per torr. These× Considering the cost of metals and the compositions that contain them, the high standards that are valid in the disclosure are I can't help but feel negative about using them. Additionally, tetramethylplatinated It is not known that there are any famous compounds.

米国特許2,402,427号において、ミラーおよびIJ、−バーは、ある種 のディーゼル燃料可溶の有機または有機金属化合物を、0.02ないし3%(す なわち200ないし3(+、ooohll)の濃度において燃焼促進剤として使 用することを開示している。その中で白金族化合物は確認されておらず、開示さ れた化合物が開示された水準以下で、ガソリン内燃機関内の燃焼を向上させると は述べていない。In U.S. Pat. No. 2,402,427, mirrors and IJ,-bars are of diesel fuel soluble organic or organometallic compounds in an amount of 0.02 to 3% That is, it can be used as a combustion promoter at concentrations between 200 and 3 (+, ooohll). Discloses that it will be used. Among them, platinum group compounds have not been confirmed and are not disclosed. compounds that improve combustion in gasoline internal combustion engines below disclosed levels. has not been stated.

他)C、ディーゼルエンジンのシリンダ内面を金属白金で被覆した研究があり、 有害物の放出を減少させる効果を示しているが、白金被覆が数時間内に消滅して しまう。Others) C. There is research on coating the inner surface of diesel engine cylinders with metallic platinum. Although it has been shown to be effective in reducing the release of harmful substances, the platinum coating disappears within a few hours. Put it away.

この発明は、ある種の白金族金属化合物の使用からなっており、その白金族金属 化合物は、ディーゼル燃料やガソリン、または内燃式ガソリン中で、ディーゼル エンジン内で使う溶媒などのエンジン燃料に直接可溶のものである。これらの化 合物は、好ましくは同じ燃料に混合できる溶媒と組み合せて、極めて少量である が触媒的に有効な、燃料100万部当り白金族金属0.01ないし約1.0部( F)の水準で使用される。別に指示のない限り、この明細書においては、Pの数 字はすべて容積に対する重量ベース、すなわちtit/11で表わされ、パーセ ントはすべて重量%である。The invention consists of the use of certain platinum group metal compounds; The compound can be used in diesel fuel, gasoline, or internal combustion gasoline. It is directly soluble in the engine fuel, such as the solvent used in the engine. These transformations The compound is preferably combined with a solvent that is miscible in the same fuel and in very small quantities. from 0.01 to about 1.0 parts of platinum group metal per million parts of fuel ( Used at level F). Unless otherwise indicated, in this specification the number of P All figures are expressed on a weight-to-volume basis, i.e. tit/11; All percentages are by weight.

本発明のひとつの態様では、燃料に混合可能な溶媒に溶かした燃料に可溶な白金 族金属化合物の溶液からなる、ガソリンおよびディーゼル燃料添加組成物が添加 されるが、その白金族金属化合物は所定量の燃料に加えられたとき、0.01な いし1.Orの白金族元素を供給するに足るだけの爪台有されている。In one embodiment of the invention, the fuel-soluble platinum is dissolved in a fuel-miscible solvent. Gasoline and diesel fuel additive compositions consisting of solutions of group metal compounds added However, when the platinum group metal compound is added to a given amount of fuel, it Stone 1. There is enough nail support to supply the platinum group elements of Or.

好ましい溶媒としては、エタノール、テトラヒドロフラン、およびメチル第3ブ チルエーテルなどの酸素添加炭化水素があげられ、燃料の重さの5%未満の■使 用するのが好ま1ノい。酸素添加した溶媒の使用量は、酸素の白金族金属に対す る重量比が少くとも1000.1になるに足るだけの量を用いるのがよい。Preferred solvents include ethanol, tetrahydrofuran, and methyl tert. Oxygenated hydrocarbons such as chill ethers are mentioned, and less than 5% of the weight of the fuel is used. It is preferable to use 1 no. The amount of oxygenated solvent used is determined by the amount of oxygen to platinum group metal. It is preferable to use an amount sufficient to give a weight ratio of at least 1000.1.

好ましい白金族金属化合物としては、+2または→−4の配位状態を持ち化合物 中の少くともひとつの配位位置が、1個のオレフィン系、アセチレン系、または 、芳香族のπ(パイ)結合形状の不飽和炭素−炭素結合をひとつ以上含む官能基 によって占有されている白金族金属配位化合物である。Preferred platinum group metal compounds include compounds having a +2 or →-4 coordination state. At least one coordination position within is one olefinic, acetylenic, or , a functional group containing one or more unsaturated carbon-carbon bonds in the form of an aromatic π (pi) bond is a platinum group metal coordination compound occupied by

ここでMは白金族金属であり、1くは、ベンジル。Here, M is a platinum group metal, and one is benzyl.

フェニル、またはニトロベンジルである〇本発明の別の態様では、性質の改良さ れたガソリンおよびディーゼル燃料組成分が提供されており、それは、ガソリン またはディーゼル燃料とそれに溶解された添加組成物からなっており、該添加組 成物は、燃料に可溶の白金族金属化合物であって、燃料Zoo万部当り0.01 ないし1.0部の白金族金属を供給する効果のある量からなっている。phenyl or nitrobenzyl. In another embodiment of the present invention, the property-improved gasoline and diesel fuel compositions are provided; or diesel fuel and an additive composition dissolved therein; The compound is a platinum group metal compound that is soluble in the fuel, and is 0.01 parts per 10,000 parts of the fuel. and 1.0 part of platinum group metal.

この発明のさらに別の態様では、内燃機関の動力源となるガソリンまたはディー ゼル燃料の有効エネルギーを増加する方法が提供されているが、その方法は、上 記ガソリンまたはディーゼル燃料に、燃料に可溶の白金族金属化合物からなる添 加組成物を、燃料100万部に対して0.01ないし1.0部の白金族金属を供 給できるだけの全混合することからなっている。In yet another aspect of the invention, the gasoline or diesel engine is powered by an internal combustion engine. Methods have been provided to increase the available energy of diesel fuel; Additives to gasoline or diesel fuel consisting of platinum group metal compounds that are soluble in the fuel. The additive composition is provided with 0.01 to 1.0 parts of platinum group metal per million parts of fuel. It consists of mixing as much as possible.

本発明の添加組成物は、ガソリンおよびディーゼル内燃機関の運転効率を、燃焼 したガソリン単位当りの出力を増し、微粒子および一酸化炭素。The additive composition of the present invention improves the operating efficiency of gasoline and diesel internal combustion engines. Increased output per unit of gasoline, particulates and carbon monoxide.

−酸化窒素などの有害ガスの放出を減らすことによって上昇させる。これらの添 加物は直接使用にあたり、また長期間の連続使用において有益な結果を与える。- Increased by reducing the emission of harmful gases such as nitrogen oxides. These attachments Additives give beneficial results when used directly and when used continuously over long periods of time.

の内燃機関に使用され、オクタン価〔(研究+モーター)/2コ最小限80、普 通は約87ないし89以上であり、また、発明のさらに好ましい態様では、鉛含 有量はガロあたり1.4y未満と定義されている。最も好ましくは、ガソリンは ・脱鉛”され、ガロンあたりの鉛含有量は高々0.05Fであり、イオウの含量 は高々0.1%である。ガソリンは普通ボンド当りBTU値が19.700カロ リーである。Used in internal combustion engines of In a more preferred embodiment of the invention, lead-containing Availability is defined as less than 1.4y per gal. Most preferably, gasoline is ・The lead content per gallon is at most 0.05F, and the sulfur content is is at most 0.1%. Gasoline normally has a BTU value of 19.700 calories per bond. It's Lee.

本発明のガソリン添加組成物は、エンジンが薄い混合気状態、すなわち空気対燃 料の比が約14.7゜1で、圧縮比が7=1ないし9:1のとき、再現性のよい 効果を発揮する。The gasoline additive composition of the present invention is useful when the engine is in a lean mixture condition, i.e., air to fuel. Good reproducibility is obtained when the material ratio is approximately 14.7°1 and the compression ratio is between 7=1 and 9:1. be effective.

この明細書のディーゼル燃料は、揮発性とセタン価特性が、内燃ディーゼルエン ジンに給油するために有効な、燃料油歯2の石油溜出物と定義される。The diesel fuels in this specification have volatility and cetane number properties that are similar to those found in internal combustion diesel engines. Defined as the petroleum distillate of the fuel oil tooth 2, useful for refueling the engine.

上に示すこと(、好ましい白金族金属化合物は、配位化合物である。これらの化 合物、特にある程度高分子量(好ましくは100ダルトンを超える)のオレフィ ン官能基と配位したものは、水分の存在下に安定である。ガソリンやディーゼル 油中には相当量の水が存在しているため、このことは極めて重要である。例えば ガソリンは、普通溶存水を5oIFオーダーの爪台有し、またしばしばさらに高 水準の分散水やバルク水を含有している。As shown above, preferred platinum group metal compounds are coordination compounds. compounds, especially olefins of moderately high molecular weight (preferably greater than 100 Daltons) Coordinating with the carbon functional group is stable in the presence of water. gasoline or diesel This is extremely important since there is a significant amount of water present in oil. for example Gasoline typically has dissolved water on the order of 5oIF, and often even higher. Contains a certain amount of dispersion water and bulk water.

ガソリンやディーゼル燃料に直接可溶の、白金族金属の配位化合物は、市販では ほとんど入手できない。もしできたとしても入手可能な化合物はしばしば、ハロ ゲンや燐などを含む好ましくない官能基を含んでおり、従って多くの内燃機用途 にはとても好ましいとは言えない。この発明による化合物は燐を全く含まないか 低水準であって重大な不利点が全くないのが好ましい。本発明者らは、燃料に可 溶で安定であり、内燃機関内のガソリンまたはディーゼル油の燃焼に積属的触媒 作用を及ぼし、必須要素として燃料に添加した場合は有害な放出物を減少させる 効果のある、ある種の白金族金属化合物が調製できることを発見した。Coordination compounds of platinum group metals that are directly soluble in gasoline and diesel fuel are not commercially available. Hardly available. The compounds that are available, if at all, are often halogenated. Contains undesirable functional groups, including carbon and phosphorus, and is therefore unsuitable for many internal combustion engine applications. I can't say it's very favorable. Are the compounds according to this invention completely free of phosphorus? A low level without any significant disadvantages is preferred. The inventors have discovered that the fuel It is stable in solution and serves as a catalyst for the combustion of gasoline or diesel oil in internal combustion engines. and reduce harmful emissions when added to fuel as an essential element We have discovered that certain effective platinum group metal compounds can be prepared.

使用して好ましい効果をあげる材料としては、配位状態■及び■の白金族金属が あげられる。酸化状態が低位(I)の化合物は、触媒作用を作り出す機能を有す るので好ましい。この発明の重要な特徴は白金族金属の配位■の化合物を使用す ることであってその配位圧の少くともひとつが、オレフィン系、アセチレン系ま たは芳香族系π結合形状の、不飽和炭素−炭素結合を有する官能基で占められて いるものを用いることである。2個以上の配位圧がこのような官能基で占められ ている化合物は、ガソリンやディーゼル油中の安定性と溶解度が増すので、さら に好ましい。何らか特定の理論にしばられたくはないが、可能な限り低い酸化体 状態にあるこのように好ましい化合物は、瞬間触媒効果を生ずるためには最も有 利である。Platinum group metals with coordination states ■ and ■ are examples of materials that can be used to achieve favorable effects. can give. Compounds with lower oxidation state (I) have the function of producing catalytic action It is preferable because An important feature of this invention is the use of coordination compounds of platinum group metals. At least one of the coordination pressures is olefinic, acetylenic, or occupied by a functional group having an unsaturated carbon-carbon bond in the form of an aromatic or π-bond. It means using what you have. Two or more coordination pressures are occupied by such functional groups. Compounds that are preferred. I don't want to be tied to any particular theory, but I want to find the lowest possible oxidant. Such preferred compounds in the state are the most effective for producing instant catalytic effects. It is advantageous.

ひとつ以上の配位圧に下記のような不飽和官能基を有するものは有用であること が分っている。It is useful to have one or more coordination pressures with the following unsaturated functional groups: I know.

1、ベンゼンおよびアントラセン、ナフタレンなどの類似の芳香族化合物 2、環状ジエン基および、シクロオクタジエン。1. Benzene and similar aromatic compounds such as anthracene and naphthalene 2. Cyclic diene group and cyclooctadiene.

メチルシクロペンタジェン シクロヘキサジエンなどの同族体 8、ノネン、ドデセン、ポリイソブチンなどのオレフィン類 4、ノニン、ドブシンなどのアセチレン類これらの不飽和官能基は順次、アルキ ル、カルボキシル、アミノ、ニトロ、ヒドロキシル、アルコキシル基などの、非 ハロゲン性の置換基で置き換えることができる。他の配位圧は面接これらの基で 占めることができろ。Homologues such as methylcyclopentadiene and cyclohexadiene 8.Olefins such as nonene, dodecene, and polyisobutyne 4. Acetylenes such as nonine and dobuscine These unsaturated functional groups are sequentially converted into alkylenes. non-containing groups such as carboxylic, carboxyl, amino, nitro, hydroxyl, and alkoxyl groups. It can be replaced with a halogenated substituent. Other coordination pressures are interviewed by these groups. Be able to occupy it.

す。A、B、D、およびEは」二記アルコキシ、カルボキシルなどの基を示し、  (C= C) xおよび(C=C)yは白金族金属と配位した、不飽和の官能 基を示し、Xおよびyは任意の整数である。vinegar. A, B, D, and E represent groups such as di-alkoxy and carboxyl; (C=C)x and (C=C)y are unsaturated functional groups coordinated with platinum group metals represents a group, and X and y are arbitrary integers.

白金族金属は、白金、パラジウム、ロジウム。Platinum group metals are platinum, palladium, and rhodium.

ルテニウム、オスミウム、およびイリジウムを含む。Contains ruthenium, osmium, and iridium.

最も好ましい白金族配位化合物は、次の式で表わされるものである。The most preferred platinum group coordination compound is one represented by the following formula.

この発明の実施については白金、パラジウム、およびロジウムを含む化合物が好 ましい。ここで、Mは白金族金属であり、Rはベンジル、フェニル、またはニト ロベンジル基である。Compounds containing platinum, palladium, and rhodium are preferred for the practice of this invention. Delicious. where M is a platinum group metal and R is benzyl, phenyl, or nitrite. It is a lobenzyl group.

これらの白金族金属化合物は、ガソリンまたはディーゼル燃料に対して、運転効 率または放出物減少についてエンジン性能を向上させる効果のある量加えられる 。普通には、この化合物は、ガソリン100万部に対して白金族金属0.01な いし1.0部の範囲(け−W / V )に供給するだけのiii ス加え゛ら れる。さらに好ましい範囲は0.05ないし0.5−であり、最も好ましくは、 白金族金属はこれと同じベースで0.IOないし0.3〇−供給されるのがよい 。These platinum group metal compounds have a low operating efficiency for gasoline or diesel fuel. Added in an effective amount to improve engine performance in terms of rate or emissions reduction . Typically, this compound contains 0.01 parts of platinum group metal per million parts of gasoline. Add enough iii to supply a range of 1.0 parts of water (K-W/V) It will be done. A more preferred range is 0.05 to 0.5-, most preferably Platinum group metals are on the same basis as 0. IO to 0.30 - preferably supplied .

この燃料添加組成物は、ガソリンであれディーゼル油であれ、対象とする燃料に 混合できる溶媒を含むものが好ましい。これら溶媒のうちあるものは、白金族金 属化合物の効果を高めるものであって、このために選ばれたのである。好ましい 溶媒には、アルコール類、ペテロ環状酸素化合物、エーテル類等の酸素添加炭化 水素がある。特に好ましい化合物は、炭素数1ない[74のアルコール、特にエ タノール、テトラヒドロフラン、およびメチル第3ブチルエーテルである。これ ら化合物のうちあるものは、以下に述べる実施例でも分るように、特定の白金族 金属の配位化合物に、特に強い促進効果を示す。硝酸オクチルは、ディーゼル燃 料添加剤中でよく機能する。This fuel additive composition is suitable for use in target fuels, whether gasoline or diesel oil. Those containing miscible solvents are preferred. Some of these solvents are platinum group metals. It enhances the effectiveness of compounds in the genus, and was chosen for this reason. preferable Solvents include oxygenated carbonization of alcohols, petrocyclic oxygen compounds, ethers, etc. There is hydrogen. Particularly preferred compounds are alcohols having 1 carbon number [74], especially alcohols having 74 carbon atoms; Tanol, tetrahydrofuran, and methyl tert-butyl ether. this Some of these compounds contain specific platinum group metals, as shown in the examples below. It shows a particularly strong promoting effect on coordination compounds of metals. Octyl nitrate is a diesel fuel Works well in additives.

これらの溶媒は、燃料に対して5%まで、普通0.25%以上の濃度で使用する のが好ましい。0.25ないし2.5%の溶媒濃度が好ましいが、特に好ましい のは1%以下が最も好ましく、ある場合には、これらの水準で使用されると、驚 くべき添加物性能の向上が見られる。These solvents are used at concentrations of up to 5% of the fuel, usually 0.25% or higher. is preferable. Solvent concentrations of 0.25 to 2.5% are preferred, particularly preferred is most preferably less than 1%; in some cases, when used at these levels, Improvements in additive performance, which should be improved, can be seen.

好ましい燃料添加物では、十分な量の白金族金属化合物と酸素添加した溶媒が用 いられて、白金族金属に対する酸素の重量比が、1,000対工ないし1oo、 ooo対1、好ましくは3,500:1になっている。さらに好ましくは白金族 金属に対する酸素の重量比が5,000:1ないし85.000 : 1である 。Preferred fuel additives use sufficient amounts of platinum group metal compounds and oxygenated solvents. and the weight ratio of oxygen to platinum group metal is 1,000 to 100, ooo to 1, preferably 3,500:1. More preferably platinum group The weight ratio of oxygen to metal is between 5,000:1 and 85,000:1. .

燃料添加組成物には、他の添加物、例えば有益でると知られている、清浄剤、酸 化防止剤、オクタン価向上剤を加えることができるが、これらのものの使用は本 発明の本質的な特徴ではない。The fuel additive composition may contain other additives such as detergents, acids, etc., which are known to be beneficial. Antioxidants and octane improvers can be added, but the use of these substances is strictly prohibited. It is not an essential feature of the invention.

以下実施例を用いて本発明をさらに詳細に説明し、その最上の実施態様を説明す るが、これは決して本発明を限定するものと解釈してはならない。The present invention will be explained in further detail using Examples below, and the best embodiment thereof will be explained. However, this should not be construed as limiting the invention in any way.

実施例1 ジベンジルシクロオクタジエンPt IIを、自動車エンジンに供給する鉛無添 加ガソリン中に触媒として用いた。Example 1 Lead-free supply of dibenzylcyclooctadiene Pt II to automobile engines It was used as a catalyst in added gasoline.

ジベンジルシクロペンタジェン白金■の製造は次のごとくして行った。24.0 グラム (0,064モル)シクロオクタジェニルPt■ジクロリドをキシレン 20(1/中にスラリー化する。できた混合物に、(800mlの)ジエチルエ ーテルに溶解した0、5モルの塩化ベンジルマグネシウムを加える。グリニヤー ル反応を一晩続け、ついで飽和硫酸アンモニウムを用いて、水浴中で加水分解す る。加水分解後混合物を強く振蕩させ次に2層に分離させる。有機相を集め、無 水硫酸ナトリウム上で乾燥させ、ジエチルエーテル残分を除き、生成分のキシレ ン溶液を残す。この生成物は次の構造を有する。Dibenzylcyclopentadiene platinum (2) was produced as follows. 24.0 grams (0,064 mol) cyclooctagenyl Pt dichloride in xylene 20 (1/). To the resulting mixture, add (800 ml) diethyl ethyl 0.5 mol of benzylmagnesium chloride dissolved in ether is added. Grignard The reaction was continued overnight and then hydrolyzed in a water bath using saturated ammonium sulfate. Ru. After hydrolysis, the mixture is shaken vigorously and then separated into two layers. Collect the organic phase and discard Dry over sodium aqueous sulfate to remove diethyl ether residue, and remove the resulting xylene. Leave the solution behind. This product has the following structure.

この白金化合物(白金0.17重量%)のキシレン溶液を、下の表IAに示した 他の燃料添加物成分と混合した。The xylene solution of this platinum compound (platinum 0.17% by weight) is shown in Table IA below. Mixed with other fuel additive ingredients.

一連のダイナモメータ−試験を行った。その中で1984年型ビツクV−6の火 花点火エンジンを、。A series of dynamometer tests were conducted. Among them, the fire of the 1984 Vitsuku V-6 Fireworks ignition engine.

渦流ダイナモメータ−に接続して負荷させた。このエンジンは次の仕様のもので ある。It was connected to an eddy current dynamometer and loaded. This engine has the following specifications be.

エンジン形′式 ビック90°V−6 内径およびストローク 8.800 X 3.400排 気 爪 231c痣藏 圧縮比 8.0.1 キャブレタ一種類 2 BBL −ROCH空気−燃料比 14.7:1 ビックV−6エンジンを用いた、比較エンジン試運転中に得られたデータ。作用 燃料は、下記成分をベースにした、白金ベースの燃料添加物配合であり、白金化 合物以外の、すべての配合成分を使った、鉛無添加のインド−ランガソリンであ る。Engine type Big 90°V-6 Inner diameter and stroke 8.800 x 3.400 Exhaust claw 231c Bruise Compression ratio 8.0.1 One type of carburetor 2 BBL -ROCH Air-fuel ratio 14.7:1 Data obtained during a comparative engine test run using a big V-6 engine. action The fuel is a platinum-based fuel additive formulation based on the following ingredients. It is a lead-free Indo-Ran gasoline that uses all compounded ingredients other than lead-added gasoline. Ru.

重量% メチル第3ブチルエーテル 40.5 清浄剤(エチルMPA −448) 0.9上記により調製した白金配位 化合物 0.012 この白金化合物の元素内わけは次の通りである。weight% Methyl tertiary butyl ether 40.5 Detergent (Ethyl MPA-448) 0.9 Platinum coordination prepared as above Compound 0.012 The elements of this platinum compound are as follows.

白金 40.2% 炭素 54.4% 水素 6.4% エンジンは約1100 Fの定常状態で1ラン当り約90分間運転した。そして 各ランを通して平均19.6馬力を生ずるようにダイナモメータ−で約79ft −1bのトル°りを負荷させた。Platinum 40.2% Carbon 54.4% Hydrogen 6.4% The engine was run at steady state temperatures of about 1100 F for about 90 minutes per run. and Approximately 79 feet on the dynamometer to produce an average of 19.6 horsepower throughout each run. -1b torque was applied.

これら各ランの間、エンジンが計量した900/の、白金化合物を加えたガソリ ンおよび加えないガソリンを消費するに要した時間を記録した。各ランについて 、このような時間の読みを、8つの場合tこついて取り、時間を平均した。馬力 と、900rslの燃料を消費する時間の平均値(分)との積が、仕事量を示す 数字を与えた。その結果を下記の表IBに示す。During each of these runs, the engine weighed 900/ml of platinum compound gasoline. The time required to consume the added and unadded gasoline was recorded. About each run , such time readings were taken in eight cases and the times were averaged. horsepower The product of the average time (minutes) for consuming 900 rsl of fuel indicates the amount of work. gave a number. The results are shown in Table IB below.

1 176.4 1 186.2 2 178.1 2 182.7 8 176.1 8 184.1 4 1?5.8 4 181.5 5 1?9.2 5 184.0 6 1?8.8 6 189.5 7 180.0 7 184.8 8 177.1 8 183.0 9 180.5 9 188.8 10 178、8 10 1B2.4 11 179、7 11 188.5 12 182.7 18 181.8 白金化合物により供給された白金0. I Fを含むガソリン9QOmIFの消 費時間は、一般に白金化合物を含まない場合の消費時間より長かった。白金化合 物を含んだ場合の平均時間は9.39分で、含まない場合は9.11分であった 。白金化合物による燃料消費量のこの増加は、3.1%であった。1 176.4 1 186.2 2 178.1 2 182.7 8 176.1 8 184.1 4 1? 5.8 4 181.5 5 1?9.2 5 184.0 6 1? 8.8 6 189.5 7 180.0 7 184.8 8 177.1 8 183.0 9 180.5 9 188.8 10 178, 8 10 1B2.4 11 179, 7 11 188.5 12 182.7 18 181.8 Platinum supplied by platinum compounds 0. Dissipation of gasoline 9QOmIF including IF The time spent was generally longer than that without the platinum compound. platinum compound The average time with objects included was 9.39 minutes, and without it was 9.11 minutes. . This increase in fuel consumption due to platinum compounds was 3.1%.

燃料の流れを測定した結果、白金ベースの燃料添加物を加えた場合、類似の一連 の試験において燃料添加物配合から白金ベースの化合物を除いた場合に比較して 燃料効率が3ないし6%の範囲で実施例1の燃料添加物(0,2Fの白金w /  v )に、5%のエタノールを加えたものを使用し、実施例1と同じ方法によ って試験を行った。基線データを2日間に亘って採取し、添加物を使用する運転 を最初の5日間行った後、12日間試験データを記録した。テストエンジンは、 毎試験日順次3段階の回転数(1300、1800、および2100)で運転さ れ、トルクはすべて551b、ft、であった。集められた燃料流量、ならびに 炭化水素および一酸化炭素放出の一部夕を要約して表2に示す。Fuel flow measurements show that a similar set of results is observed when platinum-based fuel additives are added. compared to removing platinum-based compounds from the fuel additive formulation in tests of The fuel additive of Example 1 (0.2F platinum w/ v) with 5% ethanol added and in the same manner as in Example 1. I conducted a test. Baseline data was collected over two days and the operation using additives Test data was recorded for 12 days after the first 5 days. The test engine is The machine was operated at three speeds (1300, 1800, and 2100) sequentially on each test day. All torques were 551 b,ft. collected fuel flow rate, as well as Some of the hydrocarbon and carbon monoxide emissions are summarized in Table 2.

燃料流量 炭化水素 −酸化炭素 (m//秒) (FW/V) C%) 1800 1.12 1.07 210 135 1.79 0.621800  1.82 1.76 169 113 1.05 0.4021002.20 2.15120 710.580.17実施例3 実施例1の仕様を持つビックエンジンを、スーパーフロー5F−9ax水ブレー キダイナモメータ−に取り付けて、添加物試験を行った。スーパーフローのデー ター採取能力には、rpm 、 トルク、馬力と共に、種々な温度、圧力、およ び流量の自動測定が含まれている。Fuel flow rate Hydrocarbons - Carbon oxide (m//sec) (FW/V) C%) 1800 1.12 1.07 210 135 1.79 0.621800 1.82 1.76 169 113 1.05 0.4021002.20 2.15120 710.580.17 Example 3 The big engine with the specifications of Example 1 was fitted with a Superflow 5F-9ax water brake. An additive test was conducted by attaching it to a dynamometer. super flow day Tar extraction capabilities include rpm, torque, and horsepower, as well as various temperatures, pressures, and Includes automatic measurement of flow rate and flow rate.

エンジンのスパークブラッグのうち2つにキストラ−のスパークブラッグ圧力ア ダプター(モデル540)と、キストラ−′の高インピーダンス圧力変換器(モ デル5001) を取り付けた。A、v、L。Two of the engine's spark brags are connected to the Kistler's spark brag pressure valve. adapter (Model 540) and Kistler's high impedance pressure transducer (Model 540). Dell 5001) was installed. A, v, L.

オプチカルエンコーダを試験エンジンに搭載し、それが底部死点およびクランク 角の172度ごとに信号を発生した。An optical encoder was installed on the test engine, and it was A signal was generated every 172 degrees of the angle.

圧力とクランク角のデータを集め、蓄積し、コロンビアコンピュータ (モデル 4220 )で処理した。Data on pressure and crank angle is collected and stored, and the Columbia computer (model 4220).

個々のサンプリングは、80回の着火サイクルにわたって軸回転1/2度ごとに 2回の圧力測定を行った。Individual sampling was performed every 1/2 degree of shaft rotation over 80 ignition cycles. Two pressure measurements were taken.

表3に示した添加物ごとに、次の方法で試験した。基線テストは燃料を未処理の まま行い、次に燃料に添加物を加えてテストし、最後に基線テストを繰り返した 。各ランごとに2回の圧力サンプルを採った。各テストは、12.5分間継続し た。各テストの間に20分のラン時間を置き条件調整と排出を行った。試験エン ジンは210Orpm、55117ftのトルクで運転した。スーパーフローの 集めたデータは、10秒間隔でサンプリングを行った。各テストの後に馬力の標 準偏差を計算し、エンジンの安定性と再現性を調べた。代表的標準偏差はテスト エンジンのラン時間12.5分間で平均、06であった。Each additive shown in Table 3 was tested using the following method. Baseline tests are performed on untreated fuel. Then the fuel was tested with additives, and finally the baseline test was repeated. . Two pressure samples were taken for each run. Each test lasted 12.5 minutes. Ta. There was a 20 minute run time between each test to allow conditioning and draining. exam en The gin operated at 210 rpm and 55,117 ft of torque. super flow The collected data was sampled at 10 second intervals. Horsepower mark after each test. The standard deviation was calculated and the stability and repeatability of the engine were investigated. Typical standard deviation is the test The average was .06 over a 12.5 minute engine run time.

試験した各配合のためのベース燃料としては、AMOCOの脱鉛した、オクタン 価87の普通ガソリンを用いた。エタノール(ETOH)またはテトラヒドロフ ラン(THF)を用いた各ケースにおいて、その濃度は0,25%であった。表 にあげたDIBENZYL PT (1)は、実施例1で調整したジベンジルシ クロオクタジエン白金nであり、またN1TR0BENZ¥L PT (1)は 、実施例1で示した式中の2個のベンジル基の代りにニトロベンジル基を持った 、同様に調製したものであった。これら白金化合物の各々は、白金0゜151F を供給するに足るだけの水準で用いた。ただし、例えばC=Q、l 、 C:0 .2 、 C=0.8Fなどと、別に示しである場合はこの限りでない。The base fuel for each formulation tested was AMOCO's deleaded, octane Regular gasoline with a rating of 87 was used. Ethanol (ETOH) or tetrahydrof In each case with Ran (THF), its concentration was 0.25%. table DIBENZYL PT (1) listed above is the dibenzyl PT prepared in Example 1. Chlooctadiene platinum n, and N1TR0BENZ\L PT (1) is , having a nitrobenzyl group in place of the two benzyl groups in the formula shown in Example 1. , was prepared similarly. Each of these platinum compounds contains platinum 0°151F was used at a level sufficient to supply However, for example, C=Q, l, C:0 .. 2, C=0.8F, etc., unless otherwise indicated.

りを全エタノール水準で集約しであることを示す)基線−添加物一基線のシーケ ンスからなる各テストランについて、圧力測定値が自動的に上記のようにプロッ トされた。Baseline-additive single baseline sequence For each test run consisting of It was written.

得られた各プロットについて、8個のパラメータが検討された。Eight parameters were considered for each plot obtained.

1、ピーク−燃焼工程中シリンダー内で到達した最大圧力。1. Peak - maximum pressure reached in the cylinder during the combustion process.

2、距離−頂上死点軸と圧力曲線のピークとの間の水平距離の物理的測定値。上 部死点と達成されたピーク圧力が短かくなったということは、火炎前面がシリン ダーを横切る伝播速度が早いことを意味する。2. Distance - A physical measurement of the horizontal distance between the top dead center axis and the peak of the pressure curve. Up The shortening of the dead center and the peak pressure achieved means that the flame front is This means that the propagation speed across the radar is fast.

3、MIP−平均指示圧力は、上部死点発火後達成された平均圧力であり、燃料 の燃焼による仕事の放出の総計を示す。3. MIP - Average Indicated Pressure is the average pressure achieved after top dead center ignition, and the fuel shows the total amount of work released due to the combustion of

添加物を加えた圧力曲線を評価するにあたって、ピーク圧力およびMIPの増加 と距離の減少とは、添加物による、燃料の有効利用と燃料の燃焼から得られる有 用な仕事量についての効果を示すものと解釈される。In evaluating the pressure curve with additives, the increase in peak pressure and MIP The reduction in distance and distance refers to the effective use of fuel and the benefits obtained from fuel combustion through additives. This is interpreted as indicating the effect on the amount of work required.

燃料に対する添加剤の効果の本質については、(ANOVA)として知られてい る分散モデル分析を使って検討した。このモデルのために設けた仮説は次の構成 からなっている。On the nature of the effect of additives on fuel, a This study was conducted using variance model analysis. The hypotheses established for this model are as follows: It consists of

1、検°討に使う要因水準が2つある゛すなわち、基線と処理条件である。1. There are two factor levels used in the study: baseline and treatment conditions.

λ各要因について、データの確率分散は正規分布である。λ For each factor, the probability variance of the data is normally distributed.

8、要因の確率分布の分散はすべて一定である。8. The variance of the probability distribution of factors is all constant.

4、各要因水準のデータの平均値は、処理の色いろな効果を反映して変化するで あろう。4. The average value of the data for each factor level may change to reflect the various effects of the treatment. Probably.

2つの要因の平均値は等しいかどうかを決めろために、統計的試験を行うことが できる。もし2つの要因の平均値が等しくない場合には、さらに分析が必要であ る。この分析には、ある要因に対する応答の平均値間隔の見積りと、異る要因に 対する応答の平均値の比較が必要となる。間隔の推定値を使って統計的に推定を することができる。To determine whether the means of two factors are equal, a statistical test can be performed. can. If the means of the two factors are not equal, further analysis is required. Ru. This analysis involves estimating the mean interval of responses to one factor and It is necessary to compare the average values of the responses. Estimate statistically using interval estimates can do.

すなわち、ピーク、距離、またはMIPの平均増加は、構成された間隔の下部限 界および上部限界の間にあることが、80ないし90%の信頼度で推定できる。That is, the average increase in peak, distance, or MIP is the lower limit of the configured interval. and the upper limit can be estimated with 80 to 90% confidence.

間隔の推定は、信頼水準、その区域内の点の総数と共に、2つの平均値間の差の 分散によって変る。このようにして、燃料処理の効果について、処理しない場合 に比較して結論を出すことが表3 80% ピーク 0.75% 2.40%距離 −0,39% 0.03% MIP −0,43% 0117% 90% ピーク 0.42% 2.72%距離 −0,47% 0.12% MIP −0,55% 0.29% 80% ピーク −0,11% 1.05%距離 0.10% 0.58% MIP −1,2s% 0.64% 90% ピーク −0,34% 1.27%距離 0.01% 0.67% MIP −1,59% 1.01% 信頼水準 下部限界 上部限界 80% ピーク 3.50% 6.34%距離 −0,93% 0.39% VIP −0,22% 0.45% 90% ピーク 2.94% 6.89%距離 −1,19% 0,64% MIP −0,35% 0.59% テトラヒドロフラン対ブランク 80% ピーク 0.13% 1.05%距離 −0,29% 0.11% MIP −1,29% −0,69% 90% ピーク −0,05% 1.23%距離 −0,36% 0.19% MIP −1,41% −0,57% ニトロベンジル白金(■)対ブランク 80% ピーク −0,96% 0.76%距離 −0,39% 0.28% MIP −1,21% −0,52% 90% ピーク −1,30% 1.09%距離 −0,58% 0.41% MIP −1,84% −0,39% 80% ピーク 1.09% 1.99%距離 −0,88% −0,05% MIP −(1,91% 0.36% 90% ピーク 0.92% 2.16%距離 −0,98% 0.10% MIP −1,16% 0・60% 80% ピーク −3,22% 3.69%距離 −1,12% 0.98% MIP −1,15% 1,17% 90% ピーク −5,11% 5.59%距離 −1,69% 1.56% MIP −1,78% 1.80% 80% ピーク −2,54% 4.45%距離 −1,51% 0.58% MIP −0,40% 0.10% 90% ピーク −4,46% 6.36%距離 −2,07% 1.09% MIP −0,54% 0.24% 信頼水準 下部限界 上部限界 80% ピーク −2,49% 4.22%距離 −1,51% 0.67% MIP −0,21% 0.62% 90% ピーク −4,33% 6.05%距離 −2,10% 1.26% MIP −0,47% 0.86% 80% ピーク 0.56% 1.81%距離 −0,47% −0,04% MIP 0.12% 0.72% 90% ピーク 0.36% 2.01%距離 −0,54% 0.03% MIP 0.01% 0.81% 実施例4 実施例3の試験方法に従って、(1)オスミウム(■)トリス(アセチルアセト ナート)および(2)ビス(シクロペンタジェニル)オスミウム(1)を、実施 例8で示したような添加物を加えないペース燃料に比較してテストした。各化合 物のピーク。The interval estimate is based on the confidence level, the total number of points in the interval, as well as the difference between the two means. Varies depending on dispersion. In this way, the effect of fuel treatment, if not treated Table 3 shows that a conclusion can be drawn by comparing 80% Peak 0.75% 2.40% Distance -0.39% 0.03% MIP -0,43% 0117% 90% Peak 0.42% 2.72% Distance -0.47% 0.12% MIP -0.55% 0.29% 80% Peak -0.11% 1.05% Distance 0.10% 0.58% MIP -1,2s% 0.64% 90% Peak -0.34% 1.27% Distance 0.01% 0.67% MIP -1,59% 1.01% Confidence level Lower limit Upper limit 80% Peak 3.50% 6.34% Distance -0.93% 0.39% VIP -0.22% 0.45% 90% Peak 2.94% 6.89% Distance -1,19% 0,64% MIP -0.35% 0.59% Tetrahydrofuran vs blank 80% Peak 0.13% 1.05% Distance -0.29% 0.11% MIP -1,29% -0,69% 90% Peak -0.05% 1.23% Distance -0.36% 0.19% MIP -1,41% -0,57% Nitrobenzyl platinum (■) vs. blank 80% Peak -0.96% 0.76% Distance -0.39% 0.28% MIP -1,21% -0,52% 90% Peak -1,30% 1.09% Distance -0,58% 0.41% MIP -1,84% -0,39% 80% Peak 1.09% 1.99% Distance -0.88% -0.05% MIP - (1,91% 0.36% 90% Peak 0.92% 2.16% Distance -0.98% 0.10% MIP -1.16% 0.60% 80% Peak -3.22% 3.69% Distance -1.12% 0.98% MIP -1.15% 1.17% 90% Peak -5,11% 5.59% Distance -1,69% 1.56% MIP -1,78% 1.80% 80% Peak -2,54% 4.45% Distance -1,51% 0.58% MIP -0.40% 0.10% 90% Peak -4,46% 6.36% Distance -2,07% 1.09% MIP -0.54% 0.24% Confidence level Lower limit Upper limit 80% Peak -2,49% 4.22% Distance -1,51% 0.67% MIP -0.21% 0.62% 90% Peak -4.33% 6.05% Distance -2.10% 1.26% MIP -0.47% 0.86% 80% Peak 0.56% 1.81% Distance -0.47% -0.04% MIP 0.12% 0.72% 90% Peak 0.36% 2.01% Distance -0.54% 0.03% MIP 0.01% 0.81% Example 4 According to the test method of Example 3, (1) Osmium (■) Tris (acetylacetoacetate) (1) and (2) bis(cyclopentagenyl)osmium (1). It was tested against a pace fuel with no additives as shown in Example 8. Each compound peak of things.

MIP、および距離に対する効果をベース燃料に比較して評価し、表4に示す結 果を得た。The effects on MIP and distance were evaluated in comparison with base fuel, and the results are shown in Table 4. I got the result.

表4 変化率% (2) + 5.86 +0.8470実施例5 この実施例では、軽質ディーゼル放出物の減少と、燃料経済の向上に関して、本 発明によるディーゼル燃料添加物の性能を評イυする。評価した燃料添加物は、 表5に示す配合を持っていた。Table 4 Rate of change% (2) +5.86 +0.8470 Example 5 In this example, the main focus is on reducing light diesel emissions and improving fuel economy. Evaluate the performance of the diesel fuel additive according to the invention. The fuel additives evaluated were: It had the formulation shown in Table 5.

ジフェニルシクロオクタジエン 白金■配位化合物 0.0170 エチルシイイー3オクチル硝酸 塩 28.4 エチルEDA−2清浄剤 3.5 キシレン 2.6 エクソンロブス (Exxon L OP S ) ミネラルスピリット 65 .5 5速トランスミツシヨンを備え、走行約30,000マイルの1984年型ポッ ク、OL E760デイゼルを選んで、比較的新しいがよくならし運転されたデ ィーゼルエンジンについてのデータをとる試験車輛として用いた。diphenylcyclooctadiene Platinum ■ coordination compound 0.0170 Ethylcyi 3-octyl nitric acid Salt 28.4 Ethyl EDA-2 detergent 3.5 Xylene 2.6 Exxon Robus (Exxon L OP S) Mineral Spirit 65 .. 5 A 1984 model with a 5-speed transmission and approximately 30,000 miles. I chose an OL E760 Diesel, a relatively new but well-broken-in vehicle. It was used as a test vehicle to collect data on diesel engines.

この°車輛をペンシルバニア州プラムステッドビル(Plumsteadirl le )にあるスコツト環境実験所(5cott Environmental  Laboratories ) に送り1 シャーシノタイナモメーター試験 に先立って12時間安定化させた。This vehicle is located in Plumsteadville, Pennsylvania. Scott Environmental Laboratory (5cott Environmental Laboratory) Laboratories) 1 Chassis tynamometer test It was allowed to stabilize for 12 hours prior to.

U、S、EPA連邦試験法(都市サイクル)およびハイウェイ燃料経済試験法に 従って基線テストを行った。これらの方法では、ダイナモメータを所定の設定値 まで負荷し、車輌は一連の加速。U.S., EPA Federal Test Method (Urban Cycle) and Highway Fuel Economy Test Method Therefore, a baseline test was performed. These methods involve setting the dynamometer at a given set point. up to a load and the vehicle accelerates a series.

変速、制動、および停止のパターンを通して駆動して、放出物および燃料経済の データが集められるようにする必要がある。データは一連のランに亘って採取さ れ、コンピューターのソフトウェアプログラムによって解析され、放出物と燃料 経済性能の複合数値を得る。Drive through shifting, braking, and stopping patterns to reduce emissions and fuel economy. We need to be able to collect data. Data were collected over a series of runs. is analyzed by a computer software program to determine emissions and fuel Obtain a composite value of economic performance.

基線試験に続いて、車輌は燃料20ガロン当り7オンスの割合の添加物で処理さ れ、路上マイル数を重ねるよう走らされた。再テストするまでに車は1,600 マイル走らされた。走行を重ねる間中、燃料タンクに燃料を充填するごとにプレ パックした添加物を加えて白金の平均濃度を0.151.P−にすることによっ て、この処理は続けられた。処理した燃料のテストは基線テストと同じ方法に従 って行われた。Following baseline testing, the vehicle was treated with the additive at a rate of 7 ounces per 20 gallons of fuel. He was forced to rack up many miles on the road. 1,600 on the car before retesting Made to run miles. During each trip, the fuel tank is filled with fuel. The packed additives were added to bring the average concentration of platinum to 0.151. By making it P- The process continued. Testing of treated fuel follows the same method as baseline testing. It was held.

得られたデータは表5Bに集約しである。The data obtained are summarized in Table 5B.

表5B 邦試験法によるデータ 基 線 処理物 増加率% 減少率% C0284B、 44303.98 11.49HCO,140,1721,4 8 co o、sa o、84 59.04NOx1.00 0.48 52.00 粒子 0.32 0.80 6.25 MP Cr25.6929.0713.16ハイウエイ燃料経済試験データ 基 線 処理物 増加率% 減少率% CO231,88199,5513,94HCO,090,0455,56 COO,5B 0.46 13.21 NOxO,610,3345,90 粒子 −−− MPCT4B、6B 50.7816.25111ユ 2台のディーゼル乗用車(プジョー米(Peugeot )とフォルクスノーゲ ンダッシャー(VolkswagenDasher ) )に、旅行データ記録 用の車載コンピュータを取り付けて、200マイルにわたるハイウェールート上 で道路テストを行った。これらの実地試験では、ルートと負荷と比較的一定に保 って、本発明の添加物を加えた場合と加えない場合について測定した。無処理燃 料で走行させた7000マイルタがこの路上試験で蓄積された。プロットされた 回帰曲線(1inear regression ) (mpg対mph )  を使って数値積分を行い、基線の下と処理曲線の下の面積を測定しプこ。この側 面積の差の比率(%)をめ、燃料添加物を加えたことによる走行距離の増加を表 わした。Table 5B Data based on Japanese test method Baseline Processed material Increase rate % Decrease rate % C0284B, 44303.98 11.49HCO, 140, 1721, 4 8 co o, sa o, 84 59.04NOx1.00 0.48 52.00 Particles 0.32 0.80 6.25 MP Cr25.6929.0713.16 Highway Fuel Economy Test Data Baseline Processed material Increase rate % Decrease rate % CO231,88199,5513,94HCO,090,0455,56 COO, 5B 0.46 13.21 NOxO, 610, 3345, 90 Particles --- MPCT4B, 6B 50.7816.25111 Two diesel passenger cars (Peugeot and Volksnoge) Record travel data on Volkswagen Dasher on a 200-mile highway route with an in-vehicle computer installed. I did a road test. In these field tests, the route and load were kept relatively constant. Measurements were made with and without the addition of the additive of the present invention. Untreated combustion 7,000 miles of free driving were accumulated during this road test. plotted Regression curve (1inear regression) (mpg vs. mph) Use numerical integration to measure the area under the baseline and the processing curve. this side The ratio (%) of the difference in area is calculated to represent the increase in mileage due to the addition of fuel additives. I did.

その結果を表6に集約しである。The results are summarized in Table 6.

二次回帰(quadratic regression) 8.49%増V W  −Dasher 線形回帰 6.16%増二次回帰 6.78%増 実施例7 しっかり管理した試験室条件下で、3日間にわたってテストを行い、表5Aに詳 細に示した添加剤の、ラストン(Ru5ton) G A、 P C中速ディー ゼルエンジン内の性能を評価した。エンジンは750rpmの定速、最大連続定 格(MCR)の35ないし85%の出力範囲内で運転した。Quadratic regression 8.49% increase V W -Dasher Linear regression 6.16% increase Quadratic regression 6.78% increase Example 7 The tests were conducted over three days under well-controlled laboratory conditions and the results detailed in Table 5A. Ruston (Ru5ton) G A, P C medium speed Dee of the additives shown in detail The performance inside the Zell engine was evaluated. The engine has a constant speed of 750 rpm, maximum continuous speed. It was operated within a power range of 35 to 85% of rating (MCR).

初日および第2日の添加物投入に先立って初日に基線燃料テストを行った。初日 に、動力比35%。A baseline fuel test was conducted on the first day prior to the addition of additives on the first and second days. first day , the power ratio is 35%.

50%、 62.5%、75%、および85%MCRにおける、基線、燃料流の 読みを記録した。つづいて、燃料250部に対して添加剤1部の割合で添加物を 加え、出力を1時間ごとに上記の範囲で低下させた。燃料消費を5分間隔で記訂 した。その日の試験の終りには、添加剤が燃料系内に残ったままでエンジンを停 止させた。エンジンは添加物について予備コンディショニングすなわち“枯し” 時間は持たなかった。Baseline, fuel flow at 50%, 62.5%, 75%, and 85% MCR I recorded the readings. Next, add additives at a ratio of 1 part additive to 250 parts fuel. In addition, the power was reduced by the above range every hour. Record fuel consumption at 5 minute intervals did. At the end of the day's test, the engine was shut down with the additive still in the fuel system. I made it stop. The engine is preconditioned or “dried out” for additives. I didn't have time.

第2日には、エンジンを暖機運転し、添加物を400部当り1部の濃度で加えて 試験を始めた。エンジンの出力を、第1日日と同じ点を通し71時間間隔で順次 高め、燃料消費量を再び5分間隔で記録した。第3日日には、追加の基線テスト (未処理燃料使用)を行った。On the second day, warm up the engine and add the additive at a concentration of 1 part per 400 parts. I started the exam. The engine output is sequentially measured at 71 hour intervals through the same point as on the first day. and fuel consumption was again recorded at 5 minute intervals. On the third day, additional baseline testing (using untreated fuel).

表7Aに示した、第1日に採取したデータの解析は、添加物を使ったとき燃料消 費量が3.1ないし5.3%減少することを示している。データ採取の処理は、 高負荷(420kW)から低負荷(220kW)へと進めた。燃料消費の絶対減 少量は、初期(第1回データ処理点)の減少なしから、シーケンスの最後の5. 3%減へと向上していることが分る。Analysis of the data collected on day 1, shown in Table 7A, shows that when using the additive, the fuel consumption was This indicates that the amount of costs will decrease by 3.1 to 5.3%. The data collection process is We progressed from high load (420kW) to low load (220kW). Absolute reduction in fuel consumption The small amount varies from no decrease at the beginning (first data processing point) to 5.5 at the end of the sequence. It can be seen that the reduction has improved to 3%.

表7Bに示したデータは、第2日に採取した添加物処理のあるデータを、第1日 の基線データに対比して示している。燃料消費量の減少率は、添加物を使った場 合3.3%ないし4.0%の範囲にあった。燃料消費の絶対減少量は、2.4  kq / hrないし8.8 kg/ hr内向上ることが分ったが、それは第 2日の低負荷運転(275kW)から高負荷運転(475kW、)へ進めていく 間、処理時間を増す傾向を示した。The data shown in Table 7B compares data with additive treatment collected on day 2 with data collected on day 1. The results are shown in comparison to baseline data. The rate of reduction in fuel consumption is lower when using additives. The total content was in the range of 3.3% to 4.0%. The absolute reduction in fuel consumption is 2.4 It was found that the improvement was within 8.8 kg/hr, but this was due to the Proceed from low load operation (275kW) on the 2nd day to high load operation (475kW). However, there was a tendency for the processing time to increase.

第3日に採取した燃料を処理していない場合のデータ(表示していない)は、第 2日の処理燃料のデータと等しいようであった。これは、おそらく、シリンダ一 部に沈着した添加物と、処理中の潤滑油成分の残留効果であろう。The data (not shown) when the fuel sampled on the third day is not processed is shown on the third day. The data appeared to be equal to the 2 day processed fuel data. This is probably due to the cylinder This may be due to the additives deposited on the parts and the residual effects of lubricating oil components during processing.

基線燃料消費量に対する、表示負荷における処理済燃料の消費量の比較 (第1日のデータ) 添加物によ 処理済燃料 未処理燃料 る燃料消費 比 力 消費量 消費量 最減少 減少率(kW) (kg/hr) (&g/ hr) (kg/hr) %420 86.8 86.8 − − 845 71.5 7&8 2.38.1280 58.7 61.1 2.6  4.2220 46.5 49.1 2.6 5.8基線燃料消費量に対する 、表示負荷における処理済燃料の消費量の比較 (第2日のデータ) 添加物によ 処理済燃料 未処理燃料 る燃料消費 比 力 消費量 消費量量減少 減少率(la’/) (kす/ hr) (k g/ hr) (kg / hr) %275 57.6 60.0 2.4  4.0847 71.2 74.2 to 4.0410 84.0 87.1  3.1 B、6475 95.9 99.2 8.3 B、・3実施例8 このテストは、表5Aに詳細に示した添加物の、商用運転されているディーゼル 駆動のセミトレーラ−トラクターの燃料経済と出力馬力に対する効果を評価する 。Comparison of processed fuel consumption at indicated load to baseline fuel consumption (Data on the first day) Due to additives Fuel consumption of treated fuel and untreated fuel Specific power consumption consumption consumption minimum reduction reduction rate (kW) (kg/hr) (&g/ hr) (kg/hr) %420 86.8 86.8 - - 845 71.5 7&8 2.38.1280 58.7 61.1 2.6 4.2220 46.5 49.1 2.6 5.8 Against baseline fuel consumption , Comparison of processed fuel consumption at indicated loads (2nd day data) Due to additives Fuel consumption of treated fuel and untreated fuel Specific power consumption Consumption decrease Decrease rate (la’/) (k/hr) (k g/hr) (kg/hr)%275 57.6 60.0 2.4 4.0847 71.2 74.2 to 4.0410 84.0 87.1 3.1 B, 6475 95.9 99.2 8.3 B, ・3 Example 8 This test tested commercially operated diesel engines with the additives detailed in Table 5A. Evaluating the effect of driving semi-trailer tractors on fuel economy and horsepower output .

テストの初日には、基線(添加物なし)のシャーシダイナモメータ−テストを行 った。試験した車輌は、クミンズ(Cumm1ns) N HC−250:r、  ンシンで駆動したタンデムトラクターであった。車輌への補給は専属オペレー ターで行い、車輌は通常ハイウェイ建設の索引用に使用された。エンジンは改造 以来s、oooマイル走行している。On the first day of testing, a baseline (no additives) chassis dynamometer test was performed. It was. The tested vehicles were Cummins N HC-250:r, It was a tandem tractor that was powered by an electric motor. Dedicated operators resupply vehicles The vehicles were typically used for indexing highway construction. The engine has been modified I have driven s, ooo miles since then.

基線試験と、400ガロンの燃料に添加物1ガロンの割合で加えた運転につづい て、車輌は、シャーシダイナモメータ−で再処理する前に、約1000マイルの 路上運転データを採取すべく運転された。Following baseline testing and operation with 1 gallon of additive added to 400 gallons of fuel. The vehicle was given approximately 1000 miles before being reprocessed on the chassis dynamometer. It was operated to collect on-road driving data.

路上走行を重ねる間、運転手によって、計画に従って1:400の比率の添加物 の添加が続けられた。製品は、正確な測定を行うための目盛付ビーカーと共に、 1ガロン容器に入れて供給された。Additives in a ratio of 1:400 according to the schedule by the driver during repeated road trips continued to be added. The product comes with a graduated beaker for accurate measurements. Supplied in 1 gallon containers.

毎日の記録シートには、運転手によって走行したマイル数と消費した燃料と添加 物の量が記入された。The daily record sheet shows the number of miles driven by the driver and the fuel consumed and added. The amount of the item was recorded.

ダイナモメータ−試験の間、トラクターはクレイトン水ブレーキダイナモメータ −に固定され、4分間×隔で、セツティングを2100rpmで全出力、200 0rpmで全出力、および1900rpmで全出力で運転された。1分毎にダイ ナモメータ−のゲージから読みを取り、実際の後輪馬力を記録した。運転室内に 別個にタコメーターを取り付けた。トラクター内のひとつはUはね返る“ことが 分った。速度と馬力の平衡は運転室から後輪の所で維持された。同時に、同じ間 隔で燃料の測定値が採取された。燃料の30ガロンドラムを、正確なディジタル 表示スケール上に置き、燃料重量の減少を記録した。循還液はドラムに戻し、消 費された燃料の量のみを測定した。後輪を合わせた馬力は工場仕様、すなわち定 格250馬力の70%、175馬力に等しいことが分った。試験に先立って、エ ンジンを製造業者にチェックさせ、燃料の流量と圧力は、燃料ポンプについての 製造業者の仕様に一致することを確認した。Dynamometer - During the test, the tractor was placed on a Clayton water brake dynamometer. - fixed at 4 minute intervals, setting at 2100 rpm, full power, 200 It was operated at full power at 0 rpm and full power at 1900 rpm. die every minute A reading was taken from the namometer gauge and the actual rear wheel horsepower was recorded. inside the driver's cabin A tachometer was installed separately. One of the parts inside the tractor can “bounce” I understand. Balance between speed and horsepower was maintained from the cab to the rear wheels. at the same time, during the same time Fuel readings were taken at intervals. Precise digital 30 gallon drum of fuel Placed on display scale and recorded fuel weight loss. Return the circulating fluid to the drum and extinguish it. Only the amount of fuel spent was measured. The combined horsepower of the rear wheels is factory spec, i.e. It turns out that it is equivalent to 175 horsepower, which is 70% of 250 horsepower. Prior to the exam, Have the engine checked by the manufacturer and check the fuel flow and pressure for the fuel pump. Verified to match manufacturer's specifications.

各試験日付けにおいて2回の走行試験を行い、結果の再現性を確かめた。各テス トは、8つのrpm設定の各々において、安定した走行時間3分をとり、各rp m走行の間に、安定化と次のrpm水準へ移行するための余裕時間1分を置いた 。Two running tests were conducted on each test date to confirm the reproducibility of the results. each tess The test was run for 3 minutes at each of the 8 rpm settings. A 1-minute margin was allowed for stabilization and transition to the next rpm level between m runs. .

各rpm設定の3回の読みの平均値を集約して、添加物未添加、および添加側に 表8Aに示す。表8Aでは、与えられたエンジン回転数におけろ、未添加および 添加のデータについての燃料流量(インプット)対馬力(アウトプット)の比較 を行っている。基線に比して平均2.6ないし5.2%の向上を示す添加物処理 に従って馬力は増加する。Aggregate the average value of the three readings for each rpm setting and calculate the values for the unadded and added side. Shown in Table 8A. In Table 8A, at a given engine speed, unadded and Comparison of fuel flow (input) versus horsepower (output) for dosing data It is carried out. Additive treatments showing an average improvement of 2.6 to 5.2% compared to baseline Horsepower increases accordingly.

表8Bは、添加物を使った場合のデータを添加物処理しない場合のデータに比較 して、実際の馬力増加を示す。実際の馬力は、添加物添加によって4.5ないし 9.0馬力(HP)の範囲で増加する。Table 8B compares the data with additives to the data without additive treatment. to show the actual horsepower increase. Actual horsepower varies from 4.5 to 4.5 depending on additives. Increases in the range of 9.0 horsepower (HP).

−一−−非励ト−−−−−−−添加−−−−(2100)hp 170 ”17 4172181181181FuelFIow(Ib/m1n) 1.61.6 1.61.61.61.6(2000)hp 172173172.51801 80180FuelFlow(Ib/m1n) 1.51.61.551.51 .61.55(1900)hp 171 173 178 177 178 1 77.5Fuel Flow (Ib/m1n) 1.51.51.51.51 .51.5(2ランの平均) (2ランの平均) 2100 172 181 9、0 2000 172、5 180 7、51900 173 177、5 4.5 平均HP向上 7.0 燃料の流量はテスト中はとんど一定であったが、ダイナモメータ−で測定した実 際の馬力は、添加物を添加した燃料を使フたランでは増加した。3つのrpm設 定にわたって、添加物添加燃料を使ったランの平均馬力上昇率は7.0 HPで あった。これは基線馬力をベースにして、馬力上昇率4.0%に相当する。-1--Non-excited----Addition---(2100)hp 170"17 4172181181181FuelFIow(Ib/m1n) 1.61.6 1.61.61.61.6 (2000)hp 172173172.51801 80180FuelFlow (Ib/m1n) 1.51.61.551.51 .. 61.55 (1900) hp 171 173 178 177 178 1 77.5Fuel Flow (Ib/m1n) 1.51.51.51.51 .. 51.5 (Average of 2 runs) (Average of 2 runs) 2100 172 181 9, 0 2000 172, 5 180 7, 51900 173 177, 5 4.5 Average HP improvement 7.0 The fuel flow rate was almost constant during the test, but the actual flow rate measured with a dynamometer was The actual horsepower increased on the full run using the additive fuel. 3 rpm settings Over the period, the average horsepower increase for runs using additive fuel was 7.0 HP. there were. This corresponds to a horsepower increase rate of 4.0% based on the baseline horsepower.

ダイナモメータ−は、添加物添加燃料を使って、基線運転と同等の馬力で運転し 、燃料流量の減少をモニターするような走行を行う装備にはなっていなかった。The dynamometer is operated using additive fuel at the same horsepower as in baseline operation. The vehicle was not equipped to run in a manner that would monitor the decrease in fuel flow.

しかし、制動下の燃料消費率(BSFC)の計算することは、添加物を使うと燃 料の単位当り発生する仕事量が多くなるという事実を記録するひとつの方法にな る。従って、所要出力量を一定に保ったとすると、添加物を使った場合燃料の消 費量は減少するはずである。表8Cに記したデータは、BSFC1添加および不 添加のデータについて、馬力一時間当り消費された燃料のボンド数を表わす。添 加物を使った場合の向上率は、2.5ないし5.0%の範囲内にある。However, calculating the braking fuel consumption rate (BSFC) is difficult when using additives. This is one way to record the fact that more work is generated per unit of cost. Ru. Therefore, assuming that the required power output is kept constant, the use of additives will reduce fuel consumption. The amount of expenses should decrease. The data listed in Table 8C are with and without BSFC1. For addition data, it represents the number of bonds of fuel consumed per horsepower hour. Attachment The improvement rate when using additives is in the range of 2.5 to 5.0%.

これらのテスト中、放出物の量は測定されなかった。しかし、添加物を加えた燃 料で走行した場合、運転朋始、アイドリング、および負荷運転時とも、煙の放出 は観察されなかった。The amount of emissions was not measured during these tests. However, additive-added fuel When driving at low speed, smoke is emitted at the beginning of driving, idling, and under load. was not observed.

(HP−hr当’)fb(7)BSFC)2100 0.5640.5510. 5580.5800.5800.5805.0%2000 0.52+ 0.5 540.5890.5000.5’880.5174.1%1900 ’ 0. 5200.5200.5200.5080.5050.5072.5%実施例9 このテストでは、表5Aに示したディーゼル燃料添加物の有効性を、現在けん引 に使われている大型トラクター上での高上昇試験で評価する。2つのトラクター を選んだ。400馬力のキャタピラ−社エンジンを備えたケンウォースの新車( 走行全81.000マイル)と475馬力のクミンズのトウインターボエンジン を備えたケンウォース車(走行全172.000マイル) 数箇月前の記録から採った基線データを、日付。(HP-hr) fb (7) BSFC) 2100 0.5640.5510. 5580.5800.5800.5805.0%2000 0.52+0.5 540.5890.5000.5’880.5174.1%1900 ’ 0. 5200.5200.5200.5080.5050.5072.5% Example 9 This test tested the effectiveness of the diesel fuel additives listed in Table 5A. This will be evaluated through a high-rise test on a large tractor used in two tractors I chose. A new Kenworth car equipped with a 400 horsepower Caterpillar engine ( (81,000 miles) and 475 horsepower Cumins twin-turbo engine. Kenworth vehicle with (172,000 miles) Date the baseline data taken from records several months ago.

走行マイル数、使用燃料のガロン数、とともにリストアツブし、ガロン当りのマ イル数を計算した。Restores the number of miles driven, the number of gallons of fuel used, and calculates the mileage per gallon. The number of files was calculated.

次に上記2台の車輌をシャーシダイナモメータ上でテストし、ベースラインを測 定した。シャーシダイナモメータ−テスト方法参照)ダイナモメータ−試験の後 、それらのトラクターを燃料添加物で処理してそれぞれの商用ルートに戻した。Next, test the above two vehicles on a chassis dynamometer and measure the baseline. Established. (See Chassis Dynamometer Test Method) After Dynamometer Test , those tractors were treated with fuel additives and returned to their respective commercial routes.

次ノ2ケ月間(処理後のデータ)をリストアツブし、元の未処理)ベースライン データと比較した。Restore the next two months (post-processed data) to the original (unprocessed) baseline compared with the data.

試験 法(シャーシダイナモメーター ケンウォースの両トラクターを、オストラダインモデルtlsoTTシャーシダ イナモメータ−上でテストした。この装置の仕様は、馬力限度500゜トルク限 度15001b ft、後輪最大速度60 mphであった。Test method (chassis dynamometer Both Kenworth tractors are equipped with Ostradyne model TLSOTT chassis. Tested on an inamometer. The specifications of this device are horsepower limit 500° torque limit. The maximum rear wheel speed was 60 mph.

両トラクターは、後駆動輪が一対のローラーを駆動するようにしてダイナモメー タ上に載せられた。これらのローラーは制動システムに接続されている。トラク ターの後駆動輪に負荷するために回転ローラに必要とする力は、ダイナモメータ −制御パネル上の色いろなメータで示されている。Both tractors are dynamometer driven with the rear drive wheels driving a pair of rollers. It was posted on the ta. These rollers are connected to a braking system. Torak The force required on the rotating rollers to load the rear drive wheels of the motor is measured using a dynamometer. - Indicated by various colored meters on the control panel.

それらのメーターは、馬力、トルク、速度(mphに校正された)メーターおよ び別のパネル上の、気圧、湿度、等を調°整すゐつまみである。Those meters include horsepower, torque, speed (mph calibrated) meters and These are knobs on different panels for adjusting air pressure, humidity, etc.

テストは、トラクター能力の上位スケールの3段階の基本回転数(rpm)を選 んで行った。トラクターは満載で指定のrpmを保ち、ダイナモメータ上のメー ターは、1分ごとに5分間記録した。The test selects three basic rotational speeds (rpm) at the top of the tractor capacity scale. So I went. The tractor is fully loaded, maintains the specified rpm, and the meter on the dynamometer The data were recorded every minute for 5 minutes.

燃料の流量は、20ガロンのペイルに、トラクターのサドルタンクからのディー ゼル燃料を充たすことで測定した。20ガロンのペイルは精密な電子スケール上 に置いた。5分間の負荷試験中、毎分の読みをスケールからとった。そこで燃料 使用量の正確なアカウンティングが、1分間のボンド数で記録された。Fuel flow is from the tractor saddle tank to the 20 gallon pail. Measured by filling with gel fuel. The 20 gallon pail is placed on a precision electronic scale. I placed it on. Readings were taken from the scale every minute during the 5 minute stress test. fuel there Accurate accounting of usage was recorded in bonds per minute.

データ評価(路上試験) 両トラクターの路上試験データが、表9Aおよびに9Bに集約されている。両ト ラクターは処理によりMPGで5.6%をこえる向上を示し、また処理により引 続き経時的向上の傾向が認められた。Data evaluation (road test) Road test data for both tractors is summarized in Tables 9A and 9B. Ryoto Lactor showed over 5.6% improvement in MPG with treatment and A trend of improvement over time was observed.

之ヱユ土二五二土ヱヱヱユニ 1 4、IS 1 4.60 2 4.15 2 4.68 3 4.11 B 4.86 4 4.20 4 4.67 5 3.84 5 4.95 6 4.74 6 5.02 N:8.00 N、 6.00 AVG、 4.189 AVG: 4.788STD、 0.23 STD :  o・161 4.65 1 4.87 2 4.48 2 4.64 3 4.75 8 4.87 N:8.00 N:4.00 AVG :4.610 AVG : 4.895STD :o、1s4STD  、 0.200以上の記述は普通の技術をもつ者にこの発明を実施する方〜法を 教えるためのものであり、明細を読むことによって熟練した者に自明となって( るすべての変更態様を詳細に述べるつもりのものではな′−1・、従ってこれら の自明の変更態様番よ、以下化述6る特許請求の範囲に含まれるものとする。No. 2, 5, 2, 2, 5, 2 1 4, IS 1 4.60 2 4.15 2 4.68 3 4.11 B 4.86 4 4.20 4 4.67 5 3.84 5 4.95 6 4.74 6 5.02 N: 8.00N, 6.00 AVG, 4.189 AVG: 4.788 STD, 0.23 STD: o・161 4.65 1 4.87 2 4.48 2 4.64 3 4.75 8 4.87 N:8.00 N:4.00 AVG: 4.610 AVG: 4.895STD: o, 1s4STD , 0.200 or more will not explain to a person of ordinary skill how to carry out the invention. It is for teaching purposes and is self-evident to those skilled in the art by reading the specifications ( It is not our intention to describe in detail all the modifications that may be made; Obvious modifications of the above shall be included within the scope of the following claims.

手 続 補 正 !!:(自発) 昭和61年10月24日 過Continuation correction! ! :(spontaneous) October 24, 1986 past

Claims (1)

【特許請求の範囲】 1.Mが白金族金属であり、Rがフェニル,ペンジル又はニトロベンジルである とき ▲数式、化学式、表等があります▼ の化学式で表わされるところの、燃料に可溶性の白金族金属の配位化合物の溶液 を、1000:1から100,000:1の酸素対金属重量比で白金族金属を供 給するに有効な分量だけ酸素添加炭化水素溶媒中に溶解したものを具備してなる 、ガソリン及びディーゼル燃料からなる群から選ばれた燃料のための燃料組成物 。 2.上記白金族金属が、白金である特許請求の範囲第1項の組成物。 3.上記酸素添加された炭化水素が、エタノール,テトラヒドロフラン,メチル 第3ブチルエーテル、またはそれらの組み合せからなる特許請求の範囲第1項の 組成物。 4.上記Rがベンジルからなり、溶媒がエタノールからなる特許請求の範囲第3 項の組成物。 5.上記Rがニトロベンジルからなり、溶媒がテトラヒドロフランからなる、特 許請求の範囲第3項の組成物。 6.上記溶媒がメチル第3ブチルエーテルからなる、特許請求の範囲第3項の組 成物。 7.式: ▲数式、化学式、表等があります▼ で表わされる白金配位化合物とエタノールまたはテトラヒドロフランとの、ガソ リンと混合可能な溶液を具備し、上記白金配位化合物とエタノールまたはテトラ ヒドロフランの混含量が白金に対する酸素の重量比3,500:1ないし100 ,000:1の範囲で白金と酸素を供給するに足る量であるガソリン添加組成物 。 8.燃料に可溶な白金族金属化合物を、燃料と混合可能な溶媒に溶かした溶液を 具備し、上記白金族金属が、所定量の燃料に加えられたとき、0.01ないし1 .0ppmの白金族金属を供給するに足る量含有されている燃料添加組成物。 9.上記溶媒が酸素添加された炭化水素からなる、特許請求の範囲第8項の組成 物。 10.上記酸素添加された炭化水素が、炭素原子1ないし4個を有するアルコー ルからなる特許請求の範囲第9項の組成物。 11.上記アルコールがエタノールからなることを特徴とする、特許請求の範囲 第10項の組成物。 12.上記エタノールが、ガソリン100部に対して、0.25ないし5.0部 のエタノールを供給するに足るだけの量含まれている、特許請求の範囲第11項 の組成物。 13.上記白金族金属化合物とエタノールが、白金族金属と酸素とを、金属に対 する酸素の重量比1,000:1ないし100,000:1で供給するに足る量 供給される、特許請求の範囲第12項の組成物。 14.上記白金族金属に対するエタノールからの酸素の重量比が、5,000: 1ないし35,000:1の範囲内にある、特許請求の範囲第13項の組成物。 15.上記白金族金属化合物が、+2または+4配位の状態を有し、化合物中の 1個以上の配位座が、オレフィン、アセチレン、または芳香族系のπ(パイ)結 合形状の不飽和炭素−炭素結合をひとつ以上有する官能基で占められている白金 族金属からなる白金族金属配位化合物である特許請求の範囲第8項の組成物。 16.2個以上の配位座が、オレフィン,アセチレン、または芳香族系π結合形 状の不飽和炭素−炭素結合をひとつ以上有する官能基で占められている、特許請 求の範囲第15項の組成物。 17.上記不飽和結合を有する官能基がさらに、アルキル,カルボニル,アミノ ,ニトロ,ヒドロキシル、およびアルコキシルの各基からなろ群から選ばれた、 ハロゲンを含まない置換基で置換されている、特許請求の範囲第15項の組成物 。 18.他の配位座が、アルキル,カルボキシル,アミノ,ニトロ,ヒドロキシル 、およびアルコキシルの各基からなる群から選ばれた、ハロゲンを含有していな い置換基で直接占められている、特許請求の範囲第15項の組成物。 19.上記不飽和結合を含む官能基が、芳香族,シクロジエン,オレフィン、お よびアセチレン系の各基からなる群から選ばれたものである、特許請求の範囲第 15項の組成物。 20.上記白金族金属が、白金,パラジウム、またはロジウム、またはそれらの 混合物である特許請求の範囲第15項の組成物。 21.上記官能基のひとつがシクロアルカジエンである特許請求の範囲第15項 の組成物。 22.ガソリンとそれに溶解した添加組成物からなるガソリン組成物であって、 該添加組成物がガソリン1部に対して0.01ないし1.0ppmの白金族金属 を供給するに足るだけの量の、ガソリン可溶の白金族金属化合物を具備するガソ リン組成物。 23.ガソリン組成物がさらに上記白金族金属化合物のガソリン可溶性溶媒を含 んでいる、特許請求の範囲第22項のガソリン組成物。 24.上記溶媒が酸素添加した炭化水素である特許請求の範囲第23項のガソリ ン添加物。 25.上記白金族金属と溶媒からの酸素が、金属に対する酸素の重量比で1,0 00:1ないし100,000:1の範囲に含まれている、特許請求の範囲第2 3項のガソリン組成物。 26.上記溶媒が1ないし4個の炭素原子を持つアルコールである、特許請求の 範囲第24項のガソリン組成物。 27.上記溶媒がエタノールであり、ガソリン組成物の重量の0.25ないし約 5%の水準で用いられている、特許請求の範囲第26項のガソリン組成物。 28.上記エタノールが組成物の1%以下の水準で使用され、上記白金族金属が ガソリンの0.05ないし0.5ppmの水準で存在している、特許請求の範囲 第27項のガソリン組成物。 29.上記白金族金属化合物が、式: ▲数式、化学式、表等があります▼ ここでMは白金族金属であり、Rはフェニル,ベンジル、またはニトロベンジル 基である。 によって表わされる、ガソリン可溶の白金族金属配位化合物である、特許請求の 範囲第22項のガソリン組成物。 30.Mが白金である特許請求の範囲第29項のガソリン組成物。 31.エタノール,テトラヒドロフラン,メチル第3ブチルエーテル、またはそ れらの組み合からなる溶媒を含んだ、特許請求の範囲第30項のガソリン組成物 。 32.Rがベンジルからなり、溶媒がエタノールからなる、特許請求の範囲第3 1項のガソリン組成物。 33.Rがニトロベンジルからなり、溶媒がテトラヒドロフランからなる特許請 求の範囲第31項からなるガソリン組成物。 34.上記溶媒がメチル第3ブチルからなる、特許請求の範囲第31項からなる ガソリン組成物。 35.ガソリンと、そのガソリン内にガソリン100万部について0.01ない し1.0部の白金族金属配位化合物を溶解し、該白金族金属化合物が+2または +4の配位状態を有し、化合物中のひとつ以上の配位座が、オレフィン,アセチ レン、または芳香族系のπ結合形状の不飽和炭素−炭素結合をひとつ以上有する 官能基で占められているガソリン組成物。 36.2個以上の配位座が、オレフィン,アセチレン、または芳香族系のπ結合 形状の不飽和炭素−炭素結合をひとつ以上有する官能基で占められている特許請 求の範囲第35項の組成物。 37.上記不飽和結合を含む官能基がさらに、アルキル,カルボニル,アミノ, ニトロ,ヒドロキシル、およびアルコキシルの各基からなる群から選ばれた、ハ ロゲンを含まない置換基で置換されている、特許請求の範囲第35項の組成物。 38.他の配位座が、アルキル,カルボキシル,アミノ,ニトロ,ヒドロキシル 、およびアルコキシルの各基からなる群から選ばれた、ハロゲンを含有していな い置換基で直接占められている、特許請求の範囲第35項の組成物。 39.上記不飽和結合を含む官能基が、芳香族,シクロジエン,オレフィン、お よびアセチレン系の各基からなる群から選ばれたものである特許請求の範囲第3 5項の組成物。 40.上記白金族金属が、白金、パラジウム、またはロジウム、またはそれらの 混合物である特許請求の範囲第35項の組成物。 41.上記官能基の少なくともひとつが、シクロアルカジエンである特許請求の 範囲第35項の組成物。 42.ディーゼル燃料とそれに溶解した添加組成物を具備するディーゼル燃料組 成物であって、該添加組成物が燃料1部に対して0.01ないし1.0ppmの 白金族金属を供給するに足るだけの量の、燃料可溶の白金族金属化合物を具備す るディーゼル燃料組成物。 43.組成物がさらにディーゼル燃料に可溶の、上記白金族金属化合物の溶媒を 含む、特許請求の範囲第42項の組成物。 44.上記溶媒が酸素添加した炭化水素である特許請求の範囲第43項の組成物 。 45.上記白金族金属と溶媒からの酸素が、金属対酸素の重量比1,000:1 ないし100,000:1で存在する特許請求の範囲第43項の組成物。 46.上記溶媒が1ないし4の炭素原子を有するアルコールである、特許請求の 範囲第44項の組成物。 47.上記溶媒が硝酸オクチルである特許請求の範囲44項の組成物。 48.溶媒がエタノールであり、組成物の重量の0.25ないし約5%の水準で 使用されている、特許請求の範囲第46項の組成物。 49.上記エタノールが組成物の1%以下の水準で使用され、上記白金族金属が ディーゼル燃料の0.05ないし0.5ppmの水準で存在する、特許請求の範 囲第48項の組成物。 50.上記白金族金属化合物が式: ▲数式、化学式、表等があります▼ ここでRは白金族金属でありRはフェニル,ベンジル、またはニトロベンジル基 である。 で表わされる、燃料可溶の白金族配位化合物からなる特許請求の範囲第42項の 組成物。 51.上記Mが白金である特許請求の範囲第50項の組成物。 52.上記組成物がさらに、エタノール,硝酸オクチル,テトラヒドロフラン, メチル第3ブチルエーテル、またはそれらの混合物を包含する特許請求53.R がベンジル基からなり、溶媒がエタノールからなる特許請求の範囲第52項の組 成物。 54.Rがフェニール基からなり、溶媒が硝酸オクチルからなることを特徴とす る、特許請求の範囲第52項の組成物。 55.上記溶媒がメチル第3ブチルエーテルからなる特許請求の範囲第52項の 組成物。 56.ディーゼル燃料とその中に該ディーゼル燃料の0.01ないし1.0pp mの量溶解した白金族金属の配位化合物とを具備する、該白金族金属は+2また は+4の配位状態をもっていて、化合物のひとつ以上の配位座が、オレフィン, アセチレン、または芳香族系のπ結合形状の不飽和炭素−炭素結合1個以上を有 する官能基で占められているディーゼル燃料組成物。 57.2個以上の配位座が、オレフィン,アセチレン、または芳香族系のπ結合 形状の不飽和炭素−炭素結合1個以上を有する官能基で占められている特許請求 の範囲第56項の組成物。 58.上記不飽和結合を含む官能基がさらに、アルキル,カルボニル,アミノ, ニトロ,ヒドロキシル、およびアルコキシルの各基からなる群から選ばれた、ハ ロゲンを含まない置換基で置換されている、特許請求の範囲第56項の組成物。 59.他の配位座が、アルキル、カルボキシル,アミノ,ニトロ,ヒドロキシル 、およびアルコキシルの各基からなる群から選ばれた、ハロゲンを含有していな い置換基で直接占められている、特許請求の範囲第56項の組成物。 60.上記不飽和結合を含む官能基が、芳香族,シクロジエン,オレフィン、お よびアセチレン系の各基からなる群から選ばれたことを特徴とする、特許請求の 範囲第56項の組成物。 61.上記白金族金属が、白金,パラジウム、またはロジウム、またはそれらの 混合物である特許請求の範囲第56項の組成物。 62.上記官能基の少なくともひとつがシクロアルカジエンである特許請求の範 囲第56項の組成物。 63.ガソリンまたはディーゼル燃料に、燃料に可溶の白金族金属化合物を具備 する燃料添加組成物を、燃料1部に対して0.01ないし1.0ppmの白金族 金属を供給するに有効な量加え混合することからなる、内燃機関に動力を与える ためのガソリンまたはディーゼル燃料の有効エネルギーを増加する方法。 64.上記燃料添加組成物がさらに、上記白金化合物の燃料に可溶な溶媒を含む 、特許請求の範囲第63項の方法。 65.上記白金族金属と溶媒とが、酸素と金属とを、1,000:1ないし10 0,000:1の重量比で供給するに足る量存在する、特許請求の範囲第63の 方法。 66.溶媒が1ないし4個の炭素原子を持つアルコールである特許請求の範囲第 64項の方法。 67.溶媒がエタノールであり、燃料の重量の0.25ないし約5%の水準で使 用されている、特許請求の範囲第66項の方法。 68.上記エタノールが組成物の1%以下の水準で使用され、白金族金属が燃料 の0.05ないし0.5ppmの水準で含まれている特許請求の範囲第67項の 方法。 69.上記白金族金属化合物が、式: ▲数式、化学式、表等があります▼ ここでMは白金族金属であり、Rはフェニル、ペンジル、またはニトロベンジル 基である。 によって表わされる燃料に可溶の白金族金属配位化合物からなる、特許請求の範 囲第42項の方法。 70.Mが白金である特許請求の範囲第69項の方法。 71.上記方法がさらにエタノール,テトラヒドロフラン,メチル第3ブチルエ ーテル、またはそれらの組合せからなる特許請求の範囲第70項の方法。 72.Rがベンジルからなり、溶媒がエタノールからなる特許請求の範囲第71 項の方法。 73.Rがニトロベンジルからなり、溶媒がテトラヒドロフランからなる特許請 求の範囲第72項の方法。 74.溶媒がメチル第3ブチルエーテルからなる、特許請求の範囲第72項の方 法。 75.ガソリンおよびディーゼル燃料からなる群から選ばれた燃料中に、ガソリ ンの0.01ないし1.0ppmの白金族金属配位化合物であって、該配位化合 物は+2または+4の配位状態を有し、化合物中の1個以上の配位座が、オレフ ィン,アセチレン、または芳香族系のπ結合形状の不飽和炭素−炭素結合を1個 以上有する官能基で占められている白金族金属を具備するものを溶解し、この白 金族金属化合物を溶解した燃料を使ってガソリンまたはディーゼルエンジンを運 転する、ガソリンまたはディーゼルエンジンの効率増加方法。 76.好ましくは上記白金族金属化合物の2個以上の配位座が、オレフィン、ア セチレン、または芳香族系π結合形状の不飽和炭素−炭素結合を1個以上有する 官能基で占められている、特許請求の範囲第75項の方法。 77.上記不飽和結合を含む官能基がさらに、アルキル,カルボニル,アミノ, ニトロ,ヒドロキシル、およびアルコキシル各基からなる群から選ばれた、ハロ ゲンを含まない置換基で置換されている、特許請求の範囲第75項の方法。 78.他の配位座が、アルキル,カルボキシル,アミノ,ニトロ,ヒドロキシル 、およびアルコキシル基からなる群から選ばれた、ハロゲンを含有しない置換基 で直接占められている特許請求の範囲第75項の方法。 79.上記不飽和結合を含有する官能基が、芳香族、シクロジエン,オレフイン 、およびアセチレン系基からなる群から選ばれたことを特徴とする、特許請求の 範囲第75項の方法。 80.上記白金族金属が、白金、パラジウム、またはロジウム、またはそれらの 混合物である、特許請求の範囲第75項の方法。 81.上記官能基の少くともひとつがシクロアルカジエンである、特許請求の範 囲第76項の方法。 [Claims] 1. When M is a platinum group metal and R is phenyl, penzyl, or nitrobenzyl, a solution of a coordination compound of a platinum group metal that is soluble in fuel and is represented by the chemical formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ is provided with a platinum group metal at an oxygen to metal weight ratio of 1000:1 to 100,000:1. 1. A fuel composition for a fuel selected from the group consisting of gasoline and diesel fuel, comprising an oxygenated hydrocarbon solvent dissolved in an amount effective to supply the oxygenated hydrocarbon solvent. 2. The composition of claim 1, wherein said platinum group metal is platinum. 3. The composition of claim 1, wherein said oxygenated hydrocarbon comprises ethanol, tetrahydrofuran, methyl tert-butyl ether, or a combination thereof. 4. 4. The composition of claim 3, wherein R is benzyl and the solvent is ethanol. 5. Particularly, the above R consists of nitrobenzyl and the solvent consists of tetrahydrofuran. The composition according to claim 3. 6. The set of claim 3, wherein said solvent consists of methyl tert-butyl ether. A product. 7. Formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Equipped with a solution that is miscible with phosphorus, the above platinum coordination compound and ethanol or tetra A gasoline additive composition in which the mixed content of hydrofuran is sufficient to supply platinum and oxygen in a weight ratio of oxygen to platinum ranging from 3,500:1 to 100,000:1. 8. A solution of a platinum group metal compound that is soluble in fuel is dissolved in a solvent that is miscible with the fuel, and when the platinum group metal compound is added to a predetermined amount of fuel, it has a concentration of 0.01 to 1. A fuel additive composition containing a sufficient amount of platinum group metal to provide 0 ppm of a platinum group metal. 9. 9. The composition of claim 8, wherein said solvent comprises an oxygenated hydrocarbon. 10. The oxygenated hydrocarbon is an alcohol having 1 to 4 carbon atoms. The composition of claim 9 comprising: 11. 11. Composition according to claim 10, characterized in that said alcohol consists of ethanol. 12. The composition of claim 11, wherein said ethanol is contained in an amount sufficient to supply 0.25 to 5.0 parts of ethanol per 100 parts of gasoline. 13. The above platinum group metal compound and ethanol convert the platinum group metal and oxygen into metals. 13. The composition of claim 12, wherein the composition of claim 12 is provided in an amount sufficient to provide oxygen in a weight ratio of 1,000:1 to 100,000:1. 14. The weight ratio of oxygen from ethanol to the platinum group metal is 5,000: 14. The composition of claim 13 within the range of 1 to 35,000:1. 15. The platinum group metal compound has a +2 or +4 coordination state, and one or more coordination sites in the compound are olefinic, acetylene, or aromatic π (pi) bonds. 9. The composition of claim 8, which is a platinum group metal coordination compound comprising a platinum group metal occupied by a functional group having one or more unsaturated carbon-carbon bonds in the composite form. 16. Two or more coordination sites are olefinic, acetylene, or aromatic π-bonded The patent claimant is occupied by a functional group having one or more unsaturated carbon-carbon bonds. The composition according to the desired scope item 15. 17. Claims in which the functional group having an unsaturated bond is further substituted with a halogen-free substituent selected from the group consisting of alkyl, carbonyl, amino, nitro, hydroxyl, and alkoxyl groups. Composition of Section 15. 18. The other coordination sites are halogen-free and selected from the group consisting of alkyl, carboxyl, amino, nitro, hydroxyl, and alkoxyl groups. 16. The composition of claim 15, wherein the composition is directly occupied by a substituent. 19. If the functional group containing the above unsaturated bond is aromatic, cyclodiene, olefin, or 16. The composition of claim 15, wherein the composition is selected from the group consisting of 20. 16. The composition of claim 15, wherein said platinum group metal is platinum, palladium, or rhodium, or a mixture thereof. 21. 16. The composition of claim 15, wherein one of said functional groups is a cycloalkadiene. 22. A gasoline composition comprising gasoline and an additive composition dissolved therein, the additive composition in an amount sufficient to provide from 0.01 to 1.0 ppm of platinum group metal per part of gasoline. Gas containing soluble platinum group metal compounds Phosphorus composition. 23. The gasoline composition further includes a gasoline-soluble solvent for the platinum group metal compound. 23. The gasoline composition of claim 22, comprising: 24. The gasoline according to claim 23, wherein the solvent is an oxygenated hydrocarbon. additives. 25. The gasoline composition of claim 23, wherein the platinum group metal and oxygen from the solvent are contained in a weight ratio of oxygen to metal in the range of 1,000:1 to 100,000:1. . 26. 25. The gasoline composition of claim 24, wherein said solvent is an alcohol having 1 to 4 carbon atoms. 27. 27. The gasoline composition of claim 26, wherein said solvent is ethanol and is used at a level of 0.25 to about 5% by weight of the gasoline composition. 28. 28. The gasoline composition of claim 27, wherein said ethanol is used at a level of less than 1% of the composition and said platinum group metal is present at a level of 0.05 to 0.5 ppm of gasoline. 29. The above platinum group metal compound has the formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Here, M is a platinum group metal, and R is a phenyl, benzyl, or nitrobenzyl group. 23. The gasoline composition of claim 22, which is a gasoline soluble platinum group metal coordination compound represented by: 30. 30. The gasoline composition of claim 29, wherein M is platinum. 31. Ethanol, tetrahydrofuran, methyl tert-butyl ether, or The gasoline composition according to claim 30, which contains a solvent consisting of a combination thereof. 32. The gasoline composition of claim 31, wherein R consists of benzyl and the solvent consists of ethanol. 33. A patent claimant in which R consists of nitrobenzyl and the solvent consists of tetrahydrofuran. A gasoline composition comprising the desired range item 31. 34. 32. The gasoline composition of claim 31, wherein said solvent comprises methyl tert-butyl. 35. Gasoline and the gasoline contains 0.01 parts per million parts of gasoline. 1.0 part of a platinum group metal coordination compound is dissolved, and the platinum group metal compound has a +2 or +4 coordination state, and one or more coordination sites in the compound are olefin, acetate, etc. A gasoline composition dominated by a functional group having one or more unsaturated carbon-carbon bonds in the form of rene or aromatic π-bonds. 36. A patent claim in which two or more coordination positions are occupied by functional groups having one or more unsaturated carbon-carbon bonds in the form of olefinic, acetylene, or aromatic π bonds. The composition according to the desired scope item 35. 37. The unsaturated bond-containing functional group is further selected from the group consisting of alkyl, carbonyl, amino, nitro, hydroxyl, and alkoxyl groups. 36. The composition of claim 35, wherein the composition is substituted with a logen-free substituent. 38. The other coordination sites are halogen-free and selected from the group consisting of alkyl, carboxyl, amino, nitro, hydroxyl, and alkoxyl groups. 36. The composition of claim 35, wherein the composition is directly occupied by a substituent. 39. If the functional group containing the above unsaturated bond is aromatic, cyclodiene, olefin, or 36. The composition of claim 35, wherein the composition is selected from the group consisting of 40. 36. The composition of claim 35, wherein said platinum group metal is platinum, palladium, or rhodium, or a mixture thereof. 41. 36. The composition of claim 35, wherein at least one of said functional groups is a cycloalkadiene. 42. A diesel fuel assembly comprising a diesel fuel and an additive composition dissolved therein. the additive composition comprises a fuel-soluble platinum group metal compound in an amount sufficient to provide from 0.01 to 1.0 ppm of platinum group metal per part of fuel. Diesel fuel composition. 43. 43. The composition of claim 42, wherein the composition further comprises a solvent for the platinum group metal compound that is soluble in diesel fuel. 44. 44. The composition of claim 43, wherein said solvent is an oxygenated hydrocarbon. 45. 44. The composition of claim 43, wherein said platinum group metal and oxygen from the solvent are present in a metal to oxygen weight ratio of 1,000:1 to 100,000:1. 46. 45. The composition of claim 44, wherein said solvent is an alcohol having 1 to 4 carbon atoms. 47. 45. The composition of claim 44, wherein said solvent is octyl nitrate. 48. 47. The composition of claim 46, wherein the solvent is ethanol and is used at a level of 0.25 to about 5% by weight of the composition. 49. Claims wherein said ethanol is used at a level of less than 1% of the composition and said platinum group metal is present at a level of 0.05 to 0.5 ppm of the diesel fuel. Composition of Box 48. 50. The platinum group metal compound mentioned above has the formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Here, R is a platinum group metal, and R is a phenyl, benzyl, or nitrobenzyl group. 43. The composition of claim 42, comprising a fuel-soluble platinum group coordination compound represented by: 51. 51. The composition of claim 50, wherein M is platinum. 52. Claim 53. The composition further comprises ethanol, octyl nitrate, tetrahydrofuran, methyl tert-butyl ether, or mixtures thereof. The set of claim 52, wherein R is a benzyl group and the solvent is ethanol. A product. 54. characterized in that R consists of a phenyl group and the solvent consists of octyl nitrate 53. The composition of claim 52. 55. 53. The composition of claim 52, wherein said solvent comprises methyl tert-butyl ether. 56. The platinum group metal comprises a diesel fuel and a platinum group metal coordination compound dissolved therein in an amount of 0.01 to 1.0 ppm of the diesel fuel. has a +4 coordination state, and one or more coordination sites of the compound have one or more unsaturated carbon-carbon bonds in the form of olefinic, acetylene, or aromatic π bonds. Diesel fuel compositions that are populated with functional groups. 57. Two or more coordination sites are occupied by functional groups having one or more unsaturated carbon-carbon bonds in the form of olefinic, acetylene, or aromatic π bonds, according to claim 56. Composition. 58. The unsaturated bond-containing functional group is further selected from the group consisting of alkyl, carbonyl, amino, nitro, hydroxyl, and alkoxyl groups. 57. The composition of claim 56, wherein the composition is substituted with a logen-free substituent. 59. The other coordination sites are halogen-free and selected from the group consisting of alkyl, carboxyl, amino, nitro, hydroxyl, and alkoxyl groups. 57. The composition of claim 56, wherein the composition is directly occupied by a substituent. 60. If the functional group containing the above unsaturated bond is aromatic, cyclodiene, olefin, or 57. The composition according to claim 56, characterized in that the composition is selected from the group consisting of 61. 57. The composition of claim 56, wherein said platinum group metal is platinum, palladium, or rhodium, or a mixture thereof. 62. Claims in which at least one of the above functional groups is a cycloalkadiene A composition according to paragraph 56. 63. A fuel additive composition comprising a platinum group metal compound soluble in the fuel is added and mixed to gasoline or diesel fuel in an amount effective to supply 0.01 to 1.0 ppm of platinum group metal per part of fuel. A method of increasing the useful energy of gasoline or diesel fuel for powering an internal combustion engine, consisting of: 64. 64. The method of claim 63, wherein the fuel additive composition further comprises a solvent soluble in the platinum compound fuel. 65. 64. The method of claim 63, wherein the platinum group metal and solvent are present in sufficient amounts to provide oxygen and metal in a weight ratio of 1,000:1 to 100,000:1. 66. 65. The method of claim 64, wherein the solvent is an alcohol having 1 to 4 carbon atoms. 67. The solvent is ethanol, used at a level of 0.25 to about 5% of the weight of the fuel. 67. The method of claim 66, wherein the method of claim 66 is used. 68. 68. The method of claim 67, wherein the ethanol is used at a level of less than 1% of the composition and the platinum group metal is included at a level of 0.05 to 0.5 ppm of the fuel. 69. The above platinum group metal compound has the formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Here, M is a platinum group metal, and R is a phenyl, penzyl, or nitrobenzyl group. The claimed invention consists of a fuel-soluble platinum group metal coordination compound represented by The method of paragraph 42. 70. 69. The method of claim 69, wherein M is platinum. 71. The above method further includes ethanol, tetrahydrofuran, methyl tert-butyl ether. 71. The method of claim 70, comprising: 72. 72. The method of claim 71, wherein R comprises benzyl and the solvent comprises ethanol. 73. A patent claimant in which R consists of nitrobenzyl and the solvent consists of tetrahydrofuran. Scope of Requirement Paragraph 72. 74. Claim 72, wherein the solvent consists of methyl tert-butyl ether Law. 75. Gasoline is present in a fuel selected from the group consisting of gasoline and diesel fuel. 0.01 to 1.0 ppm of a platinum group metal coordination compound, the coordination compound compounds have a +2 or +4 coordination state, and one or more coordination sites in the compound are olefin. A metal containing a platinum group metal occupied by a functional group having one or more unsaturated carbon-carbon bonds in the form of phosphorus, acetylene, or an aromatic π bond is dissolved. Gasoline or diesel engines are operated using fuel containing dissolved metal compounds. How to increase the efficiency of a gasoline or diesel engine. 76. Preferably, two or more coordination sites of the platinum group metal compound are olefins, atoms, etc. 76. The method of claim 75, which is occupied by a functional group having one or more unsaturated carbon-carbon bonds in the form of cetylene or aromatic π-bonds. 77. The unsaturated bond-containing functional group further comprises a halo selected from the group consisting of alkyl, carbonyl, amino, nitro, hydroxyl, and alkoxyl groups. 76. The method of claim 75, wherein the method is substituted with a substituent that does not contain a gene. 78. 76. The method of claim 75, wherein the other coordination sites are directly occupied by halogen-free substituents selected from the group consisting of alkyl, carboxyl, amino, nitro, hydroxyl, and alkoxyl groups. 79. 76. The method of claim 75, wherein the unsaturated bond-containing functional group is selected from the group consisting of aromatic, cyclodiene, olefin, and acetylenic groups. 80. 76. The method of claim 75, wherein the platinum group metal is platinum, palladium, or rhodium, or a mixture thereof. 81. Claims in which at least one of the functional groups is a cycloalkadiene The method of Paragraph 76.
JP61500068A 1984-12-04 1985-12-03 Fuel additive composition containing soluble platinum group metal compound Expired - Lifetime JPH0653879B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US67795484A 1984-12-04 1984-12-04
US677954 1984-12-04
US79073885A 1985-10-24 1985-10-24
US790738 1985-10-24
US79642885A 1985-11-08 1985-11-08
US796428 1985-11-08
PCT/US1985/002387 WO1986003492A1 (en) 1984-12-04 1985-12-03 Fuel additives and fuel containing soluble platinum group metal compounds and use in internal combusiton engines

Publications (2)

Publication Number Publication Date
JPS62501423A true JPS62501423A (en) 1987-06-11
JPH0653879B2 JPH0653879B2 (en) 1994-07-20

Family

ID=27418330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61500068A Expired - Lifetime JPH0653879B2 (en) 1984-12-04 1985-12-03 Fuel additive composition containing soluble platinum group metal compound

Country Status (16)

Country Link
JP (1) JPH0653879B2 (en)
CN (1) CN85109511A (en)
AU (1) AU583580B2 (en)
BR (1) BR8507104A (en)
CA (1) CA1305607C (en)
DK (1) DK527485A (en)
ES (1) ES8900127A1 (en)
FI (1) FI854486A (en)
GB (1) GB2178757B (en)
HU (1) HUT44034A (en)
IE (1) IE58723B1 (en)
IL (1) IL77176A0 (en)
MA (1) MA20584A1 (en)
MX (1) MX169226B (en)
PT (1) PT81495B (en)
WO (1) WO1986003492A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517127A (en) * 2002-02-04 2005-06-09 クリーン ディーゼル テクノロジーズ インコーポレーテッド Combustion of reduced emissions using multi-component metal combustion catalysts

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1340871C (en) * 1988-12-28 2000-01-04 Robert W. Epperly Method for reducing emissions from or increasing the utilizable energy of fuel for powering internal combustion engines
US5034020A (en) * 1988-12-28 1991-07-23 Platinum Plus, Inc. Method for catalyzing fuel for powering internal combustion engines
US5584894A (en) * 1992-07-22 1996-12-17 Platinum Plus, Inc. Reduction of nitrogen oxides emissions from vehicular diesel engines
US5404841A (en) * 1993-08-30 1995-04-11 Valentine; James M. Reduction of nitrogen oxides emissions from diesel engines
GB0126990D0 (en) 2001-11-09 2002-01-02 Carroll Robert Method and composition for improving fuel consumption
LT5161B (en) 2003-12-12 2004-09-27 Rimvydas JASINAVIČIUS Additive for fuels on the basis of improved ethanol
CN101052456A (en) * 2004-02-09 2007-10-10 O2柴油公司 Methods for reducing particulate matter emissions from diesel engine exhaust using ethanol/diesel fuel blends in combination with diesel oxidation catalysts
WO2010024478A1 (en) * 2008-08-25 2010-03-04 Tai Weon Choi The mixture for the diesel saving by nano-technology
WO2010024477A1 (en) * 2008-08-25 2010-03-04 Tai Weon Choi The mixture for the gasoline saving by nano-technology
CN103695051B (en) * 2013-12-23 2015-04-01 山西华顿实业有限公司 Additive for improving dynamic property of methanol gasoline

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875223A (en) * 1954-08-18 1959-02-24 Du Pont Dicyclopentadienyliron derivatives
US4207078A (en) * 1979-04-25 1980-06-10 Texaco Inc. Diesel fuel containing manganese tricarbonyl and oxygenated compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875223A (en) * 1954-08-18 1959-02-24 Du Pont Dicyclopentadienyliron derivatives
US4207078A (en) * 1979-04-25 1980-06-10 Texaco Inc. Diesel fuel containing manganese tricarbonyl and oxygenated compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517127A (en) * 2002-02-04 2005-06-09 クリーン ディーゼル テクノロジーズ インコーポレーテッド Combustion of reduced emissions using multi-component metal combustion catalysts

Also Published As

Publication number Publication date
ES548951A0 (en) 1989-01-01
FI854486A (en) 1986-06-05
FI854486A0 (en) 1985-11-14
CA1305607C (en) 1992-07-28
MX169226B (en) 1993-06-25
HUT44034A (en) 1988-01-28
PT81495A (en) 1985-12-01
WO1986003492A1 (en) 1986-06-19
MA20584A1 (en) 1986-07-01
GB8617717D0 (en) 1986-08-28
IE853043L (en) 1986-06-04
AU583580B2 (en) 1989-05-04
CN85109511A (en) 1987-05-13
PT81495B (en) 1987-12-30
IL77176A0 (en) 1986-04-29
IE58723B1 (en) 1993-11-03
AU5236286A (en) 1986-07-01
DK527485D0 (en) 1985-11-14
JPH0653879B2 (en) 1994-07-20
ES8900127A1 (en) 1989-01-01
DK527485A (en) 1986-06-05
BR8507104A (en) 1987-03-31
GB2178757B (en) 1988-10-19
GB2178757A (en) 1987-02-18

Similar Documents

Publication Publication Date Title
US4892562A (en) Diesel fuel additives and diesel fuels containing soluble platinum group metal compounds and use in diesel engines
US4891050A (en) Gasoline additives and gasoline containing soluble platinum group metal compounds and use in internal combustion engines
CN100460487C (en) Fuel additive and fuel products containing it
CA1340871C (en) Method for reducing emissions from or increasing the utilizable energy of fuel for powering internal combustion engines
US2460700A (en) Method of operating an internal-combustion engine
US4753661A (en) Fuel conditioner
JPS62501423A (en) Fuel additive compositions containing soluble platinum group metal compounds
EP2331658B1 (en) Modified fuels
US5749928A (en) Method for reducing emissions from or increasing the utilizable energy of fuel for powering internal combustion engines
WO1993021286A1 (en) Fuel additive
US2506539A (en) Fuel for internal-combustion spark ignition engines
JPH06510804A (en) Fuel mixture, method of making the fuel mixture and use of the fuel mixture
US4370147A (en) Fuel for compression ignition engines
EP0667387A2 (en) Reducing exhaust emissions from Otto-cycle engines
EP0189642B1 (en) Fuel additives and fuel containing soluble platinum group metal compounds and use in internal combustion engines
US8323362B2 (en) Combustion modifier and method for improving fuel combustion
US3765848A (en) Motor fuel composition
RU2270231C1 (en) Gasoline and diesel fuel additive and fuel composition containing thereof
Springer Low-emission diesel fuel for 1991–1994
CN1139148A (en) Additive composite raising octane value of hydrocarbon fuels
CN1288044A (en) Gasoline additive for tail gas purification
UA64799C2 (en) A composite additive to liquid fuels
Lawrason et al. Ethyl alcohol and gasoline as a modern motor fuel
WO1999021941A1 (en) Combustion catalyst and catalyzed fuels with enhanced combustion efficiency and mileage
Filowitz et al. Diesel Particulate Emission Control Without Engine Modifications-A Cost-Effective Fuel Supplement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term