JPS6249936A - Infrared laser reactor - Google Patents

Infrared laser reactor

Info

Publication number
JPS6249936A
JPS6249936A JP18819085A JP18819085A JPS6249936A JP S6249936 A JPS6249936 A JP S6249936A JP 18819085 A JP18819085 A JP 18819085A JP 18819085 A JP18819085 A JP 18819085A JP S6249936 A JPS6249936 A JP S6249936A
Authority
JP
Japan
Prior art keywords
waveguide
laser
infrared
hollow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18819085A
Other languages
Japanese (ja)
Other versions
JPS6344413B2 (en
Inventor
Hiroyuki Kojima
洋之 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP18819085A priority Critical patent/JPS6249936A/en
Publication of JPS6249936A publication Critical patent/JPS6249936A/en
Publication of JPS6344413B2 publication Critical patent/JPS6344413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams

Abstract

PURPOSE:To improve the productivity of isotope sepn. by improving the utilizing efficiency of light. CONSTITUTION:A hollow IR waveguide 3 which is mounted with a cooling jacket 5 and is connected at the other end part 8 thereof to a gaseous raw material circulator 10 via a lead wire 9 is installed in a gas vessel 1. The waveguide 3 is so positioned that the condensed incident IR laser light from a window of a long focus lens 2 for an IR laser provided to the vessel 1 is transmitted in the waveguide. As a result, even the laser of low output is satisfactorily usable and since the economicity of the laser is improved, the total cost of the device is reduced. The cooling of the waveguide 3 only is required and the ratio at which the waveguide 3 occupies in the vessel 1 is small. The economicity of the cooling is thereby improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は赤外レーザーによって化学反応を起させるため
の反応器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reactor for causing a chemical reaction using an infrared laser.

〔従来技術〕[Prior art]

赤外レーザーによる化学反応は、′lCやJO8iの同
位体分離に応用され、従来の化学交換法や電磁法による
分離法にとってかわりつつある。
Chemical reactions using infrared lasers are being applied to the isotopic separation of 'lC and JO8i, and are replacing conventional separation methods using chemical exchange and electromagnetic methods.

かかるレーザーによる同位体分離法の最も重要な問題点
は、生産性を如何にして向上させるかであり、この解決
のため、光源のレーザーや反応系などに種々の工夫がな
されている。
The most important problem with such laser-based isotope separation methods is how to improve productivity, and in order to solve this problem, various improvements have been made to the laser light source, the reaction system, etc.

例えばレーザーとしては、パルスレーザ−が用いられ、
高出力化、高繰返し化 短パルス化への努力が精力的に
行われている。
For example, a pulsed laser is used as the laser,
Efforts are being made to achieve higher output, higher repetition rate, and shorter pulses.

また、反応系では、分離効率が優れた分離作業物質の探
索が進められている。
In addition, in reaction systems, the search for separation work materials with excellent separation efficiency is underway.

これらに比較して、反応器の開発は遅れており、赤外レ
ーザー反応器では反応にエネルギー密度の高い光束を必
要とし、通常のレーザーでは出力が足りないので集光し
なければならない。
Compared to these, the development of reactors has lagged behind, and infrared laser reactors require a beam of light with high energy density for the reaction, and since normal lasers do not have enough power, the light must be focused.

そこで通常では長焦点レンズを用いるか、あるいは更に
その光を反射させている。
Therefore, usually a long focal length lens is used or the light is further reflected.

しかしながら、かかる集光法では光の利用効率が悪く、
相当量の光を無駄にしており、より効率の良い反応器の
出現が要望されていた。
However, such light focusing methods have poor light utilization efficiency;
A considerable amount of light was wasted, and a more efficient reactor was desired.

〔発明の目的〕[Purpose of the invention]

本発明は光の利用効率を高めて同位体分離の生産性を飛
躍的に向上させた赤外レーザー反応器を提供することを
目的とするものである。
An object of the present invention is to provide an infrared laser reactor that dramatically improves the productivity of isotope separation by increasing the efficiency of light utilization.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明の赤外レーザー反応器は、気
体容器に赤外レーザー用長焦点レンズからなる窓を設け
、該レンズの焦点近傍に開口端部が位置するように冷却
ジャケットを有する中空赤外導波管を前記容器内に設置
すると共に、前記中空赤外導波管の他端を前記気体容器
内に設けた原料ガス循環装置に連結したことを特徴とす
るものである。
The infrared laser reactor of the present invention which achieves the above object has a gas container provided with a window consisting of a long focal length lens for infrared laser, and a hollow space provided with a cooling jacket such that the opening end is located near the focal point of the lens. The present invention is characterized in that an infrared waveguide is installed within the container, and the other end of the hollow infrared waveguide is connected to a source gas circulation device provided within the gas container.

以下、図面にもとすき本発明の赤外レーザー反応器の基
本構成を説明する。
The basic configuration of the infrared laser reactor of the present invention will be explained below with reference to the drawings.

第1図において、気体容器1に赤外レーザー用の長焦点
レンズ2の窓が設けられている。
In FIG. 1, a gas container 1 is provided with a window for a long focal length lens 2 for an infrared laser.

ここで気体容器1としては、高真空に耐えるものが用い
られ、予め〜1O−3)−ル以下に排気した後に原料ガ
スが供給され、所定の動作圧に調整される。
Here, as the gas container 1, one that can withstand high vacuum is used, and after being evacuated in advance to below 1 O-3), the raw material gas is supplied and adjusted to a predetermined operating pressure.

動作圧は反応によって異なるが、通常では0.1〜数1
00トールであり、空気の混入による副反応が防止され
る。
The operating pressure varies depending on the reaction, but is usually 0.1 to several 1
00 Torr, which prevents side reactions due to air inclusion.

一般に、気体容器1内が低圧なほど分離係数(後述の式
(2)で示す)が良好になるが、収量が低下するので、
両者を勘案して動作圧が決定される。
In general, the lower the pressure inside the gas container 1, the better the separation coefficient (expressed by equation (2) described below) will be, but the yield will be lower.
The operating pressure is determined by taking both into consideration.

一方、気体容器1内には中空赤外導波管3が設置され、
その開口端部4がレンズ2の焦点近傍に位置している。
On the other hand, a hollow infrared waveguide 3 is installed inside the gas container 1,
The opening end 4 is located near the focal point of the lens 2.

この開口端部4は、赤外レーザーの受光部となる。This open end portion 4 becomes a light receiving portion for an infrared laser.

この結果、焦点に集光した赤外レーザーは開口端部4か
ら中空赤外導波管3内に導かれる。
As a result, the infrared laser focused at the focal point is guided into the hollow infrared waveguide 3 from the open end 4.

ここで中空導波管3としては、赤外レーザーの反射率の
高いガラス管や金属管が適当であり、鉛ガラス、銅やス
テンレス製の導波管は現在入手しやすいので好ましい。
Here, as the hollow waveguide 3, a glass tube or a metal tube with a high reflectivity for infrared laser is suitable, and waveguides made of lead glass, copper, or stainless steel are preferred because they are currently easily available.

導波管3の内径はレーザー出力や反応系の種類に対応し
て選定されるが、通常では数mm程度であり、一方、導
波管の長さは光の利用率を上げるためには長いほど好ま
しく、1〜数m程度が適当である。
The inner diameter of the waveguide 3 is selected depending on the laser output and the type of reaction system, but it is usually about several mm, while the length of the waveguide is long in order to increase the light utilization efficiency. It is more preferable, and about 1 to several meters is appropriate.

また、赤外レーザー光の入射損失を少なくするために、
開口端部4は外方にゆるやかに拡開した円錐状とするの
が好ましく、入射光の受光率を高めことができる。
In addition, in order to reduce the incidence loss of infrared laser light,
It is preferable that the opening end portion 4 has a conical shape that gradually expands outward, so that the light receiving rate of incident light can be increased.

中空赤外導波管3には、冷却ジャケット5が取り付けら
れており、冷媒導入管6および冷媒排出管7が気体容器
1を貫通して設けられている。
A cooling jacket 5 is attached to the hollow infrared waveguide 3, and a refrigerant inlet pipe 6 and a refrigerant discharge pipe 7 are provided to penetrate the gas container 1.

導波管の冷却は冷媒の循環によって行われるが、冷却温
度は原料ガスの蒸気圧が許容できる限り、部ち原料ガス
がガス状で存在しうる限り低温であるほうが同位体の分
離係数(後述の式(2)で示す)を高くすることができ
る。
Cooling of the waveguide is performed by circulating a coolant, and the cooling temperature should be as low as the vapor pressure of the raw material gas allows, in particular as long as the raw material gas can exist in a gaseous state. (shown in equation (2)) can be increased.

中空赤外導波管3の他端部8は、リード管9を介して原
料ガス循環装置10に連結され、この循環装置10の排
出口11は気体容器1内に開口している。
The other end 8 of the hollow infrared waveguide 3 is connected to a source gas circulation device 10 via a lead pipe 9, and an outlet 11 of this circulation device 10 opens into the gas container 1.

原料ガス循環装置10は、低圧中で作動することができ
、かつ反応系を汚染しないものが使用され、例えばダイ
ヤフラムポンプ等を挙げることができる。
The source gas circulation device 10 is one that can operate at low pressure and does not contaminate the reaction system, such as a diaphragm pump.

かかる循環装置10は、気体容器内に供給された原料ガ
スを強制的に導波管内に吸入し、排出させて反応効率を
向上させことができる利点がある。
Such a circulation device 10 has the advantage of being able to forcibly draw the raw material gas supplied into the gas container into the waveguide and discharge it, thereby improving reaction efficiency.

更に気体容器1には、原料ガスを導入するためのガス導
入管12および反応物を排出するためのガス排出管13
がそれぞれ設けられている。
Further, the gas container 1 includes a gas introduction pipe 12 for introducing raw material gas and a gas discharge pipe 13 for discharging reactants.
are provided for each.

次にかかる本発明の赤外レーザー反応器の機能について
述べる。
Next, the functions of the infrared laser reactor of the present invention will be described.

第1図において、レーザー発振器14から発振されたレ
ーザー15は、赤外レーザー用長焦点レンズの窓2によ
って焦点Fの近傍に集光し、開口端部4から中空赤外導
波管3内に導かれ、この導波管内で反射を繰り返しつつ
、他端部9に伝送される。
In FIG. 1, a laser 15 oscillated from a laser oscillator 14 is focused near a focal point F by a window 2 of a long focal length lens for infrared laser, and enters a hollow infrared waveguide 3 from an open end 4. The light is guided and transmitted to the other end 9 while being repeatedly reflected within this waveguide.

一方、気体容器1内にはガス導入管12から原料ガスが
導入され、この原料ガスが中空赤外導波管3内において
赤外レーザーにより化学反応が起る。
On the other hand, a raw material gas is introduced into the gas container 1 from a gas introduction pipe 12, and a chemical reaction occurs with this raw material gas in the hollow infrared waveguide 3 by an infrared laser.

反応物は、ガス排出管13から排出される。The reactants are discharged from the gas discharge pipe 13.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の赤外レーザー反応器は、気体
容器内に中空赤外導波管を設置し、気体容器に設けた赤
外レーザー用長焦点レンズの窓から入射され集光された
赤外レーザー光が中空導波管内を伝送されるようにした
だけなので、構造が極めて簡単である。
As described above, in the infrared laser reactor of the present invention, a hollow infrared waveguide is installed in a gas container, and light is incident and focused through the window of a long focal length lens for infrared laser provided in the gas container. The structure is extremely simple, as the infrared laser beam is simply transmitted through a hollow waveguide.

しかも、集光されたレーザーが中空赤外導波管中を伝導
されるので、高いレーザー密度が持続され、反応収率を
従来の集光法に比較して5〜10倍に向上させることが
できる。
Moreover, since the focused laser is transmitted through a hollow infrared waveguide, high laser density is maintained, and the reaction yield can be improved by 5 to 10 times compared to the conventional focusing method. can.

従来のレーザー光による同位体分離では、生産性を向上
させるために、前記のように主としてレーザー性能の向
上が図られてきた。
In conventional isotope separation using laser light, efforts have been made primarily to improve laser performance, as described above, in order to improve productivity.

しかしながら、高出力化、高繰返し化、短パルス化は技
術上大きな困難を伴い、また実現できたとしてもコスト
高や装置寿命が短くなることを回避できなかった。
However, increasing the output, increasing the repetition rate, and shortening the pulse length are technically difficult, and even if they were achieved, high costs and shortened device life could not be avoided.

これにひきかえ、本発明の中空赤外導波管を利用する反
応器では、低出力のレーザーでも良く、レーザーの経済
性を高めることができるので、装置のトータルコストを
大巾に低減することができる。
In contrast, in the reactor using the hollow infrared waveguide of the present invention, a low-output laser can be used, making it possible to increase the economic efficiency of the laser, thereby significantly reducing the total cost of the device. can.

また、同位体の分離効率に大きな影響を及ぼす冷却にお
いても、中空赤外導波管のみを冷却すれば良く、かつ、
中空赤外導波管が気体容器中に占める比率が小さいので
、冷却の経済性を高めることもできる。
In addition, even in cooling, which has a large effect on isotope separation efficiency, only the hollow infrared waveguide needs to be cooled, and
Since the hollow infrared waveguide occupies a small proportion of the gas container, the economic efficiency of cooling can also be improved.

レーザーを利用した化学反応は、現在では殆ど同位体分
離に限定されているが、今後はその特異性によって高純
度ガスの精製や、金属、セラミックス、超微粒子の合成
等多くの用途が開かれることが期待され、本発明の反応
器はこれらの用途に対しても通用することができる。
Currently, chemical reactions using lasers are mostly limited to isotope separation, but in the future, their uniqueness will open up many applications such as purification of high-purity gases and synthesis of metals, ceramics, and ultrafine particles. are expected, and the reactor of the present invention can be used for these purposes as well.

更に本発明の反応器は、中空赤外導波管の材料を選択す
ることによって、他の波長領域、例えばアルミニウムや
シリコンカーバイド内装の導波管は紫外領域にも通用す
ることができ、その応用範囲の今後の拡大が期待される
Furthermore, the reactor of the present invention can be used in other wavelength ranges by selecting the material of the hollow infrared waveguide, for example, a waveguide with an aluminum or silicon carbide interior can be used in the ultraviolet range, and its application is possible. It is expected that the range will expand in the future.

以下、本発明の実施例を示す。Examples of the present invention will be shown below.

〔実施例〕〔Example〕

第1図に示した反応器を用いて、炭酸ガスパルスレーザ
−による C同位体分離を行った。
Using the reactor shown in FIG. 1, C isotope separation was performed using a carbon dioxide gas pulse laser.

反応器の具体的内容は下記のとおりである。The specific contents of the reactor are as follows.

気体容器の容量、材質・・60に鋼鉄製で上部は蓋にな
っている。
Capacity and material of the gas container: It is made of 60mm steel and has a lid on the top.

窓・・・直径40mm、焦点距離700mmのフッ化バ
リウムレンズ。
Window: Barium fluoride lens with a diameter of 40 mm and a focal length of 700 mm.

中空赤外導波管・・・鉛ガラス製(日本電気ガラス製L
29)、 長さ600mm 、受光部は先端部内径8m m−、後
端部内径IIIIII+の円錐形状で、管外壁がアルミ
ホイルで被覆されて いる。
Hollow infrared waveguide...Made of lead glass (Nippon Electric Glass L)
29), length 600 mm, the light receiving part has a conical shape with an inner diameter of 8 mm at the tip and an inner diameter III+ at the rear end, and the outer wall of the tube is covered with aluminum foil.

冷却ジャケット・・・銅製、エタノールの循環により冷
却 また、中空赤外導波管の後端部は耐圧チューブによって
ダイヤフラムポンプの吸引口に連結されている。
Cooling jacket: Made of copper, cooled by ethanol circulation.The rear end of the hollow infrared waveguide is connected to the suction port of the diaphragm pump by a pressure tube.

レーザーには、横方向大気圧型炭酸ガスパルスレーザ−
(カナダ、Gen tec社製、DD−300)を使用
し、入射エネルギー0.25ジユール/パルス、パルス
巾125ナノ秒、パルス繰り返し10Hzで照射した。
The laser is a lateral atmospheric pressure type carbon dioxide gas pulse laser.
(DD-300, manufactured by Gentec, Canada), and irradiation was performed at an incident energy of 0.25 Joule/pulse, a pulse width of 125 nanoseconds, and a pulse repetition rate of 10 Hz.

原料ガスとしては、ジフルオルモノクロルメタン(CH
F、CI、ダイキン工業製グイフロン22)を用いた。
As the raw material gas, difluoromonochloromethane (CH
F, CI, and Guiflon 22) manufactured by Daikin Industries were used.

このガスの吸収は、C分子(”CHPCI)カ9.3〜
9.4μmにあり、130分子はそれよりも〜0.2μ
m長波長側にある。
The absorption of this gas is caused by C molecules (CHPCI) of 9.3~
9.4 μm, and 130 molecules are ~0.2 μm below that.
It is on the m long wavelength side.

従って、レーザー波長を9.6μm付近に合せて照射す
ると、C分子は式(1)に従って反応し、テトラフルオ
ルエチレンCF工CF、の形で分離濃縮される。
Therefore, when irradiated with a laser wavelength of around 9.6 μm, C molecules react according to formula (1) and are separated and concentrated in the form of tetrafluoroethylene CF.

2 CHP、CI −CP、CF、 + 2 HCI 
  (1)hν(9,6μff1) 生成したC FiCF2の沸点は、−76,3℃であり
、原料CllF2C1の−40,8℃と大きく異なるの
で、蒸留によって分離することができる。
2 CHP, CI-CP, CF, + 2 HCI
(1) hv(9,6μff1) The boiling point of the produced C FiCF2 is -76.3°C, which is significantly different from -40.8°C of the raw material CllF2C1, so it can be separated by distillation.

この実施例では、収量は直接ガスクロマトグラフを定量
し、分離係数は質量分析器で測定した。
In this example, the yield was determined directly by gas chromatography and the separation factor was determined by mass spectrometry.

ここで分離係数βは下記式(2)で定義される。Here, the separation coefficient β is defined by the following equation (2).

β= C13C/”C)濃縮後/ (”C/”C)濃縮
前  (2)炭酸ガスレーザーの発振線を9P (22
)線(波長9.57μm)から9P (30)線(波長
9.64μm)まで変えて照射したときの収量と、分離
係数を測定した結果を第2図AおよびBに示した。
β= C13C/”C) After concentration/(”C/”C) Before concentration (2) The oscillation line of the carbon dioxide laser is 9P (22
) line (wavelength: 9.57 μm) to 9P (30) line (wavelength: 9.64 μm) and measured the yield and separation coefficient. The results are shown in FIGS. 2A and B.

即ち、気体容器にCHF、CI、50トールを封入し、
上記の波長で0.25ジユール/パルスのエネルギーで
10Hz、 10分間照射した。
That is, CHF, CI, and 50 Torr are sealed in a gas container,
Irradiation was performed at 10 Hz for 10 minutes at the above wavelength and an energy of 0.25 Joule/pulse.

このときの導波管温度は一16℃であった。The waveguide temperature at this time was -16°C.

第2図Aは導波管のある場合を、第2図Bは導波管を取
外して集光させた場合をそれぞれ示しており、9P (
2B)線(波長9.62μm)の照射では分離係数60
でcpユCF2の収量が導波管のない場合に比較して1
0倍以上になっている。
Figure 2A shows the case with a waveguide, and Figure 2B shows the case where the waveguide is removed and focused.
2B) When irradiated with radiation (wavelength 9.62 μm), the separation factor is 60.
The yield of CP-YCF2 is 1 compared to the case without waveguide.
It is more than 0 times.

分離係数は、レーザー光のエネルギー密度やホモジニテ
ィーを上げれば更に向上すると考えられる。
It is thought that the separation coefficient can be further improved by increasing the energy density and homogeneity of the laser beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外レーザー反応器の基本構成を示す
図、第2図Aは本発明の反応器におけるCF、CF2の
収量と分離係数との関係を示す図、第2図Bは本発明の
反応器から中空赤外導波管を取り外した場合のcp□C
F、の収量と分離係数との関係を示す図である。 l・−気体容器、2−赤外レーザー用の長焦点レンズ、
3−・中空赤外導波管、4−・−開口端部、5−冷却ジ
ャケット、10−・−原料ガス循環装置。 特許出願人  工業技術院長   等々力   達指定
代理人  工業技術院大阪工業技術試験所長速水諒三 第2図A CO,レーザー発振線 第2図B CO,レーザー発振線
Figure 1 is a diagram showing the basic configuration of the infrared laser reactor of the present invention, Figure 2A is a diagram showing the relationship between the yield of CF and CF2 and the separation coefficient in the reactor of the present invention, and Figure 2B is a diagram showing the relationship between the yield and separation coefficient of CF and CF2 in the reactor of the present invention. cp□C when the hollow infrared waveguide is removed from the reactor of the present invention
It is a figure showing the relationship between the yield of F. and the separation coefficient. l・-gas container, 2-long focus lens for infrared laser,
3-.Hollow infrared waveguide, 4-.-Open end, 5-cooling jacket, 10-.-Source gas circulation device. Patent applicant Tatsu Todoroki, Director of the Agency of Industrial Science and Technology Designated agent Ryozo Hayami, Director of the Osaka Industrial Technology Research Institute, Agency of Industrial Science and Technology Figure 2 A CO, Laser oscillation line Figure 2 B CO, Laser oscillation line

Claims (1)

【特許請求の範囲】[Claims] 気体容器に赤外レーザー用長焦点レンズからなる窓を設
け、該レンズの焦点近傍に開口端部が位置するように冷
却ジャケットを有する中空赤外導波管を前記容器内に設
置すると共に、前記中空赤外導波管の他端を前記気体容
器内に設けた原料ガス循環装置に連結したことを特徴と
する赤外レーザー反応器。
A window made of a long focal length lens for infrared laser is provided in the gas container, and a hollow infrared waveguide having a cooling jacket is installed in the container so that the open end is located near the focal point of the lens, and the An infrared laser reactor, characterized in that the other end of the hollow infrared waveguide is connected to a source gas circulation device provided in the gas container.
JP18819085A 1985-08-26 1985-08-26 Infrared laser reactor Granted JPS6249936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18819085A JPS6249936A (en) 1985-08-26 1985-08-26 Infrared laser reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18819085A JPS6249936A (en) 1985-08-26 1985-08-26 Infrared laser reactor

Publications (2)

Publication Number Publication Date
JPS6249936A true JPS6249936A (en) 1987-03-04
JPS6344413B2 JPS6344413B2 (en) 1988-09-05

Family

ID=16219340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18819085A Granted JPS6249936A (en) 1985-08-26 1985-08-26 Infrared laser reactor

Country Status (1)

Country Link
JP (1) JPS6249936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508287A (en) * 2018-07-23 2021-03-04 エルジー・ケム・リミテッド Nanoparticle synthesizer and nanoparticle synthesis method using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508287A (en) * 2018-07-23 2021-03-04 エルジー・ケム・リミテッド Nanoparticle synthesizer and nanoparticle synthesis method using it

Also Published As

Publication number Publication date
JPS6344413B2 (en) 1988-09-05

Similar Documents

Publication Publication Date Title
WO2006100941A1 (en) Solar light pumped laser and cooling system of solar light pumped laser
CN103928824A (en) Heat-pipe-type alkali-metal vapor laser device
JP5632770B2 (en) Photochemical reaction apparatus and isotope enrichment method using photochemical reaction apparatus
JPS6249936A (en) Infrared laser reactor
Plant et al. New optically pumped far-infrared lasers
US5114661A (en) Solid state laser media driven by remote nuclear powered fluorescence
US4193855A (en) Isotope separation by multiphoton dissociation of methylamine with an infrared laser
US5323413A (en) Apparatus for the laser dissociation of molecules
CN220605198U (en) Vacuum ultraviolet laser generating device with adjustable focal position
US3858051A (en) Photo-chemical reaction apparatus
US6445134B1 (en) Inner/outer coaxial tube arrangement for a plasma pinch chamber
US4202741A (en) Enrichment of nitrogen isotopes by induced isomerization of isocyanides
JPH02260589A (en) Optical waveguide type infrared raman laser
JPS59194425A (en) Photochemical vapor phase film forming apparatus
JP3187329B2 (en) Free electron laser isotope separator
RU2089980C1 (en) Solar-pumped laser
JPH02251227A (en) Reaction tube for isotope separation by laser
CN100556512C (en) A kind of method of separation of uranium isotope
Garbuny et al. Laser engines operating by resonance absorption
Misra et al. Laser Induced Fluorescence Spectroscopy of the Hydroxyl Radical
JP2013123704A (en) Photochemical reactor
FUNATSU et al. Study of solar pumped laser for fossil-fuel-free energy cycle using magnesium
CN117353136A (en) Vacuum ultraviolet laser generating device and method with adjustable focal position
Martino et al. Near-to far-infrared tunable Raman laser
RU2484280C1 (en) Method for organisation of working process in laser rocket engine, and laser rocket engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term