JPS6249291B2 - - Google Patents

Info

Publication number
JPS6249291B2
JPS6249291B2 JP21500283A JP21500283A JPS6249291B2 JP S6249291 B2 JPS6249291 B2 JP S6249291B2 JP 21500283 A JP21500283 A JP 21500283A JP 21500283 A JP21500283 A JP 21500283A JP S6249291 B2 JPS6249291 B2 JP S6249291B2
Authority
JP
Japan
Prior art keywords
component
formula
parts
epoxy resin
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21500283A
Other languages
Japanese (ja)
Other versions
JPS60108417A (en
Inventor
Shuichi Ishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP21500283A priority Critical patent/JPS60108417A/en
Publication of JPS60108417A publication Critical patent/JPS60108417A/en
Publication of JPS6249291B2 publication Critical patent/JPS6249291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、耐熱氎性、屈曲性に優れおおり、特
に食品甚途に芁求されるフレヌバヌ性を阻害する
氎油出成分の少ない塗膜を䞎えうる氎分散可胜な
暹脂組成物に関するものである。 近幎アクリル系、アクリル−スチレン系、酢酞
ビニル系、゚チレン−酢酞ビニル系など乳化重合
等によ぀お埗られる重合䜓氎分散液は、塗料、接
着剀などの工業的甚途に広く甚いられるようにな
぀お来た。しかし、これら埓来の重合䜓氎分散液
より圢成された塗膜は、金属、朚材、セメント硬
化物、プラスチツク等に察する接着力が䞍十分で
あり、特に熱氎浞挬埌の密着性においお倧幅な䜎
䞋をひき起したり、フレヌバヌ性を阻害する因子
である氎抜出成分が倚いため、食品甚途には䜿甚
できない等の重倧な欠陥を有しおいた。このよう
な欠陥を改良するために、重合䜓氎性分散液䞭に
含たれる界面掻性剀や保護コロむドなどの氎感受
性物質の䜎枛を図぀たり、重合䜓骚栌䞭に官胜基
を導入しお架橋構造を圢成させるこずが詊みられ
おいるが、十分な成果を挙げるに至぀おいない。
又、熱硬化性暹脂、䟋えば゚ポキシ暹脂等の䜵甚
により塗膜の耐氎性の改善も詊みられおいるが、
(1)貯蔵䞭に重合䜓成分ず゚ポキシ暹脂が分離し、
氎分散䜓ずしお安定に存圚し埗ない。(2)埗られた
塗膜が癜濁する。(3)塗膜の耐熱氎性が十分でない
等の欠点を有しおいた。 以䞊の様な状況から、アクリルポリマヌ鎖にカ
ルボキシル基を導入しお氎分散可胜な機胜を付䞎
し、同時に゚ポキシ暹脂が有する塗膜の耐熱氎性
を付䞎した耇合型氎分散䜓が研究されおいる。こ
の際アクリルポリマヌず゚ポキシ暹脂の間に化孊
結合を介圚させるこずにより、䞡暹脂の盞溶性を
改善し、それによ぀お氎分散䜓の貯蔵安定性の向
䞊ず、垰られる塗膜の癜濁を解消するこずが可胜
である。 特開昭53−1228には、゚ポキシ暹脂の脂肪族骚
栌炭玠原子䞊の氎玠匕き抜きによるアクリル䞻鎖
ぞのグラフト化反応が開瀺されおいるが、グラフ
ト化された゚ポキシ暹脂ず遊離の゚ポキシ暹脂の
盞察的比率以䞋これをグラフト化率ず呌ぶを
コントロヌルするこずは非垞に困難であり、グラ
フト化率も䜎いため氎分散䜓の安定性に欠けるず
いう欠点を有しおいる。 たた予め重合されたカルボキシル基を含有する
アクリルポリマヌに、゚ポキシ暹脂を埌から添加
し、反応しお埗られる組成物が開瀺されおいる
が、特開昭52−107091、特開昭55−3481、特開
昭55−75460、アクリルポリマヌはカルボキシル
基を倚量に含有する倚官胜性ポリマヌであり、䞀
方の゚ポキシ暹脂は官胜性化合物であるため、
ゲル化を生じせしめずに反応を進めるこずは非垞
に困難である。この方法に埓えば、アクリルポリ
マヌに゚ステル型・グラフトされた゚ポキシ暹脂
ず遊離の゚ポキシ暹脂のグラフト化は、䜙り高く
するこずが出来ず、氎分散䜓の貯蔵安定性が悪い
ずいう欠点を有しおいる。しかも゚ポキシ暹脂が
グラフト化されおいないアクリルポリマヌが倚量
に残存するため、塗膜圢成埌の耐熱性が悪く、塗
膜が癜濁し、同時に氎抜出量が倚く、特に食品に
接觊する塗膜圢成剀ずしおは十分満足できる結果
が埗られない。 食品に接する代衚的な甚途ずしお、飲料猶の内
面に斜された塗膜があり、内容物の颚味に倉化
を䞎えない。120℃以䞊での殺菌工皋においお
塗膜の倉質がない、猶の成圢加工工皋におい
お、その加工倉圢に耐えうる、内容物に塗膜か
らの溶出物が出ない、等の芁求性胜を満たさなけ
ればならない。 この様な状況から本発明者は、アクリルポリマ
ヌず゚ポキシ暹脂の組み合せによる耇合暹脂にお
いお、アクリルポリマヌず゚ポキシ暹脂の間に化
孊結合を介圚させる際に、氎分散䜓ずしおの必須
の芁件である貯蔵安定性ず塗膜圢成埌に芁求され
る、特に飲料猶をはじめずする猶詰の内面塗膜に
芁求される、耐熱氎性、屈曲性、氎抜出量を満た
すべく䞡者の化孊結合量を最適な範囲に調節し、
同時に遊離のアクリルポリマヌを䞀定量以䞋に抑
えるこずによ぀お、驚くべきこずに、氎分散䜓ず
しおの必須の芁件である貯蔵安定性ず、塗膜圢成
埌に芁求される、特に飲料猶をはじめずする猶詰
の内面塗膜に芁求される、耐熱氎性、屈曲性およ
び氎抜出量のほずんど無い事などの性胜を党お満
足しうるこずを発明したものである。 すなわち本発明は、 (ã‚€) 構造匏が、次の構成単䜍、および
から成る共重合䜓成分ず
The present invention relates to a water-dispersible resin composition that has excellent hot water resistance and flexibility, and is capable of providing a coating film with few water-oil components that inhibit flavor properties, which are particularly required for food applications. In recent years, aqueous polymer dispersions obtained by emulsion polymerization, such as acrylic, acrylic-styrene, vinyl acetate, and ethylene-vinyl acetate, have come to be widely used in industrial applications such as paints and adhesives. I came. However, coating films formed from these conventional aqueous polymer dispersions have insufficient adhesion to metals, wood, cured cement, plastics, etc., and in particular, their adhesion after immersion in hot water is significantly reduced. It has serious defects such as being unable to be used in food applications because it contains a large amount of water-extractable components, which are factors that cause irritation and inhibit flavor properties. In order to improve these defects, efforts have been made to reduce the amount of water-sensitive substances such as surfactants and protective colloids contained in the aqueous polymer dispersion, and to create crosslinked structures by introducing functional groups into the polymer skeleton. Attempts have been made to form a system, but sufficient results have not been achieved.
In addition, attempts have been made to improve the water resistance of the coating film by using thermosetting resins, such as epoxy resins, etc.
(1) The polymer component and epoxy resin separate during storage,
It cannot exist stably as an aqueous dispersion. (2) The resulting coating film becomes cloudy. (3) It had drawbacks such as insufficient hot water resistance of the coating film. In light of the above circumstances, research is being conducted on composite water dispersions that have a water-dispersible function by introducing carboxyl groups into acrylic polymer chains, and at the same time provide the hot water resistance of the coating film possessed by epoxy resins. At this time, by interposing a chemical bond between the acrylic polymer and the epoxy resin, the compatibility of both resins is improved, thereby improving the storage stability of the aqueous dispersion and eliminating the cloudiness of the resulting paint film. Is possible. JP-A No. 53-1228 discloses a grafting reaction to an acrylic main chain by abstracting hydrogen from an aliphatic skeleton carbon atom of an epoxy resin, but the relationship between a grafted epoxy resin and a free epoxy resin is It is very difficult to control the ratio (hereinafter referred to as the grafting rate), and the grafting rate is also low, resulting in a disadvantage that the aqueous dispersion lacks stability. Furthermore, compositions obtained by adding an epoxy resin to a pre-polymerized acrylic polymer containing carboxyl groups and reacting them have been disclosed; , Japanese Patent Application Laid-Open No. 55-75460), acrylic polymer is a polyfunctional polymer containing a large amount of carboxyl groups, while epoxy resin is a bifunctional compound.
It is very difficult to proceed with the reaction without causing gelation. According to this method, the grafting rate of the ester-type/grafted epoxy resin to the acrylic polymer and the free epoxy resin cannot be increased very high, and the aqueous dispersion has the disadvantage of poor storage stability. There is. Moreover, since a large amount of acrylic polymer remains without epoxy resin grafting, the heat resistance after coating film formation is poor, the coating film becomes cloudy, and at the same time, a large amount of water is extracted, especially as a coating forming agent that comes into contact with food. However, a fully satisfactory result cannot be obtained. A typical application that comes in contact with food is the coating applied to the inner surface of beverage cans, which does not change the flavor of the contents. The required performance must be met, such as no deterioration of the coating during the sterilization process at 120℃ or higher, the ability to withstand deformation during the can forming process, and no elution from the coating into the contents. No. Under these circumstances, the present inventor has developed a composite resin consisting of a combination of an acrylic polymer and an epoxy resin, which has storage stability, which is an essential requirement for an aqueous dispersion, when interposing a chemical bond between the acrylic polymer and the epoxy resin. The amount of chemical bonding between the two is adjusted to the optimum range to meet the hot water resistance, flexibility, and amount of water extracted, which are required for the inner surface coating of cans such as beverage cans, which are required after coating is formed. death,
At the same time, by suppressing the amount of free acrylic polymer below a certain level, we have surprisingly achieved both the storage stability, which is an essential requirement for an aqueous dispersion, and the storage stability required after coating film formation, especially for beverage cans. This invention satisfies all the properties required for the inner coating of canned goods, such as hot water resistance, flexibility, and almost no water extraction. That is, the present invention provides (a) a copolymer (A) component whose structural formula is composed of the following structural units (X), (Y) and (Z);

【匏】【formula】 【匏】【formula】

【匏】 䜆しR1は−たたは−CH3、R2は[Formula] [However, R 1 is -H or -CH 3 , R 2 is

【匏】たたは[expression] or

【匏】 ここでR5は−CnH2o+1、、R3は ここで〜100の敎数、R6は[Formula] (Here, R 5 is −CnH 2o+1 (n=1, 2)), R 3 is (Here, m = integer from 0 to 100, R 6 is

【匏】を衚わすものずする。 (ロ) 構造匏が、[Formula] shall be represented. )] (b) The structural formula is

【匏】䜆しR7は で衚わされる゚ポキシ暹脂(B)成分および (ヘ) 構造匏が、次の構成単䜍および
から成る共重合䜓(C)成分
[Formula] [However, R 7 is The epoxy resin (B) component and (f) structural formula represented by the following structural units (X) and (Z)
Copolymer (C) component consisting of

【匏】【formula】

【匏】 ずから成る混合物においお、重量比が (C)成分(A)成分(B)成分(C)成分×100 (1) で瀺される組成を有し、共重合䜓(A)成分が、構成
単䜍をモル、構成単䜍をモルお
よび構成単䜍をモル含み、、および
の間の関係匏が 20×10070 (2) 30×10080 (3) ≊ (4) で瀺される組成を有し、か぀(A)成分ず(B)成分䞭の
カルボキシル基の50以䞋がアミンで䞭和された
塩であるこずを特城ずする氎分散可胜な暹脂組成
物である。 本発明においお共重合䜓(A)成分は、化孊構造匏
が
[Formula] In a mixture consisting of the following, the weight ratio is (C) component / (A) component + (B) component + (C) component A) component contains x moles of the structural unit (X), y moles of the structural unit (Y), and z moles of the structural unit (Z), and the relational expression between x, y, and z is 20<x/x+y+z× 100<70 (2) 30<z/x+y+z×100<80 (3) 1≩y<5 (4) and 50% of the carboxyl groups in component (A) and component (B) % or less of the water-dispersible resin composition is a salt neutralized with an amine. In the present invention, the copolymer (A) component has a chemical structural formula of

【匏】で瀺される構成単䜍、化孊 構造匏がConstituent unit (X) represented by [formula], chemical The structural formula is

【匏】で瀺される構成単䜍 および化孊構造匏がConstituent unit represented by [formula] (Y) and the chemical structure is

【匏】で瀺 される構成単䜍からなるものであり、それ
ぞれの構成単䜍を圢成するモノマヌを共重合する
こずによ぀お埗られる。その構成単䜍の配列は、
限定するものではなく、芏則的、䞍芏則的、ブロ
ツクおよびグラフトのいづれでもよい。 化孊構造匏が
It consists of a structural unit (Z) represented by the formula and can be obtained by copolymerizing monomers forming each structural unit. The array of its constituent units is
The shape is not limited to regular, irregular, block, or graft. The chemical structure is

【匏】で瀺される構成単䜍 においお、R1は−たたは−CH3であり、
R2は
In the structural unit (X) represented by [Formula], R 1 is -H or -CH 3 ,
R 2 is

【匏】たたは[expression] or

【匏】ここで R5は−CnH2o+1、を指すものであ
る。具䜓的なモノマヌの䟋ずしおは、アクリル酞
のアルキル゚ステル、メタクリル酞のアルキル゚
ステル、具䜓的にはメチルアクリレヌト、゚チル
アクリレヌト、メチルメタクリレヌト、゚チルメ
タクリレヌト、ブルメタクリレヌト、む゜ブチル
メタクリレヌト、ヘキシルメタクリレヌト、−
゚チルヘキシルメタクリレヌト、オクチルメタク
リレヌト等、アクリル酞たたはメタクリル酞のヒ
ドロキルアルキル゚ステル、具䜓的には−ヒド
ロキシ゚チルアクリルレヌト、−ヒドロキシ゚
チルメタクリレヌトおよびビニル䞍飜和基を有す
るモノマヌ、具䜓的にはスチレン、ビニルトル゚
ン、ゞビニルベンれン等のスチレン系モノマヌを
挙げるこずができる。 構成単䜍を圢成するモノマヌは、䞊蚘の
うち少なくずも皮類から遞ばれたものであり、
奜たしくは、皮類以䞊皮類たでのモノマヌを
䜵甚するこずである。䟋えば、スチレンず゚チル
アクリレヌトの組合せ、が奜たしい。 化孊構造匏が
[Formula] (where R 5 refers to -CnH 2o+1 (n=1, 2)). Examples of specific monomers include alkyl esters of acrylic acid, alkyl esters of methacrylic acid, specifically methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, bull methacrylate, isobutyl methacrylate, hexyl methacrylate, 2-
Hydrokyl alkyl esters of acrylic acid or methacrylic acid such as ethylhexyl methacrylate and octyl methacrylate, specifically 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and monomers having vinyl unsaturated groups, specifically styrene, vinyl Examples include styrenic monomers such as toluene and divinylbenzene. The monomer forming the structural unit (X) is selected from at least one of the above,
Preferably, two or more and up to three types of monomers are used in combination. For example, a combination of styrene and ethyl acrylate is preferred. The chemical structure is

【匏】で瀺される構 成単䜍においお、R3は、 ここで〜100の敎数を衚わす。 で瀺される。構成単䜍を圢成するモノマヌ
は、アクリル酞たたはメタクリル酞ず䞀般匏が埌
述する。
In the structural unit (Y) represented by [Formula], R 3 is (Here, m represents an integer from 0 to 100.) The monomer forming the structural unit (Y) is acrylic acid or methacrylic acid, and its general formula will be described later.

【匏】で瀺されるビスフ ゚ノヌル型゚ポキシ暹脂ずの゚ステル化反応物で
ある。このずき぀の゚ポキシ基を有する゚ポキ
シ暹脂分子䞭の぀の゚ポキシ基のみが反応し
たものであり、残りの぀の゚ポキシ基は未反応
のたた残存しおいるこずが必芁である。(A)成分で
瀺す構造単䜍䞭のR3は
It is an esterification reaction product with a bisphenol type epoxy resin represented by the formula. At this time, it is necessary that only one epoxy group in one molecule of the epoxy resin having two epoxy groups reacts, and the remaining epoxy group remains unreacted. R 3 in the structural unit represented by component (A) is

【匏】の 反応残基である。 ここで䞀般匏が[Formula] It is a reactive residue. Here the general formula is

【匏】で瀺され るビスプノヌル型゚ポキシ暹脂ずは、ビスプ
ノヌルず゚ピハロヒドリンずの瞮合によ぀お埗
られるものであり、くり返し単䜍のによ぀お、
その分子量の違いが衚珟される。ビスプノヌル
型゚ポキシ暹脂の代衚的な䟋ずしおは、旭化成
瀟補AER−330、331、337、661、664、667、
669、油化シ゚ル゚ポキシ瀟補゚ピコヌト828、
1001、1004、1007、1009、1010および分子量が
䞇以䞊のプノキシ暹脂を挙げるこずができる。 くり返し単䜍が〜100の敎数で衚わされる
範囲で䜿甚可胜であり、100以䞊になるず粘床が
高くなり、実甚的でない。奜たしいの範囲ずし
おは〜40の範囲である。 最も奜たしい゚ポキシ暹脂の䟋ずしおは、塗膜
の加工性及び氎抜出性から、゚ポキシ圓量が2000
〜5000のビスプノヌル型゚ポキシ暹脂をあげ
るこずができる。 成分を構成するモノマヌは、前蚘した劂
く、アクリル酞たたはメタクリル酞ずビスプノ
ヌル型゚ポキシ暹脂による付加反応により合成さ
れるが、成分を埗るためには、予め
成分ず成分ずから成る共重合䜓を合成し、
しかる埌にビスプノヌル型゚ポキシ暹脂を付加
しおもよい。 化孊構造匏が
The bisphenol type epoxy resin represented by the formula is obtained by the condensation of bisphenol A and epihalohydrin, and depending on the repeating unit m,
The difference in molecular weight is expressed. Typical examples of bisphenol A type epoxy resins include AER-330, 331, 337, 661, 664, 667 manufactured by Asahi Kasei Co., Ltd.
669, Epicoat 828 manufactured by Yuka Ciel Epoxy Co., Ltd.
1001, 1004, 1007, 1009, 1010 and molecular weight 1
More than 10,000 phenoxy resins can be mentioned. It can be used within the range where the repeating unit m is an integer from 0 to 100; if it exceeds 100, the viscosity becomes high and is not practical. The preferred range of m is 0 to 40. The most preferred example of epoxy resin is an epoxy resin with an epoxy equivalent of 2000 in terms of processability and water extractability of the coating film.
~5000 bisphenol A type epoxy resins can be mentioned. As mentioned above, the monomer constituting component (Y) is synthesized by an addition reaction between acrylic acid or methacrylic acid and a bisphenol-type epoxy resin.
Synthesize a copolymer consisting of component and (Z) component,
After that, a bisphenol type epoxy resin may be added. The chemical structure is

【匏】で瀺される構成 単䜍を圢成するモノマヌずしおは、アクリ
ル酞たたはメタクリル酞であり、奜たしくはメタ
クリル酞である。 共重合䜓(A)成分は、構成単䜍をモル、
構成単䜍をモルおよび構成単䜍を
モル含む。その、およびは、次匏 20×10070 30×10080 ≊ を満足する範囲が甚いられる。 構成単䜍はアクリルポリマヌの䞻鎖を圢
成するものであり、20モル以䞋では重合が難し
く、70モル以䞊では、埗られる塗膜の耐熱氎特
性の䜎䞋を避けられない。 構成単䜍は、本発明のポむントであるア
クリルポリマヌず゚ポキシ暹脂の盞溶性を支配す
るため最も重芁であり、(A)成分のポリマヌ分子
䞭にモル以䞊含たれおいる事が必須の条件であ
る。構成単䜍が(A)成分䞭にモルより少な
いず、アクリルポリマヌず゚ポキシ暹脂ずの盞溶
性は図れず、氎分散䜓の貯蔵安定性を悪くする
し、たた焌付時の也燥時間が倧幅に長くなる。た
たモル以䞊では、重合が困難である。 構成単䜍は、第䞀にアミン塩を圢成しお
組成物を氎分散化するこずず、第二に塗膜圢成時
に゚ポキシ基ず反応しお架橋するずいう぀の機
胜を有しおおり、30モル以䞋では、十分な氎分
散機胜が発揮できないばかりでなく、架橋反応が
十分に行えず、塗膜の耐熱氎性に劣る。又80モル
以䞊では、塗膜䞭に残存するカルボキシル基に
より耐熱氎性を䜎䞋させる。 曎に、奜たしい構成単䜍数の割合は、次匏 35×10055 45×10065 ≊ で瀺される範囲である。 (A)成分の共重合䜓の重量平均分子量は、5000〜
50000の範囲が奜たしい。5000以䞋では、埗られ
る塗膜の屈曲性が十分でない。たた50000以䞊で
は焌付け也燥時の氎分散䜓粒子の融着がうたく行
えず塗膜のピンホヌルを発生する原因ずなる。曎
に奜たしいのは、10000〜30000の範囲である。 (A)成分の共重合䜓を補造する方法ずしおは、そ
れ自䜓公知の方法、䟋えば塊状重合、乳化重合た
たは溶液重合などの方法により補造するこずがで
きる。奜たしくは、メタノヌル、゚タノヌル、ブ
タノヌルなどのアルコヌル類、゚チレングリコヌ
ルモノメチル゚ヌテル、゚チレングリコヌルモノ
ブチル゚ヌテルなどのグリコヌル誘導䜓、メチル
゚チルケトン、メチルむ゜ブチルケトンなどのケ
トン類、酢酞メチル、酢酞゚チルなどの゚ステル
類などの単䞀あるいは混合溶媒䞭で40〜160℃、
奜たしくは40〜90℃の枩床条件で、アゟ化合物や
過酞化物その他の重合開始剀の存圚の䞋に重合反
応を行うこずによ぀お埗られる。 本発明においお(B)成分である構造匏が、
The monomer forming the structural unit (Z) represented by the formula is acrylic acid or methacrylic acid, preferably methacrylic acid. The copolymer (A) component contains x moles of the structural unit (X),
Contains y moles of the structural unit (Y) and z moles of the structural unit (Z). For x, y, and z, a range that satisfies the following equations is used: 20<x/x+y+z×100<70 30<z/x+y+z×100<80 1≩y<5. The structural unit (X) forms the main chain of the acrylic polymer, and if it is less than 20 mol%, polymerization is difficult, and if it is more than 70 mol%, the hot water resistance of the resulting coating film will inevitably deteriorate. The structural unit (Y) is the most important because it controls the compatibility of the acrylic polymer and the epoxy resin, which is the key point of the present invention, and it is essential that it is contained in 1 mole or more in one molecule of the polymer of the component (A). This is the condition. If the structural unit (Y) is less than 1 mole in component (A), compatibility between the acrylic polymer and the epoxy resin cannot be achieved, the storage stability of the aqueous dispersion will be deteriorated, and the drying time during baking will be shortened. significantly longer. Moreover, if it is 5 moles or more, polymerization is difficult. The structural unit (Z) has two functions: first, it forms an amine salt to water-disperse the composition, and second, it reacts with the epoxy group during coating film formation to crosslink it. If the amount is less than 30 mol %, not only a sufficient water dispersion function cannot be exhibited, but also a sufficient crosslinking reaction cannot be carried out, resulting in poor hot water resistance of the coating film. Moreover, if it is more than 80 mol%, the hot water resistance will be lowered due to carboxyl groups remaining in the coating film. Furthermore, the preferable ratio of the number of structural units is in the range shown by the following formula: 35<x/x+y+z×100<55 45<z/x+y+z×100<65 1≩y<3. The weight average molecular weight of the copolymer of component (A) is 5000~
A range of 50000 is preferred. If it is less than 5000, the resulting coating film will not have sufficient flexibility. Moreover, if it is more than 50,000, the water dispersion particles cannot be properly fused during baking and drying, causing pinholes in the coating film. More preferred is a range of 10,000 to 30,000. The copolymer of component (A) can be produced by a method known per se, such as bulk polymerization, emulsion polymerization, or solution polymerization. Preferably, alcohols such as methanol, ethanol, and butanol; glycol derivatives such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; and esters such as methyl acetate and ethyl acetate. or 40-160℃ in a mixed solvent,
It is preferably obtained by carrying out a polymerization reaction at a temperature of 40 to 90°C in the presence of an azo compound, peroxide, or other polymerization initiator. In the present invention, the structural formula of component (B) is

【匏】である゚ポキシ暹脂は、(A) 成分の構成単䜍に぀いおの説明の際に蚘述
したずおりである。(B)成分の゚ポキシ暹脂の奜た
しい䟋ずしおは、ビスプノヌル型゚ポキシ暹
脂であり、塗膜の加工性および氎抜出量が少ない
ずいう点においお、゚ポキシ圓量で2000〜5000で
あるこずが最も奜たしい。 本発明においおは、(B)成分の゚ポキシ暹脂ず、
(A)成分の構成単䜍を圢成する原料の゚ポキ
シ暹脂は必ずしも同䞀である必芁はない。奜たし
くは同䞀の暹脂を甚いる事である。 本発明においお共重合䜓(C)成分は、化孊構造匏
が
The epoxy resin represented by the formula is as described in the explanation of the structural unit (Y) of the component (A). A preferred example of the epoxy resin as component (B) is a bisphenol A type epoxy resin, and most preferably has an epoxy equivalent of 2,000 to 5,000 in terms of processability of the coating film and low water extraction. In the present invention, the epoxy resin of component (B),
The raw epoxy resins forming the structural unit (Y) of component (A) do not necessarily have to be the same. Preferably, the same resin is used. In the present invention, the copolymer (C) component has a chemical structural formula of

【匏】で瀺される構成単䜍、化孊 構造匏がConstituent unit (X) represented by [formula], chemical The structural formula is

【匏】で瀺される構成単䜍 から成るものであり、それぞれの構成単䜍
を圢成するモノマヌを共重合するこずによ぀お埗
られる。その構成単䜍の配列は、(A)成分ず同様に
特に限定するものではない。 構成単䜍およびを圢成しうるモノ
マヌの皮類は、(A)成分を構成するおよび
ず党く同様である。 共重合䜓(C)成分においお、構成単䜍およ
びの割合は、特に限定するものではなく、
が20〜70モル、が30〜80モルの範
囲が奜たしい。 共重合䜓(C)成分を補造する方法ずしおは、共重
合䜓(A)成分ず同様の方法で行うこずができる。た
た(A)成分の共重合䜓の補造時においお同時に(C)成
分を補造するこずも可胜である。 本発明においお、その構成芁玠である(A)成分、
(B)成分および(C)成分は、それぞれ次の機胜を有し
おいる。すなわち(A)成分は、氎分散の機胜を有し
ない゚ポキシ暹脂を包含しお、氎分散性を䞎える
機胜を有する。この際、(A)成分䞭の構成単䜍
が゚ポキシ暹脂ずの芪和性を有し、安定に
゚ポキシ暹脂を氎分散䜓粒子の䞭に包含する圹割
を果しおいる。(B)成分は、その優れた機械的、熱
的特性を生かしお、本発明の目的ずする耐熱氎
性、屈曲性及び氎抜出性の少ない塗膜を䞎える機
胜を䞎えおいる。(C)成分は、(A)成分ず同様に氎分
散性を䞎える機胜を有しおはいるが、逆に䞀定量
以䞊のずきには、耐熱氎性を損い、又氎抜出量を
増倧させ、食品甚途においおはフレヌバヌ性を損
うずいう重倧な欠点を有しおいるため、極力䞀定
量以䞋の範囲にある事が奜たしい。埓぀お、本発
明の必須の芁件ずしおは、(C)成分の量が重量で (C)成分(A)成分(B)成分(C)成分×100の関
係を必 須の条件ずする。以䞊では、耐熱氎性が損わ
れ、氎抜出量も増倧する。又塗膜圢成時の焌付時
間が長時間掛るずいう欠点も有しおいる。奜たし
くは以䞋である。 (A)成分ず(B)成分の量は、目的に応じお任意に遞
択するこずができるが、耐熱氎性に優れた塗膜、
なかんづく猶甚塗膜に芁求される性胜を満足させ
るためには、重量で 35(A)成分(A)成分(B)成分(C)成分×10080 20(B)成分(A)成分(B)成分(C)成分×10065 の範囲が奜たしい。(A)成分が35重量以䞋では氎
分散性に欠け、80重量以䞊では、耐熱氎性が損
われる。(B)成分が20重量以䞋では、耐熱氎性が
損われ65重量以䞊では氎分散性が悪い。 本発明においおは、(A)成分、(B)成分および(C)成
分を混合する方法は特に限定するものではなく、
成分のうち成分を最初に混合しおおき、埌か
ら成分を加えるこずもできるし、同時に成分
を混合しおもよい。 たた、(A)成分、(B)成分および(C)成分の混合物を
䞀床に埗る方法ずしおは、予め(A)成分䞭の構成単
䜍を圢成モノマヌおよび(B)成分の混合物を
䜜成しおおき、これに(A)成分䞭のおよび
の構成単䜍を圢成するモノマヌを加えお、
(B)成分の存圚䞋に共重合反応を進めるこずも可胜
である。このずき(C)成分も同時に圢成されるこず
ができる。 (A)成分、(B)成分および(C)成分から成る混合物に
おいお、各成分を分別しおその構成成分の量を分
析する方法ずしおは、䟋えば溶剀の組合せによる
分別法を挙げるこずができる。その具䜓的な䟋を
挙げるず、゚タノヌルずテトラヒドロフランの重
量比が察の混合溶剀を甚いるず(B)成分は溶解
性が䜎く、(A)成分は䞀定の割合で溶解する。逆に
(C)成分は完党に溶解する。たたクロロホルムずテ
トラヒドロフランの重量比で察の混合溶剀を
甚いれば、(A)および(B)成分は完党に溶解するが、
(C)成分は溶解しない。 本発明においおは、特にすぐれた耐熱氎性、、
屈曲性および氎抜出成分の少ない塗膜を埗ようず
する堎合には、共重合䜓(A)成分の構成単䜍
および゚ポキシ暹脂(B)成分の合蚈重量が、(A)成
分、(B)成分および(C)成分の合蚈重量に察しお、70
〜90重量であるこずが奜たしい。70重量以䞋
では、耐熱性が䜎くなるため、耐熱氎性の䜎䞋を
きたし、85重量以䞊では混合物の粘床が高くな
り、たた氎分散時の安定性が悪化するずいう問題
点を生じ易い。 本発明においおは、(A)成分ず(B)成分䞭のカルボ
キシル基を䞭和しお埗られるカルボキシアニオン
により、氎分散を可胜にせしめおいるものであ
る。 その䞭和に甚いる化合物は、アミンであり、䟋
えば、アンモニア、メチルアミン、ゞメチルアミ
ン、トリメチルアミン、゚チルアミン、ゞ゚チル
アミン、トリ゚チルアミン、゚タノヌルアミン、
ゞ゚タノヌルアミン、ゞメチルメタノヌルアミ
ン、ゞメチル゚タノヌルアミン等を挙げるこずが
できる。 本発明における䞭和に際しおは、(A)成分ず(B)成
分䞭のカルボキシル基の合蚈量に察しお、䞊蚘の
アミンを0.5圓量以䞋にするこずが必須の芁件で
ある。0.5圓量以䞊甚いた堎合には、(A)成分ず(B)
成分䞭の゚ポキシ基のアニオン重合が進行し易
く、氎分散䜓の貯蔵安定性を極端に悪くする。 奜たしいアミンの䜿甚量は0.3圓量以䞋の範囲
である。 アミンによる䞭和の方法ずしおは、(A)成分、(B)
成分及び(C)成分の混合物に、所定量のアミンを単
独で、あるいは氎でアミンを皀釈しお添加すれば
よい。 本発明組成物の䜿甚に際しおは、たず所望の粘
床になる様に氎で皀釈しお氎分散液を埗る。この
ずき塗装性の改善あるいは、「はじき」や「む
ら」の発生を防止するために、必芁であれば有機
溶剀を加えおも良い。本発明では、共重合䜓成分
(A)及び(C)を含成する際には、氎に可溶な有機溶剀
を甚いるこずが奜たしく、合成時に甚いた有機溶
剀があれば、ここで改めお加える必芁はない。 共重合䜓成分(A)及び(C)の合成及び氎分散液を埗
るずきの有機溶剀ずしおは、䟋えばメタノヌル、
゚タノヌル、プロピルアルコヌル、ブタノヌル、
ヘキサノヌル、オクタノヌル、デカノヌルなどの
アルコヌル類、゚チレングリコヌルモノメチル゚
ヌテル、゚チレングリコヌルモノ゚チル゚ヌテ
ル、゚チレングリコヌルモノブチル゚ヌテル、ゞ
゚チレングリコヌルモノメチル゚ヌテル、ゞ゚チ
レングリコヌルモノ゚チル゚ヌテル、ゞ゚チレン
グリコヌルモノブチル゚ヌテルなどのグリコヌル
誘導䜓類、ゞオキサンのような゚ヌテル類、アセ
トン、メチル゚チルケトン、ゞアセトンルコヌ
ル、シクロヘキサノンのようなケトン類が甚いら
れる。これらの有機溶剀は単独よりも、皮以䞊
の混合溶剀で甚いた方が奜たしい。奜たしい䟋ず
しおぱチレングリコヌルモノブチル゚ヌテル
ブタノヌルオクタノヌルの組合せおよびブチル
セロ゜ルブブタノヌルシクロヘキサノンの組
合せをあげるこずができる。 氎分散液に含たれる氎および有機溶剀の合蚈量
は、暹脂固圢分100重量郚に察しお10〜1000重量
郚の範囲が奜たしい。たた氎ず有機溶剀の比率は
重量比で察〜20察の比率が奜たしい。 埗られた氎分散液は、スプレヌ塗装、ロヌラヌ
塗装、浞挬塗装あるいは電着塗装などの方法で被
塗物に塗装するこずができる。 塗装された湿最塗膜は、100〜200℃で〜30分
間、奜たしくは160〜200℃で〜分間、焌付け
るこずによ぀お均䞀透明で良奜な塗膜を圢成させ
るこずができる。 焌付けるこずによ぀お、(A)成分及び(C)成分䞭の
カルボキシル基ず(A)成分及び(B)成分䞭の゚ポキシ
基が反応するこずによ぀お架橋構造を圢成する。
この際の反応は、觊媒の添加に拠぀お倧きな促進
効果をもたらす。觊媒ずしおは、塩基性化合物が
有効であり、䟋えばKOH、NaOHなどのアルカ
リ金属氎酞化物、トリプニルホスフむン、トリ
プニルホスホニりム゚チルペり玠塩などのリン
系化合物およびトリメチルアミン、ベンゞルゞメ
チルアミン、ゞ゚チルアミノ゚タノヌルなどのア
ミン化合物をあげるこずができる。奜たしいのは
ゞ゚チルアミノ゚タノヌルである。 本発明組成物から埗られる塗膜は、それ自身で
架橋しお良奜な塗膜を圢成しうるが、必芁に応じ
お、本発明組成物の官胜基ず反応しうる化合物を
添加しお、曎に架橋床を高める事もできる。すな
わち、本発明組成物の官胜基ずしおは、カルボキ
シル基、゚ポキシ基、氎酞基が存圚しおいるた
め、氎酞基、アミノ基、カルボキシル基、酞無氎
物基、む゜シアネヌト基、メチロヌル基などの官
胜基を有する化合物、ずりわけ倚官胜性の化合物
を添加すれば良い。 その具䜓的な䟋ずしおは、ゞ゚チレントリアミ
ン、ゞプニルゞアミノメタンなどのポリアミ
ン、フタル酞、トリメリツト酞などの酞無氎物、
ブロツク化されたトリレンゞむ゜シアネヌト、ヘ
キサメチレンゞむ゜シアネヌトなどのむ゜シアネ
ヌトのブロツク化物、尿玠暹脂、メラミン暹脂お
よびプノヌル暹脂などのメチロヌル基含有暹
脂、ゞシアンゞアミド、ベンゟグアナミンなどを
挙げるこずができる。奜たしい䟋ずしお、メラミ
ン暹脂およびプノヌル暹脂を挙げるこずがで
き、塗膜の耐薬品性を倧巟に改善するこずができ
る。 本発明の組成物に、通垞氎分散性塗料に䜿甚さ
れる顔料や添加剀等を甚いるこずができる。顔料
ずしおは、酞化チタン、ベンガラ、タルク、炭酞
カルシりム、炭酞マグネシりム、アルミ粉、酞化
鉄、鉛癜、クロム酞鉛、カヌボンブラツクなどを
挙げるこずができる。添加剀ずしおは、カルボキ
シメチルセルロヌス、ポリビニルピロリドン、塩
ビ−酢ビ゚マルゞペン等を挙げるこずができる。 本発明の組成物を斜工する被塗物ずしおは、鉄
およびその合金類、アルミニりムおよびその合金
類などの金属が䞻ではあるが必ずしもそれれに限
定されるものではない。特別な甚途ずしお飲料猶
をはじめずする猶詰、内面の保護被芆に䜿甚でき
る。 次に実斜䟋によ぀お本発明をより詳现に説明す
る。実斜䟋䞭の郚は、特にこずわらない限り重量
郚を瀺すものずする。 実斜䟋   共重合䜓(A)成分の調敎 ゚ポキシ圓量189のビスプノヌル型゚ポ
キシ暹脂AER−331旭化成瀟補を蒞留しお
゚ポキシ圓量が170の゚ポキシ暹脂を埗た。こ
の暹脂170郚にメタクリル酞8.6郚を140℃で
時間反応させお粘皠な暹脂を埗た。この暹脂の
酞䟡は0.5であ぀た。この暹脂のGPCをず぀
お、その重量分率を調べたずころ、゚ポキシモ
ノアクリレヌトが20.5重量、未反応゚ポキシ
暹脂が79.5重量であ぀た。そこでこの暹脂を
スチレンゲル粒子による吞着の差を利甚しお分
別し、゚ポキシモノアクリレヌト以䞋゚ポキ
シモノアクリレヌトず呌ぶ。の100品を埗
た。この化合物は、分子量が426であり、䞀方
の末端基がアクリロむル基、もう䞀方の末端基
が゚ポキシ基であり、本発明組成物䞭の共重合
䜓(A)成分䞭の構成単䜍を圢成するモノマ
ヌである。 予め甚意した還流噚付き反応噚にメチルむ゜
ブチルケトン50郚、−ブタノヌル50郚を投入
しお、80℃に保぀おおく。これに䞋蚘の組成の
モノマヌ混合物を滎䞋しおいく。 スチレン 35郚0.34モル メチルメタクリレヌト 15郚0.15モル ゚ポキシモノアクリレヌト
25郚0.056モル メタクリル酞 25郚0.29モル アゟビスむ゜ブチロニトリル以䞋AIBNず呌
ぶ 郚 滎䞋終了埌AIBN1郚を添加しお玄24時間の
間90℃に保぀お反応を続けた。反応終了埌、枛
圧装眮を甚いお、溶剀を完党に陀去しお固䜓状
の暹脂−を埗た。−の重量平均分子量
は、5500であ぀た。モノマヌ収率は99.5であ
぀た。  共重合䜓(C)成分の調敎 次に䞊蚘の方法ず同様にしお、メチルむ゜ブ
チルケトン40郚、−ブタノヌル35郚の䞭で、 スチレン 35郚 メチルメタクリレヌト 15郚 メタクリル酞 25郚 AIBN 3.5郚 の組成のモノマヌを重合した。重合埌、枛圧凊
理しお完党に溶剀を陀去し、固䜓状の暹脂−
を埗た。モノマヌ収率は99.8であ぀た。  暹脂−の解析 たずグロロホルムTHFの重量で察の
溶液混合溶媒ず呌ぶを䜜成した。この溶
液50郚に暹脂− 10郚を混合撹拌し、䞀昌
倜攟眮したずころ、䞊局に䞀郚未溶解郚が残぀
た。この未溶解郚を口過しお、也燥埌IR、
NMRにより゚ポキシ基およびビスプノヌル
の骚栌の有無を調べた。その結果いづれの存
圚も、確認できなか぀た。たたその重量を枬定
したずころ0.1郚であ぀た。 次に溶解した郚分を取り出しお、同様に也燥
しお重量を枬定したずころ、9.9郚であ぀た。
この溶解郚の暹脂の゚ポキシ基の吞収がIRに
より、ビスプノヌルの骚栌がNMRによ぀
お怜出された。同様に゚ポキシ圓量を枬定した
ずころ、1950であり、゚ポキシ・モノアクリレ
ヌトの゚ポキシ基は、そのたた残存しおいる
こずが明らかずな぀た。埓぀お、埗られた暹脂
は、99重量がスチレンメチルメタクリレヌ
ト゚ポキシ・モノアクリレヌトメタクリル
酞6.072.681.05.17のモル比で構成され
た共重合䜓であり、残りの重量が、゚ポキ
シ・モノアクリレヌトを含たない共重合䜓であ
る事が明らかずな぀た。  成分の混合 ゚ポキシ暹脂−ずしお、AER−667旭
化成瀟補、゚ポキシ圓量2000を甚いお、䞋蚘
の暹脂混合液を䜜成した。 − 35郚 − 62郚 − 郚 ゚チレングリコヌルモノブチル゚ヌテル 35郚 −オクタノヌル 15郚 合 蚈 150郚  氎分散液の調敎 暹脂混合液150郚を50℃に加熱し、撹拌をし
ながら、䞭和剀のゞメチルアミノ゚タノヌル
4.3郚及び氎300郚を滎䞋しお、氎分散液−を
埗た。 埗られた氎分散液−を40℃の也燥噚にケ
月間攟眮したが、倉化が芋られなか぀た。  焌付塗膜の䜜成ず物性の評䟡 氎分散液−をアルミ板に、也燥膜厚で10ミ
クロンになるようにスプレヌ塗装し、ただちに
180℃に調節されおいる熱颚埪環型也燥噚で
分間焌付けお、透明な塗膜を埗た。 この塗膜を甚いお、枩氎浞挬詊隓、殺菌詊
隓、屈曲性、氎抜出詊隓を行぀た。 枩氎浞挬詊隓は、玔氎、NaCl氎溶
液、ク゚ン酞氎溶液の100℃の液䞭に塗
装された板を時間浞挬埌、匕き䞊げお塗膜の
倉質ず密着性を調べたものである。 殺菌詊隓は、125℃の蒞気䞭に塗装板を時
間暎しお、塗膜の倉質ず密着性を調べた。 屈曲性は、塗装された偎を倖偎にしお180゜
折り曲げお、そのずきに発生する亀裂の有無を
調べた。 たた氎抜出詊隓は厚生省告瀺370号指定方法
に埓぀お抜出詊隓を行い、抜出物の過マンガン
酞カリりム消費量を調べた。 その結果 (1) 枩氎浞挬詊隓 倖芳 ゎバン目密着
性 玔氎 異垞なし 100100 NaCl氎溶液 〃 100100 ク゚ン酞氎溶液 異垞なし 100100 (2) 殺菌テスト 倖 芳 異垞なし ゎバン目密着詊隓 100100 (3) 屈曲性 亀裂なし (4) 氎抜出詊隓 KMnO4 消費量 2.4ppm 実斜䟋 〜 実斜䟋で合成した−、−及び−
を甚いお、衚−に瀺す配合に埓぀お、氎分散液
−、、を埗た。
It consists of a structural unit (Z) represented by the formula and can be obtained by copolymerizing monomers forming each structural unit. As with component (A), the arrangement of the constituent units is not particularly limited. The types of monomers that can form the structural units (X) and (Y) are exactly the same as (X) and (Z) that constitute component (A). In the copolymer (C) component, the ratio of the structural units (X) and (Z) is not particularly limited,
Preferably, (X) is in a range of 20 to 70 mol%, and (Z) is in a range of 30 to 80 mol%. The copolymer (C) component can be produced by the same method as the copolymer (A) component. It is also possible to produce component (C) at the same time as producing the copolymer of component (A). In the present invention, component (A), which is a constituent element thereof,
Component (B) and component (C) each have the following functions. That is, component (A) includes an epoxy resin that does not have a water dispersion function, and has a function of imparting water dispersibility. At this time, the structural unit (Y) in component (A) has an affinity with the epoxy resin and plays the role of stably incorporating the epoxy resin into the water dispersion particles. Component (B) takes advantage of its excellent mechanical and thermal properties to provide a coating film with hot water resistance, flexibility, and low water extractability, which is the objective of the present invention. Component (C), like component (A), has the function of imparting water dispersibility, but conversely, when the amount exceeds a certain level, it impairs hot water resistance and increases the amount of water extracted, causing food Since it has a serious drawback of impairing flavor properties in applications, it is preferable that the amount be within a certain range as much as possible. Therefore, as an essential requirement of the present invention, the amount of component (C) by weight must satisfy the relationship of (C) component/(A) component + (B) component + (C) component x 100<5. shall be. If it is 5 or more, hot water resistance will be impaired and the amount of water extracted will also increase. It also has the disadvantage that it takes a long time to bake during coating formation. Preferably it is 3 or less. The amounts of component (A) and component (B) can be arbitrarily selected depending on the purpose, but coating films with excellent hot water resistance,
In order to satisfy the performance required for coating films for cans, the weight must be 35 < (A) component / (A) component + (B) component + (C) component x 100 < 80 20 < (B) component The range of /(A) component+(B) component+(C) component×100<65 is preferable. If component (A) is less than 35% by weight, water dispersibility will be lacking, and if it is more than 80% by weight, hot water resistance will be impaired. If component (B) is less than 20% by weight, hot water resistance will be impaired, and if it is more than 65% by weight, water dispersibility will be poor. In the present invention, the method of mixing component (A), component (B), and component (C) is not particularly limited.
Two of the three components may be mixed first and one component may be added later, or the three components may be mixed at the same time. In addition, as a method to obtain a mixture of component (A), component (B), and component (C) at once, a mixture of the monomers forming the structural unit (Y) in component (A) and component (B) is prepared in advance. Then, add monomers forming the structural units of (X) and (Z) in component (A),
It is also possible to proceed with the copolymerization reaction in the presence of component (B). At this time, component (C) can also be formed at the same time. In a mixture consisting of component (A), component (B), and component (C), an example of a method for separating each component and analyzing the amount of each component is a fractionation method using a combination of solvents. To give a specific example, when a mixed solvent of ethanol and tetrahydrofuran is used in a weight ratio of 6:1, component (B) has low solubility and component (A) dissolves at a constant rate. vice versa
Component (C) is completely dissolved. Furthermore, if a mixed solvent of chloroform and tetrahydrofuran is used in a weight ratio of 6:1, components (A) and (B) will be completely dissolved.
Component (C) does not dissolve. In the present invention, particularly excellent hot water resistance,
When trying to obtain a coating film with low flexibility and water extractable components, the structural unit (Y) of the copolymer (A) component
and the total weight of the epoxy resin (B) component is 70% relative to the total weight of the (A) component, (B) component and (C) component.
Preferably it is ~90% by weight. If it is less than 70% by weight, the heat resistance will be low, resulting in a decrease in hot water resistance, and if it is more than 85% by weight, the viscosity of the mixture will be high and the stability during water dispersion will be likely to deteriorate. In the present invention, water dispersion is made possible by carboxyl anions obtained by neutralizing the carboxyl groups in components (A) and (B). The compound used for neutralization is an amine, such as ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethanolamine,
Diethanolamine, dimethylmethanolamine, dimethylethanolamine, etc. can be mentioned. When neutralizing in the present invention, it is essential that the amount of the above amine be 0.5 equivalent or less with respect to the total amount of carboxyl groups in components (A) and (B). When using 0.5 equivalent or more, component (A) and (B)
Anionic polymerization of the epoxy groups in the components tends to proceed, resulting in extremely poor storage stability of the aqueous dispersion. The preferred amount of amine used is 0.3 equivalents or less. As for the method of neutralization with amine, (A) component, (B)
A predetermined amount of the amine may be added alone or after diluting the amine with water to the mixture of the component and the component (C). When using the composition of the present invention, it is first diluted with water to obtain a desired viscosity to obtain an aqueous dispersion. At this time, an organic solvent may be added if necessary in order to improve the coating properties or prevent the occurrence of "repelling" or "unevenness". In the present invention, the copolymer component
When containing (A) and (C), it is preferable to use a water-soluble organic solvent, and if there is an organic solvent used during synthesis, there is no need to add it again here. Examples of organic solvents used in the synthesis and aqueous dispersion of copolymer components (A) and (C) include methanol,
ethanol, propyl alcohol, butanol,
Alcohols such as hexanol, octanol, and decanol; glycol derivatives such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether; and ethers such as dioxane. Ketones such as , acetone, methyl ethyl ketone, diacetone alcohol, and cyclohexanone are used. It is more preferable to use a mixture of two or more of these organic solvents than to use them alone. A preferred example is ethylene glycol monobutyl ether/
Mention may be made of the butanol/octanol combination and the butyl cellosolve/butanol/cyclohexanone combination. The total amount of water and organic solvent contained in the aqueous dispersion is preferably in the range of 10 to 1000 parts by weight based on 100 parts by weight of the resin solid content. The ratio of water to organic solvent is preferably 3:1 to 20:1 by weight. The obtained aqueous dispersion can be applied to an object by spray coating, roller coating, dipping coating, electrodeposition coating, or the like. The applied wet coating film can be baked at 100 to 200°C for 1 to 30 minutes, preferably at 160 to 200°C for 1 to 5 minutes, to form a uniform, transparent and good coating. By baking, the carboxyl groups in the components (A) and (C) react with the epoxy groups in the components (A) and (B) to form a crosslinked structure.
The reaction at this time is greatly accelerated by the addition of a catalyst. Basic compounds are effective as catalysts, such as alkali metal hydroxides such as KOH and NaOH, phosphorus compounds such as triphenylphosphine and triphenylphosphonium ethyliodine salt, and trimethylamine, benzyldimethylamine, diethylaminoethanol, etc. The following amine compounds can be mentioned. Preferred is diethylaminoethanol. The coating film obtained from the composition of the present invention can crosslink by itself to form a good coating film, but if necessary, a compound capable of reacting with the functional group of the composition of the present invention may be added to further improve the coating film. It is also possible to increase the degree of crosslinking. That is, since carboxyl groups, epoxy groups, and hydroxyl groups are present as functional groups in the composition of the present invention, the composition has functional groups such as hydroxyl groups, amino groups, carboxyl groups, acid anhydride groups, isocyanate groups, and methylol groups. Compounds, especially polyfunctional compounds, may be added. Specific examples include polyamines such as diethylenetriamine and diphenyldiaminomethane, acid anhydrides such as phthalic acid and trimellitic acid,
Examples include blocked isocyanates such as blocked tolylene diisocyanate and hexamethylene diisocyanate, methylol group-containing resins such as urea resins, melamine resins and phenol resins, dicyandiamide, and benzoguanamine. Preferred examples include melamine resins and phenolic resins, which can greatly improve the chemical resistance of the coating film. Pigments, additives, etc. commonly used in water-dispersible paints can be used in the composition of the present invention. Examples of pigments include titanium oxide, red iron oxide, talc, calcium carbonate, magnesium carbonate, aluminum powder, iron oxide, lead white, lead chromate, and carbon black. Examples of additives include carboxymethyl cellulose, polyvinylpyrrolidone, vinyl chloride-acetic acid emulsion, and the like. The objects to be coated with the composition of the present invention are mainly metals such as iron and its alloys, aluminum and its alloys, but are not necessarily limited thereto. As a special purpose, it can be used as a protective coating on the inner surface of cans, including beverage cans. Next, the present invention will be explained in more detail with reference to Examples. Parts in the examples refer to parts by weight unless otherwise specified. Example 1 1 Preparation of copolymer (A) component Bisphenol A type epoxy resin AER-331 (manufactured by Asahi Kasei Corporation) having an epoxy equivalent of 189 was distilled to obtain an epoxy resin having an epoxy equivalent of 170. Add 8.6 parts of methacrylic acid to 170 parts of this resin at 140°C.
A viscous resin was obtained by reacting for a period of time. The acid value of this resin was 0.5. When this resin was subjected to GPC and its weight fraction was examined, it was found that epoxy monoacrylate was 20.5% by weight and unreacted epoxy resin was 79.5% by weight. Therefore, this resin was fractionated using the difference in adsorption by styrene gel particles, and a 100% product of epoxy monoacrylate (hereinafter referred to as epoxy monoacrylate A) was obtained. This compound has a molecular weight of 426, one terminal group is an acryloyl group, the other terminal group is an epoxy group, and the structural unit (Y) in the copolymer (A) component in the composition of the present invention is It is a monomer that forms. 50 parts of methyl isobutyl ketone and 50 parts of n-butanol are charged into a reactor equipped with a reflux device prepared in advance and kept at 80°C. A monomer mixture having the following composition is added dropwise to this. Styrene 35 parts (0.34 mol) Methyl methacrylate 15 parts (0.15 mol) Epoxy monoacrylate A
25 parts (0.056 mol) Methacrylic acid 25 parts (0.29 mol) 4 parts azobisisobutyronitrile (hereinafter referred to as AIBN) After the dropwise addition, 1 part of AIBN was added and the reaction was continued by keeping at 90°C for about 24 hours. Ta. After the reaction was completed, the solvent was completely removed using a pressure reduction device to obtain solid resin A-1. The weight average molecular weight of A-1 was 5,500. The monomer yield was 99.5%. 2 Preparation of copolymer (C) component Next, in the same manner as above, styrene 35 parts methyl methacrylate 15 parts methacrylic acid 25 parts AIBN 3.5 parts The monomers of the composition were polymerized. After polymerization, the solvent is completely removed by vacuum treatment and solid resin C-
I got 1. The monomer yield was 99.8%. 3 Analysis of Resin A-1 First, a 6:1 solution (referred to as mixed solvent A) of gloloform/THF was prepared. When 50 parts of this solution was mixed and stirred with 10 parts of resin A-1 and left to stand overnight, some undissolved portion remained in the upper layer. Pass this undissolved part through your mouth, dry it, and then IR.
The presence or absence of epoxy groups and bisphenol A skeleton was investigated by NMR. As a result, the existence of either could not be confirmed. When the weight was measured, it was 0.1 part. Next, the dissolved portion was taken out, dried in the same manner, and weighed, and found to be 9.9 parts.
The absorption of the epoxy group of the resin in the dissolved region was detected by IR, and the skeleton of bisphenol A was detected by NMR. When the epoxy equivalent was similarly measured, it was found to be 1950, which revealed that the epoxy group of epoxy monoacrylate A remained intact. Therefore, the obtained resin is a copolymer composed of styrene/methyl methacrylate/epoxy monoacrylate/methacrylic acid = 6.07/2.68/1.0/5.17 in a molar ratio of 99% by weight, and the remaining 1% by weight % was found to be a copolymer containing no epoxy monoacrylate. 4. Mixing of three components The following resin mixture was prepared using AER-667 (manufactured by Asahi Kasei Corporation, epoxy equivalent: 2000) as epoxy resin B-1. A-1 35 parts B-1 62 parts C-1 3 parts Ethylene glycol monobutyl ether 35 parts n-octanol 15 parts Total 150 parts 5 Preparation of aqueous dispersion Heat 150 parts of the resin mixture to 50°C and stir. While the neutralizing agent dimethylaminoethanol
4.3 parts and 300 parts of water were added dropwise to obtain aqueous dispersion-1. The obtained aqueous dispersion-1 was left in a dryer at 40°C for one month, but no change was observed. 6 Creation of baked paint film and evaluation of physical properties Spray the aqueous dispersion-1 onto an aluminum plate to a dry film thickness of 10 microns, and immediately
3 in a hot air circulation type dryer controlled at 180℃
After baking for a minute, a transparent coating was obtained. Using this coating film, a hot water immersion test, a sterilization test, a flexibility test, and a water extraction test were conducted. In the hot water immersion test, a painted board was immersed in a 100°C solution of pure water, 5% NaCl solution, and 5% citric acid solution for 1 hour, and then pulled out to examine the deterioration and adhesion of the coating film. . In the sterilization test, the painted board was exposed to steam at 125°C for 1 hour, and the deterioration and adhesion of the paint film were examined. Flexibility was determined by bending the material 180 degrees with the painted side facing out and examining whether or not there were any cracks. The water extraction test was conducted in accordance with the method specified by Ministry of Health and Welfare Notification No. 370, and the amount of potassium permanganate consumed in the extract was investigated. Results (1) Warm water immersion test Appearance Patch adhesion Pure water No abnormality 100/100 5% NaCl aqueous solution 〃 100/100 5% citric acid aqueous solution No abnormality 100/100 (2) Sterilization test Appearance No abnormality Patch adhesion Test 100/100 (3) Flexibility No cracks (4) Water extraction test KMnO 4 consumption 2.4 ppm Examples 2 to 4 A-1, C-1 and B-1 synthesized in Example 1
Aqueous dispersions-2, 3, and 4 were obtained according to the formulations shown in Table-1.

【衚】【table】

【衚】 埗られた氎分散液を甚いお実斜䟋ず同様の方法
により塗膜を䜜成し、物性を評䟡した。その結果
を衚−に瀺す。たた氎分散液を25℃でカ月間
攟眮したずころ、いずれも倉化がみられなか぀
た。
[Table] Using the obtained aqueous dispersion, a coating film was prepared in the same manner as in the example, and the physical properties were evaluated. The results are shown in Table-2. Further, when the aqueous dispersion was left at 25°C for 6 months, no change was observed in either case.

【衚】 比范䟋  実斜䟋で合成した−、−及び−
を甚いお、䞋蚘の配合に埓぀お氎分散液を埗
た。 − 30郚 − 60郚 − 10郚 ゚チレングリコヌルモノブチル゚ヌテル 35郚 −オクタノヌル 15郚 ゞメチルアミノ゚タノヌル 3.3郚 æ°Ž 300郚 埗られた氎分散液を甚いお、実斜䟋ず同様の方
法により塗膜を䜜成し、物性を評䟡した。その結
果を䞋蚘に瀺す。 (1) 枩氎浞挬詊隓 倖芳 ゎバン目密着
性 玔氎 異垞なし 100100 NaCl氎溶液 癜化あり 80100 ク゚ン酞氎溶液 癜化あり 50100 (2) 殺菌テスト 少し癜化 100100 (3) 屈曲性 亀裂なし (4) 氎抜出詊隓 KMnO4 消費量 5.1ppm 比范䟋  実斜䟋においお、甚いたゞメチルアミノ゚タ
ノヌルの量を、8.6郚に替えるこずによ぀お、氎
分散液−を埗た。 氎分散液−を40℃の也燥噚に攟眮したずころ
玄週間でゲル化した。 実斜䟋  ゚ポキシ圓量が2700であるビスプノヌル型
゚ポキシ暹脂AER−669旭化成瀟補を270郚
にメタクリル酞2.1郚をNaOHを觊媒ずしお、゚
チレングリコヌルモノブチル゚ヌテル200郚䞭
で、130℃の枩床を保぀お玄時間反応させた。 この暹脂溶液472.1郚に、スチレン40郚、メタ
クリル酞50郚、゚チルアクリレヌト20郚、ラりリ
ル・パヌオキシド郚を混合しおモノマヌ溶液を
䜜成した。このモノマヌ溶液の1/3を還流装眮を
備えた反応噚に仕蟌み、85℃に玄時間保぀。残
りの1/3を玄10時間かけお滎䞋投入する。滎䞋終
了埌玄10時間反応を行な぀お粘皠な暹脂溶液を埗
た。 この暹脂溶液を枛圧により溶剀を陀去しお、固
䜓状の暹脂385郚を埗た。これにクロロホルムず
テトラヒドロフランの重量比で察の溶剀を
2000郚を加えお、宀枩でよく撹拌混合したのち、
䞀昌倜攟眮した。溶解郚1000郚を取り出しお、再
び枛圧により溶剀を陀去しお固䜓状暹脂を埗た。
GPCによりこの固䜓状暹脂の分子量分垃を調べ
たずころAER−669に基づく第䞀の分子量分垃
ず、それより高分子偎にもう䞀぀の第二の分子量
分垃があるこずが確認された。そこで第䞀の分子
量分垃の䜎分子偎詊料−ず、第二の分子量分
垃の高分子偎詊料−をGPCにより分取し
お、NMR及び熱分解ガスクロマトグラフにかけ
た。その結果−は官胜性のビスプノヌル
型゚ポキシ暹脂であり、−はスチレン、メ
タクリル酞、゚チルアクリレヌト及びビスプノ
ヌル型゚ポキシ暹脂の残基が確認された。 この固䜓状暹脂98郚に、実斜䟋で合成した
−成分郚およびシクロヘキノン10郚、゚チレ
ングリコヌルモノブチル゚ヌテル10郚を加えお均
䞀に溶解したのち、ゞメチルアミノ゚タノヌル
3.5郚、氎395郚を加えお氎分散䜓溶液を埗た。 氎分散䜓溶液の性状は次のずおりであ぀た。 PH 6.8 粘床型粘床蚈25℃cps 380 分散粒子の平均埄Ό 0.4 40℃カ月攟眮埌の状態 倉化なし 氎分散䜓溶液をブリキ板に也燥膜厚が10Όに
なる様に塗垃し190℃分間の焌付けを行぀
た。この䜜業をくり返しお30Όの膜厚の塗膜を埗
た。この塗膜を氎銀アマルガム法によりブリキ板
より剥離し、評䟡甚サンプルずした。 詊隓はJIS−−6911に準じお、匕匵り匷䌞
床、吞氎率を枬定した。 匕匵り匷床Kgcm2 45.8 䌞び率 9.5 吞氎率wt※ 0.8 ※週間25℃浞挬埌の重量増 次に本氎分散液を甚いお、実斜䟋ず同様に
しお塗膜の物性を評䟡した。その結果を次に瀺
す。 (1) 枩氎浞挬詊隓 倖芳 ゎバン目密着
性 玔氎 異垞なし 100100 NaCl氎溶液 〃 〃 ク゚ン酞氎溶液 〃 〃 (2) 殺菌テスト 〃 〃 (3) 屈曲性 亀裂なし (4) 氎抜出テスト KMnO4 消費量 0.8ppm
[Table] Comparative Example 1 A-1, C-1 and B-1 synthesized in Example 1
Using this method, aqueous dispersion 5 was obtained according to the following formulation. A-1 30 parts B-1 60 parts C-1 10 parts Ethylene glycol monobutyl ether 35 parts n-octanol 15 parts Dimethylaminoethanol 3.3 parts Water 300 parts Using the obtained aqueous dispersion, the same method as in Example A coating film was prepared and its physical properties were evaluated. The results are shown below. (1) Warm water immersion test Appearance Adherence to pure water No abnormalities 100/100 5% NaCl aqueous solution Whitening 80/100 5% citric acid aqueous solution Whitening 50/100 (2) Sterilization test Slight whitening 100/100 (3) Flexibility No cracks (4) Water extraction test KMnO 4 consumption 5.1 ppm Comparative example 2 Aqueous dispersion-6 was obtained by changing the amount of dimethylaminoethanol used in Example 1 to 8.6 parts. . When the aqueous dispersion-6 was left in a dryer at 40°C, it gelled in about one week. Example 5 270 parts of bisphenol A type epoxy resin AER-669 (manufactured by Asahi Kasei Corporation) having an epoxy equivalent of 2700, 2.1 parts of methacrylic acid and NaOH as a catalyst were mixed at a temperature of 130°C in 200 parts of ethylene glycol monobutyl ether. The reaction was continued for about 5 hours. A monomer solution was prepared by mixing 472.1 parts of this resin solution with 40 parts of styrene, 50 parts of methacrylic acid, 20 parts of ethyl acrylate, and 5 parts of lauryl peroxide. One-third of this monomer solution is charged into a reactor equipped with a reflux device and kept at 85°C for about 5 hours. Add the remaining 1/3 dropwise over about 10 hours. After the dropwise addition was completed, the reaction was carried out for about 10 hours to obtain a viscous resin solution. The solvent was removed from this resin solution under reduced pressure to obtain 385 parts of solid resin. To this, add a solvent of chloroform and tetrahydrofuran in a weight ratio of 6:1.
After adding 2000 parts and stirring and mixing well at room temperature,
I left it for a day and night. 1000 parts of the dissolved portion was taken out and the solvent was removed again under reduced pressure to obtain a solid resin.
When the molecular weight distribution of this solid resin was examined by GPC, it was confirmed that there was a first molecular weight distribution based on AER-669 and a second molecular weight distribution on the higher molecular side. Therefore, a low molecular weight sample X-1 with a first molecular weight distribution and a high molecular weight sample X-2 with a second molecular weight distribution were fractionated by GPC and subjected to NMR and pyrolysis gas chromatography. As a result, it was confirmed that X-1 was a bifunctional bisphenol A type epoxy resin, and X-2 contained residues of styrene, methacrylic acid, ethyl acrylate, and bisphenol A type epoxy resin. Add C synthesized in Example 1 to 98 parts of this solid resin.
- Add 2 parts of component 1, 10 parts of cyclohexynone, and 10 parts of ethylene glycol monobutyl ether and dissolve them uniformly, then dimethylaminoethanol.
3.5 parts and 395 parts of water were added to obtain an aqueous dispersion solution 7. The properties of aqueous dispersion solution 7 were as follows. PH 6.8 Viscosity (B-type viscometer 25℃/cps) 380 Average diameter of dispersed particles (ÎŒm) 0.4 Condition after standing at 40℃/1 month No change Spread water dispersion solution 7 on a tin plate and the dry film thickness becomes 10ÎŒ The coating was applied in a similar manner and baked at 190°C for 1 minute. This process was repeated to obtain a coating film with a thickness of 30ÎŒ. This coating film was peeled off from the tin plate using the mercury amalgam method and used as a sample for evaluation. In the test, tensile strength, elongation, and water absorption were measured in accordance with JIS-K-6911. Tensile strength (Kg/cm 2 ) 45.8 Elongation rate (%) 9.5 Water absorption rate (wt%)* 0.8 *Weight increase after 1 week immersion at 25°C Next, using this aqueous dispersion 7, the same procedure as in Example 1 was carried out. The physical properties of the coating film were evaluated. The results are shown below. (1) Hot water immersion test Appearance Goban adhesion Pure water No abnormalities 100/100 5% NaCl aqueous solution 〃 〃 5% citric acid aqueous solution 〃 〃 (2) Sterilization test 〃 〃 (3) Flexibility No cracks (4) Water extraction Test KMnO 4 consumption 0.8ppm

Claims (1)

【特蚱請求の範囲】  (ã‚€) 構造匏が、次の構成単䜍、お
よびから成る共重合䜓(A)成分ず 【匏】【匏】【匏】 䜆しR1は−たたは−CH3、 R2は【匏】たたは【匏】 ここでR5は−oH2+1、、 R3は ここで〜100の敎数、R6は【匏】 を衚わすものずする。 (ロ) 構造匏が、 䜆しR7は で衚わされる゚ポキシ暹脂(B)成分および (ハ) 構造匏が、次の構成単䜍および
から成る共重合䜓(C)成分 【匏】【匏】 ずから成る混合物においお、重量比が (C)成分(A)成分(B)成分(C)成分×100 (1) で瀺される組成を有し、共重合䜓(A)成分が、構成
単䜍をモル、構成単䜍をモルお
よび構成単䜍をモル含み、、および
の間の関係匏が 20×10070 (2) 30×10080 (3) ≊ (4) で瀺される組成を有し、か぀(A)成分ず(B)成分䞭の
カルボキシル基の50以䞋がアミンで䞭和された
塩であるこずを特城ずする氎分散可胜な暹脂組成
物。  共重合䜓(A)成分の構成単䜍および゚ポ
キシ暹脂(B)成分の合蚈重量が、(A)成分、(B)成分お
よび(C)成分の合蚈重量に察しお、70〜90である
こずを特城ずする特蚱請求の範囲第項蚘茉の組
成物。  共重合䜓(A)成分および゚ポキシ暹脂(B)成分の
甚いる割合が重量で次匏 35(A)成分(A)成分(B)成分(C)成分×10080(5) 20(B)成分(A)成分(B)成分(C)成分×10065(6) を満すこずを特城ずする特蚱請求の範囲第項蚘
茉の組成物。
[Claims] 1 (a) A copolymer (A) component whose structural formula consists of the following structural units (X), (Y) and (Z) and [Formula] [Formula] [Formula] [However, R 1 is -H or -CH 3 , R 2 is [Formula] or [Formula] (where R 5 is -C o H 2+1 (n=1, 2), R 3 is (Here, m = an integer from 0 to 100, and R 6 represents [formula].)] (b) The structural formula is [However, R 7 The epoxy resin (B) component and (c) structural formula represented by the following structural units (X) and (Z)
A copolymer consisting of component (C) [formula] [formula] In a mixture consisting of component (C) and [formula], the weight ratio is component (C) / component (A) + component (B) + component (C) x 100 < 5 (1) The copolymer (A) component contains x moles of the structural unit (X), y moles of the structural unit (Y) and z moles of the structural unit (Z), and x, y and z The relational expression between is 20<x/x+y+z×100<70 (2) 30<z/x+y+z×100<80 (3) 1≩y<5 (4) and (A) A water-dispersible resin composition characterized in that not more than 50% of the carboxyl groups in the component and (B) are salts neutralized with amines. 2 The total weight of the structural unit (Y) of the copolymer (A) component and the epoxy resin (B) component is 70 to 90% of the total weight of the (A) component, (B) component, and (C) component. % of the composition according to claim 1. 3 The ratio of copolymer (A) component and epoxy resin (B) component used is expressed by the following formula 35 < (A) component / (A) component + (B) component + (C) component x 100 < 80 (5 ) 20<component (B)/component (A)+component (B)+component (C)×100<65(6).
JP21500283A 1983-11-17 1983-11-17 Water-dispersible resin composition Granted JPS60108417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21500283A JPS60108417A (en) 1983-11-17 1983-11-17 Water-dispersible resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21500283A JPS60108417A (en) 1983-11-17 1983-11-17 Water-dispersible resin composition

Publications (2)

Publication Number Publication Date
JPS60108417A JPS60108417A (en) 1985-06-13
JPS6249291B2 true JPS6249291B2 (en) 1987-10-19

Family

ID=16665074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21500283A Granted JPS60108417A (en) 1983-11-17 1983-11-17 Water-dispersible resin composition

Country Status (1)

Country Link
JP (1) JPS60108417A (en)

Also Published As

Publication number Publication date
JPS60108417A (en) 1985-06-13

Similar Documents

Publication Publication Date Title
US4886852A (en) Process for preparing an aqueous dispersion
US4458040A (en) Aqueous coating resin composition
US4740546A (en) Aqueous dispersion of vinyl copolymer resin
US3993612A (en) Aqueous coating composition
US4521565A (en) Aqueous dispersion
JPS5824464B2 (en) Carboxy acrylic coating materials
EP1008635A1 (en) Dirt pickup resistant coating binder and coatings
CN103282340A (en) Substituted 3-xopentanoates and their uses in coating compositions
US4990572A (en) Composite resin particles and preparation thereof
KR20010030851A (en) Scrub Resistant Latexes
JPH1087676A (en) New (meth)acrylic resin composition for antifouling coating material for ship and corresponding coating material composition
JPS6249291B2 (en)
JPS59147058A (en) Concentrated binder for plaster
JP2867823B2 (en) Aqueous paint composition
GB2108976A (en) Aqueous coating composition
JP2605095B2 (en) Acrylic resin-coated metal pigments for water-based paints
JP2773915B2 (en) Aqueous coating composition for can inner surface
JP2003096386A (en) Resin composition for aqueous coating material
JP3366996B2 (en) Aqueous resin composition for metal coating
EP1565513B1 (en) Resin cross-linking
JP3175543B2 (en) Aqueous paint composition
JP3696970B2 (en) Aqueous paint composition and process for producing the same
JPH06206949A (en) Aqueous resin dispersion and its production
JP3414424B2 (en) Water-dispersed resin composition and paint using the same
JP2922582B2 (en) Aqueous aerosol coating composition