JPS6249366B2 - - Google Patents

Info

Publication number
JPS6249366B2
JPS6249366B2 JP57112233A JP11223382A JPS6249366B2 JP S6249366 B2 JPS6249366 B2 JP S6249366B2 JP 57112233 A JP57112233 A JP 57112233A JP 11223382 A JP11223382 A JP 11223382A JP S6249366 B2 JPS6249366 B2 JP S6249366B2
Authority
JP
Japan
Prior art keywords
main component
solvent
mixture containing
asphalt
pentane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57112233A
Other languages
Japanese (ja)
Other versions
JPS591725A (en
Inventor
Hayamizu Ito
Naoyuki Kawamata
Masao Hayashidani
Tsugio Myagawa
Hideo Isozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK, Kawasaki Steel Corp filed Critical Kawasaki Jukogyo KK
Priority to JP11223382A priority Critical patent/JPS591725A/en
Publication of JPS591725A publication Critical patent/JPS591725A/en
Publication of JPS6249366B2 publication Critical patent/JPS6249366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Working-Up Tar And Pitch (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ブタンもしくはブタンを主成分とす
る混合物、ペンタンもしくはペンタンを主成分と
する混合物または/およびヘキサンもしくはヘキ
サンを主成分とする混合物を溶剤として減圧残油
を溶剤抽出して得たアスフアルテン、レジン分を
主成分とする脱れきアスフアルトを出発原料と
し、熱改質することによつてベンゼン不溶分
(BI)50%以上、好ましくは70%程度の熱改質ア
スフアルトを得、この熱改質アスフアルトを炭素
繊維または黒鉛繊維(以下、単に炭素繊維と記
す)を製造するための新規な原料とする炭素繊維
の製造方法に関するものである。 〔従来の技術〕 従来から、炭素繊維の製造方法としてセレロー
ズ繊維、アクリルニトリル系繊維などを原料とす
る方法があるが、このような方法では原料が高価
であり、大量生産に適しないという不都合点があ
つた。またこれを改善する方法として、原油、コ
ールピツチなどの炭化水素化合物を熱分解、熱処
理し、さらに触媒を用いて水素化処理を行つて得
たピツチ状物質を原料とする方法がある。 〔発明が解決しようとする問題点〕 しかしながら、このような方法では処理工程が
複雑となり、触媒や水素を使用するなど高価な原
料になるという不都合があつた。 本発明は上記の諸点を解消するために、減圧残
油および溶剤脱れきアスフアルトなどの石油系重
質油が過剰供給になりつつある点に着目してなさ
れたもので、溶剤脱れきアスフアルトなどの石油
系重質油を、必要に応じて過酸化水素、酸素、空
気、オゾンなどの酸化剤を用いて酸化した後、常
圧〜10Kg/cm2Gの圧力下で、350〜420℃、0.5〜
8時間熱改質を行い、ベンゼン不溶分を50%以上
含む熱改質アスフアルトを得、この熱改質アスフ
アルトを溶融紡糸により成型した後、不溶融化処
理および焼成処理を施すことにより、低コストで
大量生産するのに適した炭素繊維の製造方法の提
供を目的とするものである。 〔問題点を解決するための手段および作用〕 本願の第1の発明の炭素繊維の製造方法は、ブ
タンもしくはブタンを主成分とする混合物、ペン
タンもしくはペンタンを主成分とする混合物また
は/およびヘキサンもしくはヘキサンを主成分と
する混合物を溶剤として減圧残油を溶剤抽出して
得たアスフアルテン、レジン分を主成分とする溶
剤脱れきアスフアルトなどの石油系重質油を常圧
〜10Kg/cm2Gの圧力下で、350〜420℃、0.5〜8
時間熱改質を行い、ベンゼン不溶分を50%以上含
む熱改質アスフアルトを得、この熱改質アスフア
ルトを溶融紡糸により成型した後、不溶融化処理
および焼成処理を施すことを特徴としている。 また本願の第2の発明の炭素繊維の製造方法
は、ブタンもしくはブタンを主成分とする混合
物、ペンタンもしくはペンタンを主成分とする混
合物または/およびヘキサンもしくはヘキサンを
主成分とする混合物を溶剤として減圧残油を溶剤
抽出して得たアスフアルテン、レジン分を主成分
とする溶剤脱れきアスフアルトなどの石油系重質
油を過酸化水素、酸素、空気、オゾンなどの酸化
剤を用いて酸化した後、常圧〜10Kg/cm2Gの圧力
下で、350〜420℃、0.5〜8時間熱改質を行い、
ベンゼン不溶分を50%以上含む熱改質アスフアル
トを得、この熱改質アスフアルトを溶融紡糸によ
り成型した後、不溶融化処理および焼成処理を施
すことを特徴としている。 以下、本発明の構成について詳細に説明する。
減圧残油は原油中の重質成分が濃縮されたもので
あるが、この物質中には軽質のパラフイン系溶剤
に可溶な成分と不溶な成分が存在し、可溶成分は
さらに細かく溶剤分別を行うと、飽和成分、芳香
族成分、樹脂成分などに分別される。これらの構
成成分の割合は、原料油種によつて異なつてお
り、重質原油の減圧残油では、第1表に示すよう
に不溶分であるアスフアルテン量が20%前後を占
めている。なお第1表は、ガツチサラン原油の減
圧残油およびカフジ原油の減圧残油の性状を試験
した結果を示したものである。
[Industrial Application Field] The present invention is directed to the use of butane or a mixture containing butane as a main component, pentane or a mixture containing pentane as a main component, and/or hexane or a mixture containing hexane as a main component as a solvent, and vacuum residual oil as a solvent. The asphaltene obtained by extraction and deasphalt mainly composed of resin are used as starting materials and thermally modified to produce thermally modified asphalt with a benzene insoluble content (BI) of 50% or more, preferably about 70%. The present invention relates to a method for producing carbon fiber, using this thermally modified asphalt as a new raw material for producing carbon fiber or graphite fiber (hereinafter simply referred to as carbon fiber). [Prior Art] Traditionally, carbon fibers have been manufactured by using Celerose fibers, acrylonitrile fibers, etc. as raw materials, but these methods have the disadvantage that the raw materials are expensive and are not suitable for mass production. It was hot. In addition, as a method to improve this, there is a method in which a pitch-like material obtained by thermally decomposing and heat-treating a hydrocarbon compound such as crude oil or coal pitch, and then hydrogenating it using a catalyst is used as a raw material. [Problems to be Solved by the Invention] However, this method has disadvantages in that the processing steps are complicated and expensive raw materials such as catalysts and hydrogen are used. In order to solve the above-mentioned problems, the present invention was made by paying attention to the fact that petroleum-based heavy oils such as vacuum residual oil and solvent-deasphalted asphalt are becoming oversupplied. After oxidizing petroleum-based heavy oil using an oxidizing agent such as hydrogen peroxide, oxygen, air, or ozone as necessary, it is oxidized at 350 to 420°C under a pressure of normal pressure to 10 Kg/cm 2 G, 0.5 ~
Thermal modification is carried out for 8 hours to obtain thermally modified asphalt containing 50% or more of benzene insoluble matter, and this thermally modified asphalt is formed by melt spinning and then subjected to infusibility treatment and firing treatment to achieve low cost. The purpose of this invention is to provide a method for manufacturing carbon fiber suitable for mass production. [Means and effects for solving the problem] The method for producing carbon fiber according to the first invention of the present application includes butane or a mixture containing butane as a main component, pentane or a mixture containing pentane as a main component, and/or hexane or Petroleum-based heavy oils such as asphaltene obtained by solvent extraction of vacuum residual oil using a mixture mainly composed of hexane and solvent-deasphalted asphalt mainly composed of resin are extracted at normal pressure to 10 kg/cm 2 G. Under pressure, 350~420℃, 0.5~8
It is characterized by performing thermal modification for a period of time to obtain thermally modified asphalt containing 50% or more of benzene insoluble matter, molding this thermally modified asphalt by melt spinning, and then subjecting it to infusibility treatment and firing treatment. In addition, the method for producing carbon fiber according to the second invention of the present application uses butane or a mixture containing butane as a main component, pentane or a mixture containing pentane as a main component, and/or hexane or a mixture containing hexane as a main component as a solvent under reduced pressure. After oxidizing petroleum-based heavy oils such as asphaltene obtained by solvent extraction of residual oil and solvent-deasphalted asphalt whose main component is resin using an oxidizing agent such as hydrogen peroxide, oxygen, air, or ozone, Thermal modification is performed at 350 to 420°C for 0.5 to 8 hours under a pressure of normal pressure to 10 Kg/cm 2 G,
The method is characterized by obtaining heat-modified asphalt containing 50% or more of benzene-insoluble matter, molding this heat-modified asphalt by melt spinning, and then subjecting it to infusibility treatment and firing treatment. Hereinafter, the configuration of the present invention will be explained in detail.
Vacuum residue is a concentrate of heavy components in crude oil, but this substance contains components that are soluble in light paraffinic solvents and components that are insoluble in light paraffinic solvents, and the soluble components are further finely separated into solvents. When this is done, it is separated into saturated components, aromatic components, resin components, etc. The proportions of these components vary depending on the type of raw oil, and as shown in Table 1, in the vacuum residue of heavy crude oil, the amount of asphaltene, which is an insoluble content, accounts for around 20%. Table 1 shows the results of testing the properties of the vacuum residue of Gatsuchi Saran crude oil and the vacuum residue of Khafji crude oil.

【表】 本発明における出発原料である脱れきアスフア
ルトの特徴は、溶剤抽出による前処理操作で上記
可溶成分であり炭素繊維の製造には寄与しないペ
トローレン(またはマルテン)をできるだけ除去
したアスフアルトにあり、種々検討を加えた結
果、ブタン、ペンタン、ヘキサンまたはこれらを
主成分とする溶剤で減圧残油を溶剤抽出すること
が、脱れき油の得率をできるだけ高め、かつ炭素
繊維の製造に適した脱れきアスフアルトを得る方
法として最も適当であることを知見した。また研
究の結果、溶剤抽出操作において可溶成分の1つ
である樹脂成分まで脱れきアスフアルトから分離
することは可能であるが、樹脂成分は官能基を含
み化学活性の高い成分であるため、温和な条件で
溶剤不溶分(アスフアルテン)となつて炭素繊維
の性状の向上に寄与するので、炭素繊維原料とし
て有用であることがわかつた。したがつて、樹脂
成分の残存した脱れきアスフアルトでも原料とし
て用いることが可能となり、溶剤脱れきプロセス
での操作条件として広い範囲にわたる抽出条件を
採用できることがわかつた(第2表参照)。なお
第2表は、ガツチサラン原油の減圧残油のペンタ
ン脱れきアスフアルトおよびカフジ原油の減圧残
油のペンタン脱れきアスフアルトの性状を試験し
た結果を示したものである。
[Table] The characteristic feature of the deasphalt, which is the starting material in the present invention, is that the asphalt has been pretreated by solvent extraction to remove as much of the petrolene (or malten), which is a soluble component and does not contribute to the production of carbon fibers, as much as possible. As a result of various studies, it was found that solvent extraction of vacuum residual oil using butane, pentane, hexane, or a solvent containing these as the main components would maximize the yield of deasphalted oil and be suitable for the production of carbon fiber. It was found that this is the most suitable method for obtaining deasphalted asphalt. Research has also shown that it is possible to separate the resin component, which is one of the soluble components, from deasphalted asphalt in a solvent extraction operation, but since the resin component contains functional groups and is highly chemically active, it is possible to separate the resin component from deasphalted asphalt. It was found that it is useful as a raw material for carbon fibers because it becomes a solvent-insoluble component (asphaltene) under such conditions and contributes to improving the properties of carbon fibers. Therefore, it has become possible to use deasphalted asphalt with residual resin components as a raw material, and it has been found that a wide range of extraction conditions can be adopted as operating conditions in the solvent deasphalt process (see Table 2). Table 2 shows the results of testing the properties of pentane-deasphalted asphalt from the vacuum residue of Gatchisaran crude oil and pentane-deasphalt asphalt from the vacuum residue of Khafji crude oil.

【表】【table】

【表】 一方、ペンタン脱れきアスフアルト、カフジ減
圧残油、コールタールピツチ、ナフサタールピツ
チについて、熱改質過程における固形分収率と揮
発分量との関係を試験して得た結果を図示する
と、第1図のような曲線が得られる。第1図から
脱れきアスフアルトは、コークス原料として良質
なコールタールピツチとその熱改質過程が類似し
ていることがわかつた。また熱改質による重縮合
反応の1つの目安となるキノリン不溶分の生成反
応における活性化エネルギを、各種の原料につい
て比較すると第3表のようになる。
[Table] On the other hand, the results obtained by testing the relationship between solid content yield and volatile content in the thermal reforming process for pentane deasphalt asphalt, Kafji vacuum residual oil, coal tar pitch, and naphsa tar pitch are shown below. A curve as shown in FIG. 1 is obtained. From Fig. 1, it was found that the thermal reforming process of asphalt is similar to that of coal tar pitch, which is a good coke raw material. Furthermore, Table 3 shows a comparison of the activation energy in the reaction for producing quinoline insoluble matter, which is one measure of the polycondensation reaction by thermal modification, for various raw materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法によれば、
ブタン、ペンタン、ヘキサンまたはこれらを主成
分とする混合物を溶剤とする脱れきアスフアルト
を原料とすることによつて、温和な反応条件で容
易に重縮合反応を進め、良質の炭素繊維原料を製
造することが可能である。製造プロセスとしてみ
れば、従来のピツチを原料とする技術に比較して
格段に運転操作範囲が広くとれ、安定性および経
済性の高いより省エネルギ的プロセスであるとと
もに、製造された炭素繊維は従来のものに比較し
て良好な特性を付与され、きわめて有用性の高い
ものである。 〔実施例〕 以下、本発明の実施例について説明する。 実施例 1 ペンタン脱れきアスフアルト(ガツチサラン)
100gを0.5オートクレーブに仕込み、0.5Nl/
minの流量でN2ガスを流しつつ5℃/minの速度
で400℃まで昇温し2時間熱処理して芳香族性の
高いピツチ状物質(軟化点250℃)を得た。この
生成物を押出し式溶融紡糸法で繊維状に成型した
後、不融化のために空気中で1〜2℃/minの速
度で250℃まで昇温し、その温度で30分間保つた
後、N2ガス中で10℃/minの速度で1100℃まで昇
温して炭化した。得られた炭素繊維の直径は7〜
12μ、強度は11〜13t/cm2、伸度は1〜1.5%であ
り、炭素収率は約93%であつた。 実施例 2 カフジ原油減圧残油から溶剤としてペンタンを
用いて得た脱れきアスフアルトを60メツシユ以下
に粉砕した後、撹拌機および還流冷却管を備えた
1丸底フラスコに120g秤量し、過酸化水素
(30%水溶液)200gと酢酸200gを室温で混合撹
拌してスラリー化した。その後、フラスコ内容物
を撹拌しながらマントルヒーターで100℃まで昇
温した。反応中フラスコ内容物は沸騰状態になる
が、発生蒸気は還流冷却管で濃縮し、フラスコ内
に戻した。反応は1時間で完結した。反応終了
後、水洗し110℃にて3時間乾燥して芳香族性の
高いピツチ状酸化物を得た。こうして得られた酸
化試料を100g採取し、撹拌機付ステンレス製0.5
オートクレーブに仕込み、0.5/minの流速
でN2ガスをパージしながら390℃で2時間熱処理
を行つた。この生成物を押出し式溶融紡糸法で繊
維状に成型した後、10℃/minの速度で1000℃ま
で昇温し炭化処理を行つた。得られた炭素繊維の
直径は7〜10μ、強度は9〜12t/cm2、伸度は0.7
〜1.1%であつた。 実施例 3 カフジ原油減圧残油から溶剤としてペンタンを
用いて得た脱れきアスフアルトを原料とし、処理
能力1.5Kg/hrの連続式高温(350〜420℃)ニー
ダー型熱処理装置に毎時1.2Kg供給し、熱処理温
度400℃、平均滞留時間2時間、ニーダーの回転
数45rpmで連続的に熱処理を行い、ベンゼン不溶
分45%、軟化点268℃の芳香族性の高いピツチ状
物質を得た。これを押出し式溶融紡糸法で繊維状
に成型した後、空気中で0.5〜1℃/minの速度
で260℃まで昇温して酸化処理を施すことによつ
て不融化し、さらに常法により1100℃まで加熱し
て炭化した。得られた炭素繊維の直径は10〜15
μ、強度は10〜11t/cm2、伸度は0.7〜1.2%であ
つた。
As explained above, according to the method of the present invention,
By using deasphalted asphalt using butane, pentane, hexane, or a mixture containing these as the main components as a raw material, the polycondensation reaction can easily proceed under mild reaction conditions to produce high-quality carbon fiber raw materials. Is possible. In terms of the manufacturing process, compared to the conventional technology that uses pitch as a raw material, it has a much wider range of operation, is more stable, more economical, and is a more energy-saving process. It has better properties than those of the conventional method and is extremely useful. [Examples] Examples of the present invention will be described below. Example 1 Pentane deasphalt (Gatsuchi Saran)
Pour 100g into a 0.5 autoclave and make 0.5Nl/
The mixture was heated to 400°C at a rate of 5°C/min while flowing N 2 gas at a flow rate of 20°C, and heat-treated for 2 hours to obtain a highly aromatic pitch-like substance (softening point: 250°C). This product was formed into a fiber by an extrusion melt-spinning method, and then heated to 250°C at a rate of 1 to 2°C/min in air for infusibility, and kept at that temperature for 30 minutes. Carbonization was carried out by increasing the temperature to 1100°C at a rate of 10°C/min in N 2 gas. The diameter of the obtained carbon fiber is 7~
12μ, strength was 11-13t/cm 2 , elongation was 1-1.5%, and carbon yield was about 93%. Example 2 Deasphalted asphalt obtained from Kafji crude oil vacuum residue using pentane as a solvent was pulverized to 60 mesh or less, and 120 g was weighed into a round bottom flask equipped with a stirrer and a reflux condenser, and hydrogen peroxide was added. (30% aqueous solution) and 200 g of acetic acid were mixed and stirred at room temperature to form a slurry. Thereafter, the temperature of the contents of the flask was raised to 100° C. with a mantle heater while stirring. During the reaction, the contents of the flask came to a boiling state, and the generated vapor was concentrated in a reflux condenser and returned to the flask. The reaction was completed in 1 hour. After the reaction was completed, the mixture was washed with water and dried at 110°C for 3 hours to obtain a highly aromatic pitch-like oxide. 100 g of the oxidation sample obtained in this way was collected, and a stainless steel 0.5
It was placed in an autoclave and heat treated at 390°C for 2 hours while purging with N 2 gas at a flow rate of 0.5/min. This product was formed into a fiber by an extrusion melt spinning method, and then heated to 1000°C at a rate of 10°C/min for carbonization. The diameter of the obtained carbon fiber is 7 to 10 μ, the strength is 9 to 12 t/cm 2 , and the elongation is 0.7.
It was ~1.1%. Example 3 Deasphalted asphalt obtained from Kafji crude oil vacuum residue using pentane as a solvent was used as a raw material, and 1.2 kg/hour was supplied to a continuous high temperature (350-420°C) kneader type heat treatment equipment with a processing capacity of 1.5 kg/hr. Heat treatment was carried out continuously at a heat treatment temperature of 400°C, an average residence time of 2 hours, and a kneader rotation speed of 45 rpm to obtain a highly aromatic pitch-like substance with a benzene insoluble content of 45% and a softening point of 268°C. After forming this into a fiber using an extrusion type melt-spinning method, the temperature is raised to 260°C at a rate of 0.5 to 1°C/min in air to make it infusible by performing an oxidation treatment, and then by a conventional method. It was heated to 1100°C and carbonized. The diameter of the obtained carbon fibers is 10-15
μ, strength was 10 to 11 t/cm 2 , and elongation was 0.7 to 1.2%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は脱れきアスフアルト、減圧残油、コー
ルタールピツチ、ナフサタールピツチについて、
熱改質過程における固形分収率と揮発分量との関
係を示す曲線図、第2図は脱れきアスフアルトを
常圧下で改質した場合のキノリン不溶分量とボタ
ン指数との関係を示す曲線図、第3図は脱れきア
スフアルトを加圧下で改質した場合のキノリン不
溶分量とボタン指数との関係を示す曲線図、第4
図は脱れきアスフアルトおよび減圧残油を熱改質
した場合のベンゼン不溶分量とロガ指数との関係
を示す曲線図、第5図は脱れきアスフアルトにつ
いて酸化処理を行つたときのスルホン化の程度
と、脱水素環化反応の程度を示す指標である芳香
族性指数との関係を示すグラフ、第6図は酸化処
理した脱れきアスフアルトおよび未酸化の脱れき
アスフアルトについて熱改質時における固形分収
率と固形分中に残留する硫黄分との関係を示すグ
ラフ、第7図は酸化処理した脱れきアスフアルト
および未酸化の脱れきアスフアルトについて固形
分収率と固形分中のベンゼン不溶分との関係を示
すグラフ、第8図は酸化処理した脱れきアスフア
ルトおよび未酸化の脱れきアスフアルトについて
固形分収率と固形分中のβレジンとの関係を示す
グラフである。
Figure 1 shows deasphalt, vacuum residual oil, coal tar pitch, and naphtha tar pitch.
A curve diagram showing the relationship between the solid content yield and the amount of volatile matter in the thermal reforming process, Figure 2 is a curve diagram showing the relationship between the amount of quinoline insoluble matter and the Button index when deasphalted asphalt is modified under normal pressure, Figure 3 is a curve diagram showing the relationship between the amount of quinoline insoluble matter and the Button index when deasphalted asphalt is modified under pressure.
The figure is a curve diagram showing the relationship between the benzene insoluble content and the Loga index when deasphalted asphalt and vacuum residual oil are thermally reformed, and Figure 5 shows the degree of sulfonation when deasphalt is subjected to oxidation treatment. , a graph showing the relationship with the aromaticity index, which is an index indicating the degree of dehydrogenation cyclization reaction. Figure 6 shows the solid content yield during thermal reforming for oxidized deasphalt asphalt and unoxidized deasphalt asphalt. Figure 7 shows the relationship between the solid content yield and the benzene insoluble content in the solid content for oxidized deasphalt asphalt and unoxidized deasphalt asphalt. FIG. 8 is a graph showing the relationship between solid content yield and β resin in the solid content for oxidized deasphalt asphalt and unoxidized deasphalt asphalt.

Claims (1)

【特許請求の範囲】 1 ブタンもしくはブタンを主成分とする混合
物、ペンタンもしくはペンタンを主成分とする混
合物または/およびヘキサンもしくはヘキサンを
主成分とする混合物を溶剤として減圧残油を溶剤
抽出して得たアスフアルテン、レジン分を主成分
とする溶剤脱れきアスフアルトなどの石油系重質
油を常圧〜10Kg/cm2Gの圧力下で、350〜420℃、
0.5〜8時間熱改質を行い、ベンゼン不溶分を50
%以上含む熱改質アスフアルトを得、この熱改質
アスフアルトを溶融紡糸により成型した後、不溶
融化処理および焼成処理を施すことを特徴とする
炭素繊維の製造方法。 2 ブタンもしくはブタンを主成分とする混合
物、ペンタンもしくはペンタンを主成分とする混
合物または/およびヘキサンもしくはヘキサンを
主成分とする混合物を溶剤として減圧残油を溶剤
抽出して得たアスフアルテン、レジン分を主成分
とする溶剤脱れきアスフアルトなどの石油系重質
油を過酸化水素、酸素、空気、オゾンなどの酸化
剤を用いて酸化した後、常圧〜10Kg/cm2Gの圧力
下で、350〜420℃、0.5〜8時間熱改質を行い、
ベンゼン不溶分を50%以上含む熱改質アスフアル
トを得、この熱改質アスフアルトを溶融紡糸によ
り成型した後、不溶融化処理および焼成処理を施
すことを特徴とする炭素繊維の製造方法。
[Claims] 1. Obtained by solvent extraction of residual oil under reduced pressure using butane or a mixture containing butane as a main component, pentane or a mixture containing pentane as a main component, and/or hexane or a mixture containing hexane as a main component as a solvent. Petroleum-based heavy oils such as asphaltene and solvent-deasphalted asphalt whose main component is resin are heated at 350 to 420°C under a pressure of normal pressure to 10 kg/cm 2 G.
Thermal modification is performed for 0.5 to 8 hours to remove benzene insoluble matter by 50%.
1. A method for producing carbon fibers, which comprises obtaining heat-modified asphalt containing % or more, molding the heat-modified asphalt by melt spinning, and then subjecting it to infusibility treatment and firing treatment. 2. Asphaltenes and resin components obtained by solvent extraction of vacuum residual oil using butane or a mixture containing butane as a main component, pentane or a mixture containing pentane as a main component, and/or hexane or a mixture containing hexane as a main component as a solvent. After oxidizing petroleum-based heavy oil such as solvent-deasphalted asphalt, which is the main component, using an oxidizing agent such as hydrogen peroxide, oxygen, air, or ozone, it is oxidized under a pressure of normal pressure to 10 kg/cm 2 G to 350 ml. Heat modification was performed at ~420℃ for 0.5 to 8 hours.
A method for producing carbon fibers, which comprises obtaining heat-modified asphalt containing 50% or more of benzene-insoluble matter, molding the heat-modified asphalt by melt spinning, and then subjecting it to infusibility treatment and firing treatment.
JP11223382A 1982-06-28 1982-06-28 Preparation of carbon fiber Granted JPS591725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11223382A JPS591725A (en) 1982-06-28 1982-06-28 Preparation of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223382A JPS591725A (en) 1982-06-28 1982-06-28 Preparation of carbon fiber

Publications (2)

Publication Number Publication Date
JPS591725A JPS591725A (en) 1984-01-07
JPS6249366B2 true JPS6249366B2 (en) 1987-10-19

Family

ID=14581569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223382A Granted JPS591725A (en) 1982-06-28 1982-06-28 Preparation of carbon fiber

Country Status (1)

Country Link
JP (1) JPS591725A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW440606B (en) * 1994-12-22 2001-06-16 Owens Corning Fiberglass Corp Rotary fiberization of asphalt
US5543211A (en) * 1994-12-22 1996-08-06 Owens Corning Fiberglas Technology, Inc. Asphalt fibers
US5494728A (en) * 1994-12-22 1996-02-27 Owens-Corning Fiberglas Technology, Inc. Method for making roofing shingles using asphalt fibers, and shingles made thereby
US5712033A (en) * 1996-08-05 1998-01-27 Owens-Corning Fiberglass Technology, Inc. Asphalt-containing organic fibers
JPH09143475A (en) * 1996-11-11 1997-06-03 Osaka Gas Co Ltd Isotropic pitch
CN102925187A (en) * 2012-11-15 2013-02-13 四川创越炭材料有限公司 Method for continuously producing spinning asphalt
CN107904698B (en) * 2017-11-07 2020-04-17 东华大学 Preparation method of asphalt-based carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946007A (en) * 1972-09-12 1974-05-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946007A (en) * 1972-09-12 1974-05-02

Also Published As

Publication number Publication date
JPS591725A (en) 1984-01-07

Similar Documents

Publication Publication Date Title
US4590055A (en) Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
JPS621990B2 (en)
JP2980619B2 (en) Method of generating mesophase pitch from isotropic pitch
JPS6249366B2 (en)
US4892641A (en) Process for the production of mesophase pitch
US4904371A (en) Process for the production of mesophase pitch
JPS6338074B2 (en)
US4522701A (en) Process for preparing an anisotropic aromatic pitch
US4460455A (en) Process for producing pitch for using as raw material for carbon fibers
JPH0150272B2 (en)
US4414096A (en) Carbon precursor by hydroheat-soaking of steam cracker tar
JPH0148314B2 (en)
JPH0148312B2 (en)
KR100305372B1 (en) Isotropic pitch for producing carbon fiber and its manufacturing method
JPS6030366B2 (en) Manufacturing method for high-strength, high-modulus carbon fiber
JPH0150271B2 (en)
JPH0150275B2 (en)
JPS60106882A (en) Method for refining heavy bituminous substance
JPH0475273B2 (en)
JPH0150273B2 (en)
JPS61215692A (en) Mesophase pitch suitable for high-performance carbon fiber and its production
JPH0144752B2 (en)
JPH0583115B2 (en)
JPH0148313B2 (en)
JPH0148315B2 (en)