JPS6249355B2 - - Google Patents

Info

Publication number
JPS6249355B2
JPS6249355B2 JP56079362A JP7936281A JPS6249355B2 JP S6249355 B2 JPS6249355 B2 JP S6249355B2 JP 56079362 A JP56079362 A JP 56079362A JP 7936281 A JP7936281 A JP 7936281A JP S6249355 B2 JPS6249355 B2 JP S6249355B2
Authority
JP
Japan
Prior art keywords
electrode
electrolytic
current density
current
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56079362A
Other languages
Japanese (ja)
Other versions
JPS57194265A (en
Inventor
Akihiro Tanaka
Kenji Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56079362A priority Critical patent/JPS57194265A/en
Publication of JPS57194265A publication Critical patent/JPS57194265A/en
Publication of JPS6249355B2 publication Critical patent/JPS6249355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、電流効率の高い電解処理方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic treatment method with high current efficiency.

電気分解法は、特定物質の分離・精製或いは廃
水の分解・回収処理等の工業規模のものから、電
気化学的測定法として知られる測定分野に至るま
での広範な部門で実用されている。
Electrolysis methods are put into practice in a wide range of sectors, from industrial-scale separation and purification of specific substances, decomposition and recovery treatment of wastewater, to measurement fields known as electrochemical measurement methods.

第1図は従来の電解法の原理説明図を示すもの
である。
FIG. 1 shows an explanatory diagram of the principle of a conventional electrolytic method.

第1図において、1は電解槽、2は同電解槽1
内に入れられた電解液、3及び4は同電解液2中
に配設された陽極及び陰極、5及び6は同陽極3
及び陰極4に一側がそれぞれ接続されたリード
線、7は同リード線5及び6の他側が接続された
電源である。このような構成において通電するこ
とにより電解処理が行われる。尚、電源7は定電
流或いは定電圧の直流電源であるが、通常の実用
規模での電解では定電流が多く使用される。
In Fig. 1, 1 is an electrolytic cell, and 2 is the same electrolytic cell 1.
3 and 4 are the anode and cathode disposed in the electrolyte 2, 5 and 6 are the anode 3
and lead wires having one side connected to the cathode 4, and 7 a power source to which the other ends of the lead wires 5 and 6 are connected. In such a configuration, electrolytic treatment is performed by supplying electricity. Although the power source 7 is a constant current or constant voltage DC power source, constant current is often used in ordinary practical scale electrolysis.

第2図及び第3図は第1図の原理にもとづいて
従来の電解法で実用されている電解槽の基本的な
電極構成の例である。
FIGS. 2 and 3 are examples of basic electrode configurations of electrolytic cells that are used in conventional electrolytic methods based on the principle shown in FIG. 1.

第2図において、ある一定の有効面積を持つ平
板状の陽極3と陰極4が図中の矢印方向で流入出
する電解液を介して対向している。第2図の変形
として他にも数多くの発明、考案があるが、それ
ら全てが第1図の原理にもとづいたものである。
In FIG. 2, a flat anode 3 and a cathode 4 having a certain effective area face each other with an electrolyte flowing in and out in the direction of the arrow in the figure. There are many other inventions and ideas that are variations on the one shown in Figure 2, but all of them are based on the principle shown in Figure 1.

第3図は他の例として、主陽極3Aと主陰極4
Aの間の図中矢印方向で流入出する電解液部に復
極性の微粒子、例えば炭素粒子を介在させた分散
系電極群Pから成る電解法である。
Figure 3 shows another example of the main anode 3A and the main cathode 4.
This is an electrolysis method consisting of a dispersed electrode group P in which bipolar fine particles, such as carbon particles, are interposed in an electrolytic solution portion flowing in and out in the direction of the arrows in the figure between A.

この方法は電解液中における電極表面積を、他
の従来法の二次元的な考え方から三次元的な考え
方に思考転換を行い、該三次元的な方法により著
しく増大させたものであるが、基本原理は第1図
或いは第2図と同じである。
In this method, the surface area of the electrode in the electrolyte was changed from the two-dimensional concept of other conventional methods to a three-dimensional concept, and the three-dimensional method significantly increased the surface area of the electrode. The principle is the same as that shown in FIG. 1 or 2.

しかし、以上の従来法には次のような欠点があ
る。
However, the above conventional method has the following drawbacks.

一般に、電解反応を行う時に電流効率を良好に
維持するためには、加えた電流が目的とする電極
反応に対して有効に使われるよう工夫すべきであ
る。
Generally, in order to maintain good current efficiency when performing an electrolytic reaction, measures should be taken so that the applied current is effectively used for the intended electrode reaction.

今、第1図において次式のような酸化還元電極
反応が起つている場合、 xO+mX+neyR+zZ ……(1) (Ox+neRed) 電極反応が物質移動に律速されていれば、その一
般式は、電流密度i、反応成分の溶液本体中の濃
度Cm、電極界面の濃度Co及び拡散層厚さδ、反
応成分の拡散定数Dとするとき、次の関係で示さ
れる。
Now, in Figure 1, if a redox electrode reaction is occurring as shown in the following equation, xO + m , the concentration Cm of the reaction component in the solution body, the concentration Co at the electrode interface, the diffusion layer thickness δ, and the diffusion constant D of the reaction component, the following relationship is given.

i=nFD(Cm−Co)/δ ……(2) 但し、nは反応電子数、Fはフアラデー定数で
ある。
i=nFD(Cm-Co)/δ...(2) where n is the number of reaction electrons and F is Faraday's constant.

その場合の限界電流密度ilは、Co=0であるか
ら、 il=nFD(Cm)/δ ……(3) となり、最大の限界電流密度ilは溶液本体中の反
応成分の濃度Cmに依存する。
In that case, the limiting current density il is Co=0, so il=nFD(Cm)/δ...(3), and the maximum limiting current density il depends on the concentration Cm of the reaction component in the solution body. .

しかし、このCmは電解の進行につれて減少す
るものであるから、反応進行中、成分の濃度変化
は電解時間と次のような関係にある。
However, since this Cm decreases as the electrolysis progresses, the change in the concentration of the components during the reaction progresses has the following relationship with the electrolysis time.

Cx=Cm・e-t ……(4) 但し、Cxは時間tにおける反応成分の濃度で
ある。
Cx=Cm・e -t ...(4) However, Cx is the concentration of the reaction component at time t.

ここで、αは電極面積S、処理液量V等の処理
条件によつて定まる因子であり、一般に次式で示
すことができる。
Here, α is a factor determined by processing conditions such as electrode area S and processing liquid amount V, and can generally be expressed by the following equation.

但し、A=0.43・Dγ/δであり、γは電極の
形状に関する係数である。
However, A=0.43·Dγ/δ, and γ is a coefficient related to the shape of the electrode.

以上の関係式は、ある量の被処理液が常に一定
の電極面積Sのもとで設定された条件(例えば定
電流条件)により処理されるため、処理液中の対
象となる反応成分Cxが電解時間tとともに減少
するにも拘わらず、電解電流密度は対象反応成分
の初期濃度Cmの条件のまゝで処理されることを
示す。
The above relational expression shows that since a certain amount of the liquid to be treated is always treated under a set condition (e.g. constant current condition) with a constant electrode area S, the target reaction component Cx in the treatment liquid is Although the electrolysis current density decreases with the electrolysis time t, it is shown that the electrolysis current density is processed under the condition of the initial concentration Cm of the target reaction component.

従つて、従来電解法は本質的に次のような欠点
を有するのである。
Therefore, the conventional electrolytic method essentially has the following drawbacks.

(1) 対象反応成分濃度Cxが減少するにつれて限
界電流密度ilが小さくなるため、電流効率向上
のためには電流密度をそれに応じて小さくする
必要があるが、そうすると処理するのに要する
電解時間tが著しく長くなる。
(1) As the target reaction component concentration Cx decreases, the critical current density il decreases, so in order to improve current efficiency it is necessary to decrease the current density accordingly, but in this case the electrolysis time t required for processing becomes significantly longer.

(2) 一定条件で電解を続けると、電流損失を生
じ、主反応に対する副反応の増大が生じ、処理
末期の収率が悪くなつて電流効率が低下する。
(2) If electrolysis is continued under certain conditions, current loss will occur, side reactions to the main reaction will increase, the yield at the end of the process will deteriorate, and the current efficiency will decrease.

それらの欠点がある故、電解法では希薄濃度の
成分に対しては他の物理的な処理方法に比べ適用
に制限を受けていた。
Because of these drawbacks, the electrolytic method has been limited in its applicability to dilute components compared to other physical treatment methods.

なお、上記(1),(2)の欠点は第4図によつて確か
められた。
The drawbacks of (1) and (2) above were confirmed using FIG. 4.

第4図は定電流電解法によつて処理成分を分解
除去した結果(線A)と、ある目的物質を製品と
して生成させたときの結果(線B)を傾向値で示
すが、実線A,Bで示すようにいずれの場合も処
理時間と共に除去率又は収率が低下する。
Figure 4 shows the results of decomposing and removing treated components by constant current electrolysis (line A) and the results of producing a certain target substance as a product (line B) as trend values. As shown by B, in both cases, the removal rate or yield decreases with increasing treatment time.

本発明は、上記従来電解法の欠点を改善し、よ
り高い電流効率で、しかも処理時間を短縮(すな
わち第4図の点線A′,B′に示すような結果とな
るように)することのできる電解処理方法を提供
するものである。
The present invention improves the drawbacks of the conventional electrolytic method described above, and achieves higher current efficiency and shorter processing time (i.e., results as shown in dotted lines A' and B' in FIG. 4). The present invention provides an electrolytic treatment method that can be used.

すなわち本発明は、被処理液中の対象反応成分
の電解進行による濃度の変化に対応して電解電流
密度と電極面積を変えることにより、常に一定の
電流で電解処理を行うことを特徴とする電解処理
方法に関するものである。
That is, the present invention provides an electrolytic treatment characterized in that electrolytic treatment is always carried out at a constant current by changing the electrolytic current density and electrode area in response to changes in the concentration of the target reaction component in the liquid to be treated due to the progress of electrolysis. This relates to a processing method.

ところで、反応速度(すなわち電流密度)iL
は、前述の(3),(4)式より、 iL=nFD/δ・Cm・e-t ……(6) となり、また電極面積をSとしたときの全電解電
流Iは、 I=iLS=K1・Cm・e-t・S ……(7) (但し、K1=nFD/δ) となる。この(6),(7)式より明らかなように電解電
流Iは時間とともに指数凾数的に減少し、反応速
度iLは低下する。
By the way, the reaction rate (i.e. current density) i L
From equations (3) and (4) above, i L = nFD/δ・Cm・e -t ...(6), and when the electrode area is S, the total electrolytic current I is =i L S=K 1・Cm・e -t・S ...(7) (However, K 1 =nFD/δ). As is clear from equations (6) and (7), the electrolytic current I decreases exponentially with time, and the reaction rate i L decreases.

そこで、電極面積Sを時間とともに S=K2e〓t ……(8) 但し、K2は常数で、理想的にはK2=1である
が、電流効率が電流密度によつて必ずしも一定で
なく、従つてK2も実状に応じて決定される。) のように増加すれば、全電解電流Iは、 I=K1・Cm・e-t・K2・e〓t ……(9) となり、初期濃度Cmに対応した電流Iによつ
て、反応時間Tは、 T=nFCmV/Wg・I ……(10) (但し、Wgは反応成分の原子量である。) で示される。
Therefore, the electrode area S is changed over time as follows: S=K 2 e〓 t ...(8) However, K 2 is a constant, and ideally K 2 = 1, but the current efficiency is not necessarily constant depending on the current density. Therefore, K 2 is also determined depending on the actual situation. ), the total electrolytic current I becomes I=K 1・Cm・e -t・K 2・e〓 t ...(9), and the current I corresponding to the initial concentration Cm , the reaction time T is expressed as: T=nFCmV/Wg ·I (10) (where Wg is the atomic weight of the reaction component).

例えば濃厚液の場合、通常は限界電流密度ilま
で高めた状態での電解操作を行うのはまれで、適
当な電流密度が電流効率、反応時間、電解装置コ
ストから選ばれる。電解が進んで対象成分濃度が
希薄になると物質移動律速になるので、電流密度
を下げる必要がある。しかし、それでは反応速度
が落ちるので、電極面積Sをそれに応じて増加さ
せる必要がある。理想的には前記したようにS=
e〓tの指数凾数となるが、 S=αt1→αt2→αt3……αto と段階状に変えても充分目的を達成することがで
きる。
For example, in the case of concentrated liquids, it is rare to carry out electrolysis operation with the current density increased to the critical current density il, and an appropriate current density is selected based on current efficiency, reaction time, and electrolyzer cost. As electrolysis progresses and the target component concentration becomes dilute, mass transfer becomes rate-limiting, so it is necessary to lower the current density. However, since this reduces the reaction rate, it is necessary to increase the electrode area S accordingly. Ideally, as mentioned above, S=
Although e= is an exponential function of t , the purpose can be sufficiently achieved even if it is changed stepwise as S = αt 1 → αt 2 → αt 3 ...αt o .

なお、本発明は濃厚液に限らず、濃厚液から希
薄液まで高い電流効率と高い反応速度の処理を行
うことができる。
Note that the present invention is not limited to concentrated liquids, and can process from concentrated liquids to dilute liquids with high current efficiency and high reaction rate.

以下、添付図面を参照して本発明方法の具体的
な操作態様を説明する。
Hereinafter, specific operational aspects of the method of the present invention will be explained with reference to the accompanying drawings.

第5図A,Bは本発明方法を実施する際に使用
される電解槽の一例を示すもので、第5図Aは縦
断側面図、第5図Bは第5図AのV−V線断面矢
視図である。
FIGS. 5A and 5B show an example of an electrolytic cell used in carrying out the method of the present invention, FIG. FIG.

第5図A,Bのものは金属電極板を11a,1
1b,11c,11dと4枚電解槽に収納したも
ので、12,12,12はプラスチツク側
板を示す。電極板11a,11b,11c,11
dは、面積Sa,Sb,Sc,Sdが電解液入口13か
ら出口14に向つて順次大きくなつており、絶縁
板を兼ねたプラスチツク支持板15で電解槽内に
支持されている。電解液は支持板15の途中にあ
けられた小穴16を通つて流れるようになつてい
る。
The ones in Figure 5 A and B have metal electrode plates 11a and 1.
Four plates 1b, 11c, and 11d are housed in an electrolytic cell, and 12 1 , 12 2 , and 12 3 indicate plastic side plates. Electrode plates 11a, 11b, 11c, 11
d has areas Sa, Sb, Sc, and Sd that increase successively from the electrolyte inlet 13 toward the outlet 14, and is supported in the electrolytic cell by a plastic support plate 15 that also serves as an insulating plate. The electrolytic solution is designed to flow through a small hole 16 formed in the middle of the support plate 15.

第5図A,Bに示すものは、電解室が3室より
なるものであるが、必要に応じて第5図A,Bに
示す要領で電解室を増減できる。
The apparatus shown in FIGS. 5A and 5B has three electrolytic chambers, but the number of electrolytic chambers can be increased or decreased as required as shown in FIGS. 5A and 5B.

このような装置で電極板11a〜11dの外側
から通電すれば、陽・陰極電流密度は、それぞれ 陽極電流密度ia ia1=I/Sa,ia2=I/Sb, ia3=I/Sc 陰極電流密度ic ic1=I/Sb,ic2=I/Sc, ic3=I/Sd と次第に小さくなるが、全電流はIであり、電極
板11a,11b間で低下した濃度に相当する電
流と、最適な電流密度を保持できることになる。
If current is applied from the outside of the electrode plates 11a to 11d in such a device, the anode and cathode current densities are respectively anode current density ia ia 1 = I/Sa, ia 2 = I/Sb, ia 3 = I/Sc cathode The current density ic ic 1 = I/Sb, ic 2 = I/Sc, ic 3 = I/Sd gradually decreases, but the total current is I, which corresponds to the concentration reduced between the electrode plates 11a and 11b. This means that the optimum current density can be maintained.

この電極板11a〜11dの面積Sa〜Sdの変
化または電流密度ia1〜ia3,ic1〜ic3の変化は、電
解槽の幾何学的構造を変えることによつてどのよ
うにでも変えることができ、電解系の特性によつ
て任意に選べばよい。
The changes in the areas Sa to Sd of the electrode plates 11a to 11d or the current densities ia 1 to ia 3 and ic 1 to ic 3 can be changed in any way by changing the geometrical structure of the electrolytic cell. can be selected arbitrarily depending on the characteristics of the electrolytic system.

第6,7図は電解槽の他の例を示すもので、第
6図は円錐形電解槽、第7図は球形電解槽であ
る。
6 and 7 show other examples of electrolytic cells, FIG. 6 being a conical electrolytic cell and FIG. 7 being a spherical electrolytic cell.

第6図において、第1番目の電極11を半径
r1、第n番目の電極11nを半径rnとし、電極1
と電極11n間の距離をln、この円錐の頂点
と電極11間の距離をl1とすると、 rn:(l1+ln)=r1:l1 rn=r(l+ln)/l ……(11) となり、電極11nの面積Snは Sn=〔r(l+ln)/lπ……(12) で表わせるから、電流密度は となる。
In FIG. 6, the radius of the first electrode 111 is
r 1 , the nth electrode 11n is the radius rn, and the electrode 1
If the distance between 1 1 and electrode 11n is ln, and the distance between the apex of this cone and electrode 11 1 is l 1 , then rn: (l 1 + ln) = r 1 : l 1 rn = r 1 (l 1 + ln) /l 1 ...(11), and the area Sn of the electrode 11n can be expressed as Sn=[r 1 (l 1 +ln)/l 1 ] 2 π...(12), so the current density is becomes.

また、第7図のものは、中央の半球電極11
を同心球として構成されたもので、中央の半球電
極11の表面積S1は S1=2πr〓 であり、第n番目の半球電極11nの表面積Sn
は Sn=2πr〓 であり、電流密度は中心からの距離rnの2乗に反
比例して in=1…n=I/2πr〓 ……(14) のように減少する。
In addition, the one in FIG. 7 has a central hemispherical electrode 11 1
are constructed as concentric spheres, the surface area S 1 of the central hemispherical electrode 111 is S 1 =2πr〓, and the surface area Sn of the n-th hemispherical electrode 11n is
is Sn=2πr〓, and the current density decreases in inverse proportion to the square of the distance rn from the center as in=1...n=I/2πr〓...(14).

上記の他に電極板の面積の変化を種々の凾数系
に組込むことは極めて容易であり、これらは電解
系によつて適宜選択できる。
In addition to the above, it is extremely easy to incorporate changes in the area of the electrode plate into various function systems, and these can be appropriately selected depending on the electrolytic system.

本発明の実施例を以下に述べる。 Examples of the present invention will be described below.

実施例 主に有機性の廃水の他、無機性の廃水も一部採
用して、4〜5種類の廃水を対象に下記実験条件
で実施した。
Examples In addition to mainly organic wastewater, some inorganic wastewater was also used, and experiments were conducted on four to five types of wastewater under the following experimental conditions.

(1) 実験例1 1 電極材 ;PbO2/陽極、SuS/陰極 2 電流密度 ;10A/dm2→1A/dm2に変化
させる 3 廃水処理量;0.5と1 (2) 実験例2 1 電極材 ;Ti−Pt/陽極及びC材/陽極
と、SuS/陰極 2 電流密度 ;10A/dm2→1A/dm2と5A/
dm2→1A/dm2について実施 3 廃水処理量;0.5 実験結果は、第8図に処理成分残留濃度
(COD,NH4−N,シアン、及びCr6+等の有価金
属塩)の減衰を実線D傾向値で示すように、一点
破線Aの従来法に比し、点線A′の理論カーブに
近づいていることから、処理末期では電流密度を
下げる方法が高収率を得て有効なことがわかつ
た。
(1) Experimental example 1 1 Electrode material; PbO 2 / anode, SuS / cathode 2 Current density: changed from 10A/dm 2 to 1A/dm 2 3 Wastewater treatment amount: 0.5 and 1 (2) Experimental example 2 1 Electrode Material: Ti-Pt/anode and C material/anode, SuS/cathode 2 Current density: 10A/dm 2 →1A/dm 2 and 5A/
dm 2 → 1A/dm 2 Wastewater treatment amount: 0.5 The experimental results are shown in Figure 8 . As shown by the trend value of the solid line D, it is closer to the theoretical curve shown by the dotted line A' than the conventional method shown by the dotted line A, indicating that the method of lowering the current density at the end of the process is effective in obtaining a high yield. I understood.

実験例 塩水中の塩素イオンを対象反応成分にして次式
の電極反応 2Cl-→Cl2+2e を行なわせ、次式の反応で次亜塩素酸溶液として
取出す。
Experimental example The following electrode reaction 2Cl - →Cl 2 +2e is carried out using chlorine ions in salt water as the target reaction component, and a hypochlorous acid solution is extracted by the following reaction.

Cl2+2NaOH→NaClO+NaCl+H2O その場合、生成濃度を7000×10000ppmまで濃
縮電解する為には従来電解法では生成した次亜塩
素酸濃度が高くなるにつれ 6ClO-+3H2O→2ClO3 -+6H++4Cl-+3/2O2
6e;ClO-の放電 ClO-+2H++2e→Cl-+H2O;ClO-の還元 等の主なる副反応が生じ性能低下が顕著であつ
た。
Cl 2 +2NaOH→NaClO+NaCl+H 2 O In that case, in order to concentrate and electrolyze the product concentration to 7000×10000ppm, in the conventional electrolytic method, as the concentration of hypochlorous acid produced increases, 6ClO - +3H 2 O→2ClO 3 - +6H + +4Cl - +3/2O 2 +
6e; Discharge of ClO - ClO - +2H + +2e→Cl - +H 2 O; Main side reactions such as reduction of ClO - occurred, resulting in a significant decrease in performance.

かゝる欠点を改善する目的で本発明により次の
実験条件で実施した。
In order to improve these drawbacks, experiments were carried out according to the present invention under the following experimental conditions.

1 電極材 ;Ti−Pt、酸化物電極/陽極、SuS
及びTi/陰極 2 電流密度;3→30A/dm2,10→30A/dm2 3 電量濃度;2〜20AH/ その結果第8図の一点破線Bで示す従来法に比
べ、実線Eで示す本発明法が点線B′の理論カーブ
に近づき高性能を得ていることから、処理末期に
は電流密度を大きくして電極の反応速度を速くす
ることが有効であることを確認した。
1 Electrode material; Ti-Pt, oxide electrode/anode, SuS
and Ti/cathode 2 Current density: 3 → 30 A/dm 2 , 10 → 30 A/dm 2 3 Coulometric concentration: 2 to 20 AH Since the invented method approached the theoretical curve indicated by the dotted line B' and achieved high performance, it was confirmed that it is effective to increase the current density at the end of the treatment to increase the reaction rate of the electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電解法の原理を説明する図、第
2図および第3図は第1図の原理に基いて従来の
電解法で実用されている電解槽の基本的な電極構
成の例を示す図、第4図は従来の電解法による処
理成分の分解除去結果と目的物質の生成結果を示
す図表、第5図A,B、第6図および第7図は本
発明法を実施する際に使用される電解槽の例を示
す図、第8図は本発明方法による実験例で得られ
た結果を示す図表である。
Figure 1 is a diagram explaining the principle of the conventional electrolytic method, and Figures 2 and 3 are examples of the basic electrode configuration of an electrolytic cell used in the conventional electrolytic method based on the principle of Figure 1. Figure 4 is a chart showing the results of decomposition and removal of treated components and the production of target substances by the conventional electrolytic method, Figures 5A and B, Figures 6 and 7 are diagrams showing the results of the method of the present invention. FIG. 8 is a diagram showing an example of an electrolytic cell used in this case, and a chart showing results obtained in an experimental example using the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 被処理液中の対象反応成分の電解進行による
濃度の変化に対応して電解電流密度と電極面積を
変えることを特徴とする電解処理方法。
1. An electrolytic treatment method characterized by changing electrolytic current density and electrode area in response to changes in the concentration of a target reaction component in a liquid to be treated due to progress of electrolysis.
JP56079362A 1981-05-27 1981-05-27 Electrolytic treatment method Granted JPS57194265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56079362A JPS57194265A (en) 1981-05-27 1981-05-27 Electrolytic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56079362A JPS57194265A (en) 1981-05-27 1981-05-27 Electrolytic treatment method

Publications (2)

Publication Number Publication Date
JPS57194265A JPS57194265A (en) 1982-11-29
JPS6249355B2 true JPS6249355B2 (en) 1987-10-19

Family

ID=13687770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56079362A Granted JPS57194265A (en) 1981-05-27 1981-05-27 Electrolytic treatment method

Country Status (1)

Country Link
JP (1) JPS57194265A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350745A (en) * 2004-06-11 2005-12-22 Isis:Kk Electrolytic apparatus

Also Published As

Publication number Publication date
JPS57194265A (en) 1982-11-29

Similar Documents

Publication Publication Date Title
US3262868A (en) Electrochemical conversion of electrolyte solutions
US3977951A (en) Electrolytic cells and process for treating dilute waste solutions
US5599437A (en) Electrolysis of electroactive species using pulsed current
US10807887B2 (en) Method for electrochemically producing electrolyzed water
JP2010163699A (en) Apparatus for producing metal powder by electrowinning
US3755114A (en) Decreasing the metallic content of liquids by an electrochemical technique
US20100065436A1 (en) Method of extracting platinum group metals from waste catalysts through electrochemical process
US3941669A (en) Fluidized bed electrode system
US3486992A (en) Process for electrolytic oxidation of thallium or cerium salts
US4278521A (en) Electrochemical cell
EP0210769B1 (en) Removal of arsenic from acids
CN108793344A (en) Electrochemicial oxidation device and method of the micro-fluid reactor to less salt waste water
US3347761A (en) Electropurification of salt solutions
Scott Metal recovery using a moving-bed electrode
EP0063420A1 (en) Electrolyzers for the production of hydrogen
JPS6249355B2 (en)
US3192143A (en) Electrodialytic demineralization of water
Adams et al. Electrochemical oxidation of ferrous iron in very dilute solutions
US3441488A (en) Electrolytic desalination of saline water by a differential redox method
JP4649200B2 (en) Radical oxygen water generator and radical oxygen water generator system
Bergmann et al. Experimental and theoretical studies on a new type of electrochemical reactor for waste-water treatment
JPS6220891A (en) Method for electrolytically collecting metal from aqueous solution containing minor amount of metal
US4248684A (en) Electrolytic-cell and a method for electrolysis, using same
KR101602952B1 (en) Manufacturing equipment of electrolyte for redox flow battery comprising punched electrode with lattice structure
JPS6157396B2 (en)