JPS62501410A - Method and device for transferring solid particles - Google Patents

Method and device for transferring solid particles

Info

Publication number
JPS62501410A
JPS62501410A JP50507285A JP50507285A JPS62501410A JP S62501410 A JPS62501410 A JP S62501410A JP 50507285 A JP50507285 A JP 50507285A JP 50507285 A JP50507285 A JP 50507285A JP S62501410 A JPS62501410 A JP S62501410A
Authority
JP
Japan
Prior art keywords
standpipe
riser
pressure
solid particles
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50507285A
Other languages
Japanese (ja)
Inventor
レウン レウン サン
チヨン ヤ‐オン
リー ピーター レスリエ
Original Assignee
ユニバ−シテイ− オブ クイ−ンスランド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバ−シテイ− オブ クイ−ンスランド filed Critical ユニバ−シテイ− オブ クイ−ンスランド
Publication of JPS62501410A publication Critical patent/JPS62501410A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/02Feed or outlet devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/16Gas pressure systems operating with fluidisation of the materials
    • B65G53/18Gas pressure systems operating with fluidisation of the materials through a porous wall
    • B65G53/22Gas pressure systems operating with fluidisation of the materials through a porous wall the systems comprising a reservoir, e.g. a bunker
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/14Devices for feeding or crust breaking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の名称 固体粒子の移送方法及びその装置発明の背景 1)発明の分野 本発明は低圧地点から高圧地点に固体粒子を移送する方法及びその装置に関する ものである。[Detailed description of the invention] Title of the invention: Method and device for transferring solid particles Background of the invention 1) Field of invention The present invention relates to a method and apparatus for transferring solid particles from a low pressure point to a high pressure point. It is something.

2)従来技術 低圧から高圧に固体を移送する従来の一般的方法は施錠ホッパを使用している。2) Conventional technology A conventional common method of transferring solids from low pressure to high pressure uses a locked hopper.

作業循環において、低圧のホッパには固体を充填させ、その後重力により高圧の 収納容器に固体を放出する前に、固体を単離しそして必要とする高圧まで加圧す る。完全に放出した後に、ホッパは次の循環作業の始動のために減圧される。一 般には2つのホッパが使用され、一方が充填で、他方が放出である。In a working cycle, a low-pressure hopper is filled with solids, and then, by gravity, a high-pressure Isolate and pressurize the solids to the required high pressure before discharging them into a storage container. Ru. After complete discharge, the hopper is depressurized for starting the next cycle. one Generally, two hoppers are used, one for filling and one for discharging.

高圧地点に固体の移送を行うための他の公知の方法は固体の機械的ポンプを用い ること及び固体をスラリーに変更させた後にスラリーポンプを用いることにある 。前者の場合にシールの腐食のために重要な問題が存在し、他方スラリーを形成 するために液体を加えることは実際の状況において容認できない問題である。Other known methods for transferring solids to high pressure points use solids mechanical pumps. and using a slurry pump after converting the solids into slurry. . In the former case there is a significant problem due to seal corrosion and in the other case slurry formation Adding liquid to do so is an unacceptable problem in practical situations.

一連の直立管を用いることにより固体を低圧から供給する着想は1982年発行 の雑誌「輸送パイプ2」中筒187頁乃至第197頁のシー ニス チオ及びエ ルニス レンゲ著「直立管流水の現状と将来の応用」に記載されている。供給材 料庫内の固体は最終行程の操作圧力に到達するまで増加圧力で作動する一連の流 動化層、直立管、機械的摺動弁及び上昇器を通して供給される。The idea for supplying solids from low pressure by using a series of standpipes was published in 1982. Magazine "Transport Pipe 2", pages 187 to 197 of the middle cylinder It is described in "Current situation and future applications of standpipe running water" by Lunis Lenguet. supply material The solids in the storage are passed through a series of streams operating at increasing pressures until the final stroke operating pressure is reached. It is fed through the mobilization bed, standpipes, mechanical slide valves and risers.

この装置は操作が極めて不安定であり、各直立管において操作を制御するため移 動部材を有する機械的摺動弁に依存し、各直立管に対する供給器としての流動層 で扱いにくい。This equipment is extremely unstable to operate and requires transfers to control the operation at each standpipe. Fluidized bed as a feeder for each standpipe, relying on mechanical sliding valves with moving members It's difficult to handle.

発明の概要 本発明の目的は粒子状固体が移動部材のない装置の高圧に連続的且つ不変的に移 送されるところの固体粒子の移送方法を提供することにある。Summary of the invention The object of the invention is to transfer particulate solids continuously and permanently to high pressure in an apparatus without moving parts. The object of the present invention is to provide a method for transporting solid particles to be transported.

本発明の他の目的は一定範囲の固体流量及び一定範囲の異なる圧力(例えばゼロ 流動から最大流動)にわたって操作させることができる固体供給装置を提供する にある。Another object of the invention is to provide a range of solids flow rates and a range of different pressures (e.g. zero). Provides a solids feeder that can be operated from flow to maximum flow It is in.

第1実施態様において、本発明は一定圧の第1地点から高圧の第2地点に固体粒 子を転送する方法にあり、該方法は a)少なくとも一対の直立管及び上昇器を配設し、b)入口を通して一定圧のガ スを直立管の下方に供給すると共に入口を通して高圧ガスを上昇器の下端に供給 し、 C)固体粒子を直立管の上端に供給し、d)固体粒子を直立管の下方に流動でき るように固体粒子を直立管内で流動化させ、 e)直立管と上昇器とを互いに連結する弁機構を通して直立管の下端から上昇器 の下端に固体粒子を転送し、 f)上昇器の上方に向うガス流動により固体粒子を上昇器の上方に向って走行さ せる 工程から構成されている。In a first embodiment, the present invention provides solid particles from a first point at constant pressure to a second point at high pressure. There is a method to transfer children, and the method is a) at least one pair of standpipes and risers; b) a constant pressure gas flow through the inlet; Supply gas to the bottom of the standpipe and high pressure gas to the lower end of the riser through the inlet. death, C) feeding the solid particles into the top of the standpipe, and d) allowing the solid particles to flow down the standpipe. Solid particles are fluidized in a standpipe so that e) riser from the lower end of the standpipe through a valve mechanism connecting the standpipe and riser to each other; Transfer the solid particles to the bottom edge of f) solid particles are driven upwards in the riser by the upward flow of gas; let It consists of processes.

固体は上昇器から第2番目の一対の直立管及び上昇器の直立管に供給され、上述 の行程が繰り返えされる。The solids are fed from the riser to a second pair of standpipes and to the standpipe of the riser, as described above. The process is repeated.

工程(d)において、直立管の下方に向う流動化ガスの流れに対して逆流である 。In step (d), the flow is counter to the flow of fluidizing gas downward in the standpipe. .

第2実施態様において、本発明は一定圧力の第1地点から高圧の第2地点に固体 粒子を転送する装置にあり、該装置は 少なくとも一対の直立管及び上昇器と、 “固体粒子を直立管の上端に供給する 供給機構と、直立管内において固体粒子を流動化させて直立管の下方に向けて固 体粒子を流動させることができるようにガスを直立管に供給する一定圧のガス源 に連結させた直立管の下端のガス入口と、 直立管の下端から上昇器の下端に固体粒子を転送させる弁機構と、 固体粒子を上昇管の上方に向けて走行させるため上昇器の上方に向けてガスを流 動させる高圧ガス源に連結させた上昇器の下端のガス入口と、 から構成されている。In a second embodiment, the invention provides a method for moving a solid from a first point at constant pressure to a second point at high pressure. in a device for transferring particles, the device at least one pair of standpipes and a riser; A feeding mechanism that fluidizes solid particles in the standpipe and solidifies them toward the bottom of the standpipe. A constant pressure gas source that supplies gas to the standpipe so that the body particles can flow a gas inlet at the lower end of the standpipe connected to the a valve mechanism for transferring solid particles from the lower end of the standpipe to the lower end of the riser; Gas is flowed upwards in the riser to force the solid particles to travel upwards in the riser. a gas inlet at the lower end of the riser connected to a source of high pressure gas to be moved; It consists of

弁機構はV副弁、L副弁、J副弁又は他の非機械弁である。しかし、摺動弁のよ うな機械弁を使用することができる。The valve mechanism is a V sub-valve, an L sub-valve, a J sub-valve or other non-mechanical valves. However, the sliding valve Mechanical valves can be used.

第1直立管は上昇器により直立管の上端に連結されたバルクホッパから固体粒子 が供給される。直立管と上昇器内の圧力は自動圧力制御器により調整されている 。The first standpipe carries solid particles from a bulk hopper connected to the upper end of the standpipe by a riser. is supplied. The pressure in the standpipe and riser is regulated by an automatic pressure controller. .

直立管と上昇器の上端におけるガス出口は実質的な密閉装置を形成するために先 行する(即ちより低い圧力)直立管と上昇器のガス入口に連結させることができ る。The gas outlet at the top of the standpipe and riser is closed to form a substantial seal. (i.e. lower pressure) standpipe and riser gas inlet. Ru.

発明を実施するための最良の形態 第1図に関し、固体供給装置10は多数の隣接直立管11.12,13と、下端 において弁機構17,18(第3図及び第4図参照)に連結され且つ上端におい て移送ヘッド19,20,21 (第2図参照)に連結されている上昇器14, 15及び16とから成っている。供給装置10の通常の操作を以下に説明する。BEST MODE FOR CARRYING OUT THE INVENTION 1, the solids feeder 10 has a number of adjacent standpipes 11, 12, 13 and a lower end. are connected to the valve mechanisms 17, 18 (see FIGS. 3 and 4) at the upper end. the lifter 14, which is connected to the transfer heads 19, 20, 21 (see Figure 2); 15 and 16. The normal operation of the feeding device 10 will now be described.

大気圧における開口バルク供給ホッパ22内の固体は弁23を通して計量され、 ガス入口25を有する空気コンベア24により上昇器14の下端に搬送される。Solids in the open bulk feed hopper 22 at atmospheric pressure are metered through a valve 23; It is conveyed to the lower end of the riser 14 by an air conveyor 24 with a gas inlet 25.

高圧ガスが上昇器14の下端において入口26に供給され、固体を上昇器に沿っ て移送ヘッド19に搬送する。High pressure gas is supplied to the inlet 26 at the lower end of the riser 14 to move the solids along the riser. and convey it to the transfer head 19.

第2図に関し、移送ヘッド19は傾斜底壁28を有する閉鎖管状体27とガス出 口30を備えた水平上壁29とを有している。上昇器14からの固体及びガスは 下方向に向けた排出口32を有する分離管31に入る。惰性及び重力が固体を移 送ヘッド19の底壁に向って放出させ、移送管33を通して隣接する直立管11  (更紗の矢印は固体流を示す)の上端に向ける。2, the transfer head 19 has a closed tubular body 27 with an inclined bottom wall 28 and a gas outlet. It has a horizontal upper wall 29 with an opening 30. The solids and gases from the riser 14 are It enters a separation tube 31 having an outlet 32 directed downward. Inertia and gravity move solids discharge toward the bottom wall of the transfer head 19 and pass through the transfer tube 33 to the adjacent standpipe 11. (The chintz arrow indicates the solid flow) toward the top.

微細固体はガス(ガス流は鎖線で示す。)に同伴されたままで残留する場合があ るので、ガスをサイクロン34に入れ、サイクロン34は固体を分離し、出口管 35を通して固体を移送ヘッドの底壁28に向け、移送管33を通して直立管1 1に送る。Fine solids may remain entrained in the gas (the gas flow is shown by the dashed line). Therefore, the gas enters the cyclone 34, which separates the solids and exits the outlet pipe. 35 to direct the solids to the bottom wall 28 of the transfer head and through the transfer tube 33 to the standpipe 1. Send to 1.

直立管11中の固体(:i′入口36(第3図参照)を通る計量ガス流により下 端から流動化される。直立管11内の固体の頭部により直立管11の下方に流れ る固体流は直立管11の上方の固体を流動化するガス流に対して逆流である。The solids in the standpipe 11 (i') are lowered by the metering gas flow through the inlet 36 (see Figure 3). Fluidized from the edge. The solid head within the standpipe 11 causes the flow to flow down the standpipe 11. The solids flow is countercurrent to the gas flow fluidizing the solids above the standpipe 11.

直立管11の下端において、固体は弁機構17 (第3図及び第4図参照)によ り第2上昇管15に移送されろ。At the lower end of the standpipe 11, the solids are removed by a valve mechanism 17 (see Figures 3 and 4). and then transferred to the second riser pipe 15.

弁機構17はその人口38を直立管11に連結し、その出口39を移送管40に 連結した■副弁37を有している。■副弁は1980年、アメリカ合衆国、ニュ ーヨーク州に所在のプレナン出版社発行、ジエイ アール ブレイス及びジエイ  エム マツ1−ヤン泪集の「流動化」、第485頁乃至第492頁中のジエイ  エル リウ、エックス ジー り及びエム ニス ワウク著「空気制御多段式 流動層」に記載されている非機械式弁である(他の型式の非機械式弁、例えばL 副弁、J副弁も本発明か高圧ガスが移送管40の下端において人口41に供給さ れ、固体はそのガス中に同伴し、上昇器15の上端における移送ヘッド20を通 して次の直立管12に移送させるために上昇器15中を上方に流動する。Valve mechanism 17 connects its port 38 to standpipe 11 and its outlet 39 to transfer pipe 40. It has a connected sub-valve 37. ■ Vice Ben was released in 1980 in the United States and New York. -Published by Plennan Publishers, York, by J.R. Brace and J.A. M Matsu 1 - Jiei in "Fluidization" of Yang's collection, pages 485 to 492 "Air-controlled multi-stage system" written by L. Riu, X.G. Ri and M. Nis. Fluidized Bed" non-mechanical valves (other types of non-mechanical valves, e.g. The sub valve and the J sub valve also have high pressure gas supplied to the population 41 at the lower end of the transfer pipe 40 according to the present invention. The solids are entrained in the gas and passed through the transfer head 20 at the upper end of the riser 15. and flows upwardly through riser 15 for transfer to the next standpipe 12.

固体は直立管12を下方に向って、上昇器16を上方に向ってそして直立管13 を下方に向って順番に流通する。直立管13の下端において、固体は■副弁37 を通って所望された高圧になっている収容器42中に流通し、収容器42中の固 体は隔離弁44を通して計量されて反応器43に搬出されろ。The solids pass down standpipe 12, up riser 16 and up standpipe 13. are distributed in order downward. At the lower end of the standpipe 13, the solid is The solid in the container 42 flows through the container 42 at the desired high pressure. The body is metered through isolation valve 44 and discharged to reactor 43.

直立管11〜13の上端における圧力は直立管のガス出口46に設けた弁45に より調整され、弁45は上昇器42内の圧力は弁48により制御され、弁48は 自動制御器(図示せず)を備えることができる。The pressure at the upper ends of the standpipes 11-13 is controlled by a valve 45 provided at the gas outlet 46 of the standpipe. The pressure in the riser 42 is controlled by a valve 48, which is controlled by a valve 45. An automatic controller (not shown) may be provided.

閉鎖装置を備えるため直立管13及び上昇器16のガス出口46及び30は低圧 である直立管12及び上昇器15の入口36及び41に連結することができ、直 立管12及び11と上昇器15及び14との間に同様の構成を備えることができ る。Gas outlets 46 and 30 of standpipe 13 and riser 16 are at low pressure due to the provision of closure devices. can be connected to the inlets 36 and 41 of the standpipe 12 and riser 15, which are A similar configuration can be provided between the standpipes 12 and 11 and the risers 15 and 14. Ru.

各直立管11〜13におけろ固体の密度は各直立管における固体の頭部により直 立管内において最少流動化で最大の圧力を得ることができるものに近い弁に対し て制御される。これは入口36を通して直立管11〜13の各々に流れるガス流 量を制御し、多数の異なる圧力制御器47を(第1図参照)使用することによっ て達成される。直立管13の短い区域間の圧力の相違は制御器49により計測さ れ、圧力の変化度が少量のガスを制御弁50を通して換気させることにより容認 できるよう水準に自動的に制御されている。圧力変化の容;3できる水準は最少 流動化速度近くの流動化層で測定されたものと合致する(各直立管が1つ又はそ れ以上の異なる圧力の制御u47を有することは当業者にとって明らかである) 。The density of the solid in each standpipe 11-13 is determined by the head of the solid in each standpipe. For valves that are close to those that can obtain maximum pressure with minimum fluidization in the standpipe. controlled by This results in a gas flow flowing through inlet 36 into each of standpipes 11-13. by controlling the volume and using a number of different pressure regulators 47 (see Figure 1). achieved. The difference in pressure between short sections of standpipe 13 is measured by controller 49. The degree of change in pressure can be tolerated by venting a small amount of gas through the control valve 50. automatically controlled to a level that allows for Amount of pressure change; 3. Minimum possible level Consistent with that measured in the fluidized bed near the fluidization velocity (each standpipe has one or more It will be clear to a person skilled in the art that there are more than one different pressure controls u47) .

第1図は3つの直立管を有する装置を示しているが、本装置に使用される直立管 の数に制限はない。全部の圧力利得(供給ホッパ22内の圧力を引いた収容器4 2内の圧力として形成されろ)は直立管の高さと数に依存する。各直立管におけ る圧力利得は直立管の高さく固体の頭部)と固体の密度に比例する。各直立管に おける固体の重量は例えば075気圧の上端に関し直立管の下端において圧力利 得を発生し、075気圧は直立管における固体の流動化のため例えば01気圧の 圧力損失により部分的に相殺される。従って、直立管用の全圧力利得8:1例え ば0.65気圧である。固体が上昇器に沿って上昇し、次の直立管に移送されの で、多少の圧力損失を受ける。Figure 1 shows a device with three standpipes; the standpipes used in this device There is no limit to the number of Total pressure gain (container 4 minus pressure in feed hopper 22 2) depends on the height and number of standpipes. in each standpipe The pressure gain is proportional to the height of the standpipe (solid head) and the density of the solid. on each standpipe For example, the weight of the solid at the bottom of the standpipe is 0.75 atm relative to the top For example, 0.01 atm is generated due to solid fluidization in the standpipe. Partially offset by pressure loss. Therefore, the total pressure gain for the standpipe is 8:1. The pressure is 0.65 atm. The solids rise along the riser and are transferred to the next standpipe. and suffers some pressure loss.

しかし、=一対の直立管と−I一杯器用の圧ノjの総増大は例えば05気圧乃至 1気圧であるので、収容器42(又;ま反応器43)とホッパ22どの間の必要 な圧力利得は十分な直立管と上昇器を備えろことによって得らね、従って伺加的 な圧力利得は必要は圧力利得と同一か、又は必要な圧力利点を超える。However, the total increase in the pressure nozzle j for a pair of standpipes and -I cup is, for example, from 0.5 atm to Since the pressure is 1 atm, the pressure between the container 42 (or reactor 43) and the hopper 22 is Significant pressure gains cannot be obtained by providing sufficient standpipes and risers, so additional The desired pressure gain is equal to or exceeds the desired pressure advantage.

成る方法において、高圧収容器42(反応器43)からのガスから供給された固 体を連続的な方法において予め加熱するか又は予め加工することが望ましい。こ れは最後の直立管13及び上昇器16(即ち入口12G及び41)に供給ずろた め且つ先行する上昇器及び直立管等の入口に対して最後の直立管及び上昇器(即 ち口46及び30)を出るガスを使用するために高圧反応器ガスを用いることに より容易に達成できろ3、第3図及び第4図に示した弁機構17は直立管と上昇 器との間に■副弁37を備えている。■二連しt:通り、木実絶倒から逸脱する ことなく■副弁37の位置に12型弁、J副弁のような他の非機構弁又は摺動弁 のような機械弁を使用することができる。In this method, the solids supplied from the gas from the high pressure container 42 (reactor 43) are It is desirable to preheat or preprocess the body in a continuous manner. child This feeds the last standpipe 13 and riser 16 (i.e. inlets 12G and 41). The last standpipe and riser (immediately High pressure reactor gas is used to use the gas exiting ports 46 and 30). 3. The valve mechanism 17 shown in FIGS. 3 and 4 can be more easily achieved by A sub-valve 37 is provided between the container and the container. ■Double t: deviate from street and tree falling. ■ Other non-mechanical valves or sliding valves such as type 12 valve, J sub-valve, etc. in the position of sub-valve 37 Mechanical valves such as can be used.

本装置は圧力調整器の圧力セット地点を変え且つ直立管内の固体の異なる水準で 作動させることにより一定範囲の固体流量と一定範囲の圧力利得にわたって操作 できろ。This device changes the pressure set point of the pressure regulator and at different levels of solids in the standpipe. Operate over a range of solids flow rates and a range of pressure gains by actuating You can do it.

本発明の実際の用途は固定、例えば−7ライアツシユ、小麦、砂を空気搬送する こと及びそれらの固体を例えば10気圧までの圧力にさせた化学反応器(例えば 気化器)に注入させることにある。The practical application of the present invention is to pneumatically convey fixed, e.g. -7 lye, wheat, sand. chemical reactors (e.g. The purpose is to inject it into a vaporizer).

変形例(図示せず)において、ホッパ22は上部に取付けられそして第1直立管 ]1の上端に連結させることができる。しかしこの構成は設置場所に長い天井高 さを必要とし、従ってホッパ22と第1直立管11との間に図示した上昇器14 を用いることが好ましい。In a variant (not shown), the hopper 22 is mounted on the top and the first standpipe ] 1 can be connected to the upper end of 1. However, this configuration requires a long ceiling height in the installation location. Therefore, the riser 14 shown between the hopper 22 and the first standpipe 11 It is preferable to use

本発明においては特許請求の範囲に記載した本発明の範囲から逸脱することなく 上述した実施例に各種の変更及び変形を加えることができる。In the present invention, without departing from the scope of the present invention as described in the claims. Various changes and modifications can be made to the embodiments described above.

FIG、1 補正書の翻41?、文提出書 (特許法第184条の7第1項) 21X 昭和61年7月14L]FIG.1 Translation of amendment 41? , statement submission form (Article 184-7, Paragraph 1 of the Patent Act) 21X July 14L, 1985]

Claims (1)

【特許請求の範囲】 1)一定圧力の第1地点からより高い圧力の第2地点に固体粒子を転送させる方 法において、(a)少なくとも一組の直立管及び上昇器を配置し、(b)入口を 通して直立管の下端に一定圧力のガスを供給すると共に入口を通して上昇器の下 端に高い圧力のガスを供給し、 (c)固体粒子を上昇器の上端に供給し、(d)固体粒子を直立管の下方に向け て流動できるように直立管内の固体粒子を流動化させ、 (e)直立管と上昇器とを互いに連結する弁機構を通して直立管の下端から上昇 器の下端に固体粒子を転送し、 (f)上昇器の上方に向うガス流により固体粒子を上昇器の上方に向って走行さ せる 工程からなる固体粒子の移送方法。 2)上昇器の上端における固体粒子を第2組の直立管及び上昇器の直立管の上端 に供給させ、工程(c)乃至(f)を備えた特許請求の範囲第1項に記載の方法 。 3)第2組の直立管及び上昇器の直立管と上昇器内の圧力を第1組の直立管及び 上昇器の直立管と上昇器内の圧力より高くさせた特許請求の範囲第2項に記載の 方法。 4)工程(c)において、直立管の下方に向う固体粒子の流れを直立管内の固体 粒子を流動化させる直立管の上方に向うガスの流れに対して逆流にさせた特許請 求の範囲第1項乃至第3項のいずれか1項に記載の方法。 5)工程(c)において、固体粒子をバルク供給ホッパ及び上昇器から直立管の 上端に供給させる特許請求の範囲第1項乃至第4項のいずれか1項に記載の方法 。 6)工程(c)において、弁機構をV型弁、L型弁、J型弁又は他の非機械弁か ら構成した特許請求の範囲第1項乃至第5項のいずれか1項に記載の方法。 7)直立管及び上昇器内の圧力を直立管及び上昇器の上端におけろガス出口と連 結した自動圧力制御器により調整させた特許請求の範囲第1項乃至第6項のいず れか1項に記載の方法。 8)第2組の直立管及び上昇器における直立管と上昇器の上端に備えたガス出口 を第2組の直立管及び上昇器より低圧の先行する第1組の直立管及び上昇器のガ ス入口に連結させた特許請求の範囲第1項乃至第7項のいずれか1項に記載の方 法。 9)一定圧力の第一地点からより高い圧力の第2地点に固体粒子を転送させる装 置において、少なくとも一組の直立管及び上昇器と、固体粒子を直立管の上端に 供給する 供給機構と、 直立管内において固体粒子を流動化させ、直立管の下方に向けて固体粒子を流動 できるようにガスを直立管内に供給する一定圧力のガス源に連結させた直立管の 下端のガス入口と、 直立管の下端から上昇器の下端に固体粒子を転送する弁機構と、 上昇器の上方に向けて固体粒子を走行させる上昇器の上方に向うガス流を生じさ せる高圧力のガス源に連結させた上昇器の下端のガス入口と、 から成る固体粒子の移送装置。 10)上昇器の上端の固体粒子を第2組の直立管及び上昇器における直立管の上 端に供給される特許請求の範囲第9項に記載の装置。 11)第2組の直立管及び上昇器における直立管と上昇器内の圧力を第1組の直 立管及び上昇器における直立管と上昇器内の圧力より高くさせた特許請求の範囲 第10項に記載の装置。 12)直立管の下方に向う固体粒子の流れを直立管内の固体粒子を流動化する直 立管の上方に向うガス流に対して逆流とした特許請求の範囲第9項乃至第11項 のいずれか1項に記載の装置。 13)直立管の上端に固体粒子を供給する供給機構にはバルク供給ホッパと上昇 器とを備えた特許請求の範囲第9項乃至第12項のいずれか1項に記載の装置。 14)弁機構をV型弁、L型弁、J型弁又は他の非機械弁とした特許請求の範囲 第9項乃至第13項のいずれか1項に記載の装置。 15)直立管及び上昇器内の圧力を直立管及び上昇器の上端のガス出口に連結し た自動圧力制御器により調節する特許請求の範囲第9項乃至第14項のいずれか 1項に記載の装置。 16)第2組の直立管及び上昇器の直立管と上昇器の上端に備えたガス出口を第 2組の直立管及び上昇器よりも低圧である先行する第1組の直立管及び上昇器の 直立管と上昇器の入口にそれぞれ連結させた特許請求の範囲第9項乃至第15項 のいずれか1項に記載の装置。 17)添付図面に関して記載した一定圧力の第1地点から高圧の第2地点に固体 粒子を移送する特許請求の範囲第1項に記載の方法。 18)添付図面に関して記載した一定圧力の第1地点から高圧の第2地点に固体 粒子を移送する特許請求の範囲第9項に記載の装置。 19)添付図面に関して記載した大気圧におけるバルク供給ホッパから大気圧以 上の化学反応器に固体粒子を移送する特許請求の範囲第1項に記載の方法。 20)添付図面に関して記載した大気圧以上の化学反応器に固体粒子を供給する 特許請求の範囲第9項に記載の装置。[Claims] 1) A method in which solid particles are transferred from a first point at a constant pressure to a second point at a higher pressure. (a) at least one set of standpipes and risers; (b) an inlet; through the inlet to supply gas at constant pressure to the lower end of the standpipe and the bottom of the riser through the inlet. Supply high pressure gas to the end, (c) feeding the solid particles into the top of the riser; (d) directing the solid particles down the standpipe; to fluidize the solid particles in the standpipe so that they can flow (e) rising from the lower end of the standpipe through a valve mechanism that connects the standpipe and riser to each other; Transfer the solid particles to the bottom end of the vessel; (f) The solid particles are driven upwards in the riser by the gas flow directed upwards in the riser. let A method of transferring solid particles consisting of a process. 2) Transfer the solid particles at the top of the riser to the second set of standpipes and the top of the riser standpipe. The method according to claim 1, comprising steps (c) to (f). . 3) Reduce the pressure in the standpipe and riser of the second set of standpipe and riser to that of the first set of standpipe and riser. Claim 2, wherein the pressure is higher than that in the standpipe of the riser and the pressure inside the riser. Method. 4) In step (c), the flow of solid particles toward the bottom of the standpipe is The patent claims that the flow is reversed to the upward flow of gas in the standpipe that fluidizes the particles. The method according to any one of claims 1 to 3. 5) In step (c), the solid particles are transferred from the bulk feed hopper and riser to the standpipe. The method according to any one of claims 1 to 4, in which the method is supplied to the upper end. . 6) In step (c), the valve mechanism is a V-type valve, L-type valve, J-type valve or other non-mechanical valve. The method according to any one of claims 1 to 5, consisting of: 7) Connect the pressure in the standpipe and riser to the gas outlet at the top of the standpipe and riser. Any one of claims 1 to 6 adjusted by an automatic pressure controller connected to the The method described in item 1. 8) Gas outlet provided at the upper end of the standpipe and riser in the second set of standpipe and riser. the first set of standpipes and risers with lower pressure than the second set of standpipes and risers. The device according to any one of claims 1 to 7, which is connected to the inlet of the device. Law. 9) A device for transferring solid particles from a first point at a constant pressure to a second point at a higher pressure. at least one set of standpipes and risers and solid particles at the upper ends of the standpipes. supply a supply mechanism; Fluidize solid particles in the standpipe and flow the solid particles down the standpipe of a standpipe connected to a constant pressure gas source that supplies gas into the standpipe so that a gas inlet at the bottom end; a valve mechanism for transferring solid particles from the lower end of the standpipe to the lower end of the riser; Creates a gas flow upwards in the riser that drives the solid particles upwards in the riser. a gas inlet at the lower end of the riser connected to a high pressure gas source to A solid particle transfer device consisting of: 10) Transfer the solid particles at the top of the riser to the second set of standpipes and the top of the standpipe in the riser. 10. A device according to claim 9, which is supplied at the end. 11) The pressure inside the standpipe and riser in the second set of standpipe and riser is reduced to that of the first set of standpipe and riser. Claims that the pressure in the standpipe and riser is higher than the pressure inside the standpipe and riser Apparatus according to paragraph 10. 12) Direct the flow of solid particles downwards in the standpipe to fluidize the solid particles in the standpipe. Claims 9 to 11 represent a counterflow to the upward gas flow in the standpipe. The device according to any one of the above. 13) The feeding mechanism that supplies solid particles to the upper end of the standpipe includes a bulk feed hopper and a rising The device according to any one of claims 9 to 12, comprising a container. 14) Claims in which the valve mechanism is a V-type valve, L-type valve, J-type valve or other non-mechanical valve The device according to any one of items 9 to 13. 15) Connect the pressure in the standpipe and riser to the gas outlet at the top of the standpipe and riser. Any one of claims 9 to 14, wherein the pressure is adjusted by an automatic pressure controller. The device according to item 1. 16) Connect the gas outlet provided at the top of the second set of standpipes and risers to the standpipe and riser. of the first set of standpipes and risers which are at a lower pressure than the two sets of standpipes and risers; Claims 9 to 15 connected to the standpipe and the inlet of the riser, respectively. The device according to any one of the above. 17) From a first point at constant pressure to a second point at high pressure as described with reference to the accompanying drawings, solid A method according to claim 1 for transporting particles. 18) From a first point at constant pressure to a second point at high pressure as described with reference to the attached drawings, solid 10. A device according to claim 9 for transporting particles. 19) From the bulk supply hopper at atmospheric pressure as described with respect to the attached drawings, A method as claimed in claim 1, in which solid particles are transferred to the chemical reactor above. 20) Supplying solid particles to a chemical reactor at above atmospheric pressure as described with reference to the attached drawings. Apparatus according to claim 9.
JP50507285A 1984-11-14 1985-11-14 Method and device for transferring solid particles Pending JPS62501410A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU811184 1984-11-14
AU8111 1984-11-14

Publications (1)

Publication Number Publication Date
JPS62501410A true JPS62501410A (en) 1987-06-11

Family

ID=3698773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50507285A Pending JPS62501410A (en) 1984-11-14 1985-11-14 Method and device for transferring solid particles

Country Status (3)

Country Link
EP (1) EP0236320A1 (en)
JP (1) JPS62501410A (en)
WO (1) WO1986002912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029261A (en) * 2003-07-08 2005-02-03 Ishida Co Ltd Product packaging system and product packaging method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090110517A1 (en) * 2007-10-29 2009-04-30 Leon Yuan Catalyst Flow Control Device for Transfer of Solids Between Two Vessels
US7829031B2 (en) * 2007-11-16 2010-11-09 Brunob Ii B.V. Methods and systems for multistage processing of fluidized particulate solids
WO2016209649A1 (en) * 2015-06-24 2016-12-29 Uop Llc Ultra low pressure continuous catalyst transfer without lock hopper

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR953301A (en) * 1946-10-17 1949-12-05 Fuller Co Method and device for handling powdered materials
US2499766A (en) * 1948-11-30 1950-03-07 Lester R Macleod Dust conveying
FR2236758B1 (en) * 1973-07-02 1978-12-29 Pechiney Aluminium
NL7514128A (en) * 1975-12-04 1977-06-07 Shell Int Research METHOD AND EQUIPMENT FOR PARTIAL COMBUSTION OF CARBON POWDER.
AU559450B2 (en) * 1977-05-18 1987-03-12 Aluminium Pechiney A method of self-regulation for a pneumatic conveyor
DE3460520D1 (en) * 1983-02-14 1986-10-02 Shell Int Research Process for transporting particulate material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029261A (en) * 2003-07-08 2005-02-03 Ishida Co Ltd Product packaging system and product packaging method

Also Published As

Publication number Publication date
WO1986002912A1 (en) 1986-05-22
EP0236320A1 (en) 1987-09-16

Similar Documents

Publication Publication Date Title
US7101120B2 (en) Apparatus and method for controlling fluid flows for pneumatic conveying
US5556238A (en) Process and apparatus for introducing a solid into a reactor
US2919159A (en) Pneumatic conveying method and system
EP0202796A2 (en) Apparatus and process for pneumatically conveying particulate material
AU2002242726B2 (en) Process of conveying granular solids
CN104773509B (en) Fluidization parallel connection storehouse pump induction system and method
US5562366A (en) Method and system for fast cycle transport of materials in dense phase
JPS61162425A (en) Flow control type distributor for powdered substance which can be changed into fluid
CA1078893A (en) Transfer pipe system
HU194519B (en) Closed apparatus producing position fluidization for furthering dusty materials
CN201158666Y (en) Multifunctional regulation blowing tank
JPS62501410A (en) Method and device for transferring solid particles
CA1291192C (en) Material conveying apparatus
WO1997027135A1 (en) Dense phase transport
CN210392931U (en) Coke powder blowing and conveying system
US4580927A (en) Pneumatic material transportation apparatus
US3923343A (en) Boast assisted conveying system
US2684929A (en) Method for handling solids material in the conversion of hydrocarbons
US3844446A (en) System for conveying solid particulate materials
CN102648377A (en) Metering system, dense phase conveying system and method for supplying bulk material in powder form
Won et al. Properties of an inclined standpipe for feeding solids into a bubbling fluidized-bed
JPH05229658A (en) Method and device to evacuate solid substance
US5967704A (en) Pneumatic apparatus for conveying a dry granular material
EP0118929B1 (en) Process for transporting particulate material
NZ214191A (en) Transferring solid particles to point of higher pressure