JPS6248971B2 - - Google Patents

Info

Publication number
JPS6248971B2
JPS6248971B2 JP16526883A JP16526883A JPS6248971B2 JP S6248971 B2 JPS6248971 B2 JP S6248971B2 JP 16526883 A JP16526883 A JP 16526883A JP 16526883 A JP16526883 A JP 16526883A JP S6248971 B2 JPS6248971 B2 JP S6248971B2
Authority
JP
Japan
Prior art keywords
refractive index
epoxy resin
optical
present
index matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16526883A
Other languages
Japanese (ja)
Other versions
JPS6058421A (en
Inventor
Tooru Maruno
Kozaburo Nakamura
Shigekuni Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16526883A priority Critical patent/JPS6058421A/en
Priority to DE8484306060T priority patent/DE3475625D1/en
Priority to EP84306060A priority patent/EP0137716B1/en
Priority to US06/647,637 priority patent/US4591627A/en
Publication of JPS6058421A publication Critical patent/JPS6058421A/en
Priority to US06/827,059 priority patent/US4637939A/en
Publication of JPS6248971B2 publication Critical patent/JPS6248971B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、光通信方式及び各種光学機器等に用
いる光学部材の製造方法に関する。更に詳しくは
作業時には光学部材へのぬれ性に優れ、加熱、硬
化後は光透過率、接着強度、耐熱性に優れかつ、
屈折率を光学部材の屈折率に応じて適正化して整
合することができる光学部材の製造方法に関す
る。 〔従来技術〕 従来、屈折率整合方法としてはシリコーンオイ
ル等を用いる方法が知られており、例えば光フア
イバの接続において屈折率整合用として用いられ
ていた。しかしながら、この種の屈折率整合剤は
液状であるため、その流出を防止するための容器
のシールが必要であるなど、工程上及び作業上複
雑であり、長期信頼性を十分保証しうるものでな
かつた。 その点を従来技術による光フアイバと光フアイ
バの屈折率整合方法を例にしてとり、第1図及び
第2図に基づいて説明する。すなわち第1図は従
来のV溝接続の模式断面概略図であり、第2図は
その斜視図である。第1図において付号は光フ
アイバ、2はV溝、3はエポキシ樹脂、4はマツ
チングオイル、5は瞬間接着剤を示す。第2図に
おいては記号は光フアイバ、6A〜6Cはふ
た、7はV溝基盤を意味する。第1図及び第2図
に示すように、まず光フアイバと光フアイバを成
形品のV溝に沿わせてつき合せ、このつき合せ部
分にシリコーン系のマツチングオイルを滴下し、
光フアイバを成形品とアロンアルフア等の瞬間接
着剤で仮留めする。しかる後、成形品に接着剤を
塗布し、硬化させる。この接着剤塗布及び硬化に
よりマツチングオイルの流出を防止しようとする
ものであつた。しかしながら、この屈折率整合方
法は作業工程が複雑な上、歩留りも悪く、長期信
頼性を十分保証できないという欠点があつた。こ
のため、屈折率を制御できて、かつマツチングオ
イルが流出しない屈折率整合方法の出現が望まれ
ていた。 また、光源としてレーザーダイオードを用いる
場合には、反射光がレーザーダイオード中に入る
とノイズを発生するため、反射減衰量を極めて小
さくする必要があつた。この点を第3図に基づい
て説明する。第3図はレーザー光の光フアイバへ
の入光概略図である。図中、は第1図と同じ、
11はガラスフアイバ、12は外被、はレーザ
ーダイオードを示す。第3図に示すように入面角
を0度からわずかにずらして、すなわちカツプリ
ングを悪くしても反射光がレーザーダイオード光
源に戻らないようにしていた。このため、透過光
を最大にすることができず、反射の極めて小さい
屈折率整合方法の出現が望まれていた。 また、これらの問題を解決するため、接着剤を
屈折率整合剤として用いる方法が考えられてい
る。しかし、従来の接着剤は屈折率を変化させる
ことができず、このため、接着剤と屈折率が異な
る光学部材を用いる光学系や、屈折率が広範囲に
分布する種類の光学部材を用いる光学系に適用し
た場合には透過損失と入力側への反射が大きくな
るとう欠点があつた。更に従来の接着剤は光学系
に適用する場合に要求される光学部材へのぬれ
性、光透過率、接着強度、耐熱性をすべて満足す
ることは困難であり、これらの特性を満足する新
規な屈折率整合剤とこれを用いた屈折率整合方法
の開発が望まれていた。 〔発明の目的〕 本発明は、作業時には流動性を保持し、硬化後
は固体化して流出しなくなることを特徴とする屈
折率整合剤を用いた屈折率整合方法に関するもの
であり、その目的は作業性、長期信頼性に優れた
光学部材の製造方法を提供することにある。 〔発明の構成〕 本発明を概説すれば、本発明は光学部材の製造
方法の発明であつて、下記一般式: 〔但し、式中のnは0〜5の数を示す〕 で表される多フツ素化エポキシ樹脂と硬化剤、若
くは上記多フツ素化エポキシ樹脂と他のエポキシ
樹脂との混合物と硬化剤とを主成分とする屈折率
整合剤を加熱、混合、脱泡した後、光学部材の片
面にコーテイングするか、あるいは光学部材の間
に挿入し、その後加熱硬化することを特徴とす
る。 本発明者等は一般式で表される多フツ素化エ
ポキシ樹脂と硬化剤若しくは多フツ素化エポキシ
樹脂と他のエポキシ樹脂との混合物と硬化剤とを
主成分として配合してなる組成物が、作業性に優
れ、かつ硬化後に流動して流出することなく、長
期信頼性に優れた屈折率整合剤として使用できる
ことを見出し本発明を完成するに至つた。 本発明に用いられる一般式で表される多フツ
素化エポキシ樹脂は、一部市販もされている公知
の樹脂である。本発明者等は、前記一般式中の
nが0〜5の範囲のものが、上記した本発明の用
途に同等の効果を奏することを見出した。 本発明に用いられる他のエポキシ樹脂として
は、例えばビスフエノールAのジグリシジルエー
テル、フエノールノボラツク、ポリグリコールの
ジグリシジルエーテル等を挙げることができる。 本発明に用いられる硬化剤としては、例えばト
リエチレンテトラミン等のアミン系化合物、ポリ
アミド樹脂系化合物、無水メチルナジツク酸等の
酸無水物系化合物等を挙げることができる。こう
した硬化剤の配合量は、接着強度、耐水耐湿性、
耐熱性に優れた接着性組成物を得る観点から、エ
ポキシ樹脂1当量に対して0.8〜1.0当量とするこ
とが望ましい。 なお、本発明においては必要に応じてベンジル
ジメチルアミン、2―エチル―4―メチルイミダ
ゾール等の硬化促進剤を配合してもよい。かかる
硬化促進剤の配合量はエポキシ樹脂100重量部に
対して0.5〜2重量部とすることが好ましい。そ
の他、各種の希釈剤、変性剤、展伸剤、軟化剤等
を適宜配合することも可能である。 〔実施例〕 次に本発明を実施例により更に具体的に説明す
るが本発明はこれに限定されない。 実施例 1〜3 一般式で表される多フツ素化エポキシ樹脂
(エポキシ当量225、n=0)〔以下FEpと略す〕
とエポキシ当量189のビスフエノールAのジグリ
シジルエーテル(油化シエルエポキシ社製、エピ
コート828)を下記第1表に示す割合で配合した
エポキシ樹脂を用意し、これらエポキシ樹脂100
重量部に硬化剤としてポリアミド樹脂系化合物
(ヘンケル日本社製、バーサミドV―140)を50重
量部それぞれ添加し加熱、混合、脱泡して3種の
光学用接着性組成物を調製した。しかして、得ら
れた各光学用接着性組成物を90℃、4時間加熱し
て硬化させた場合の石英に対するせん断接着強度
と組成物のガラス転移温度、屈折率及びエポキシ
樹脂の表面張力について調べた。その結果を同第
1表に併記した。 なお、第1表中の比較例は油化シエルエポキシ
社製のエピコート828のみからなるエポキシ樹脂
に実施例と同様な硬化剤を同量配合して得た接着
性組成物である。
[Industrial Application Field] The present invention relates to a method for manufacturing optical members used in optical communication systems and various optical devices. More specifically, it has excellent wettability to optical components during work, and has excellent light transmittance, adhesive strength, and heat resistance after heating and curing.
The present invention relates to a method of manufacturing an optical member that can optimize and match the refractive index according to the refractive index of the optical member. [Prior Art] Conventionally, as a refractive index matching method, a method using silicone oil or the like has been known, and has been used, for example, for refractive index matching in the connection of optical fibers. However, since this type of refractive index matching agent is in liquid form, the process and operations are complicated, such as the need to seal the container to prevent its leakage, and long-term reliability cannot be fully guaranteed. Nakatsuta. This point will be explained based on FIGS. 1 and 2, taking as an example a method of matching the refractive index of optical fibers according to the prior art. That is, FIG. 1 is a schematic cross-sectional view of a conventional V-groove connection, and FIG. 2 is a perspective view thereof. In FIG. 1, reference number 1 indicates an optical fiber, 2 indicates a V-groove, 3 indicates an epoxy resin, 4 indicates matting oil, and 5 indicates an instant adhesive. In FIG. 2, the symbol 1 means the optical fiber, 6A to 6C the lid, and 7 the V-groove base. As shown in FIGS. 1 and 2, first, the optical fibers are brought together along the V-groove of the molded product, and silicone-based matting oil is dripped onto the mating area.
Temporarily attach the optical fiber to the molded product using an instant adhesive such as Aron Alpha. After that, adhesive is applied to the molded product and allowed to harden. This adhesive application and curing was intended to prevent matching oil from flowing out. However, this refractive index matching method has disadvantages in that the working process is complicated, the yield is poor, and long-term reliability cannot be fully guaranteed. Therefore, it has been desired to develop a refractive index matching method that can control the refractive index and prevent matching oil from flowing out. Further, when a laser diode is used as a light source, it is necessary to make the amount of return loss extremely small because noise is generated when reflected light enters the laser diode. This point will be explained based on FIG. FIG. 3 is a schematic diagram of laser light entering the optical fiber. In the figure, 1 is the same as in Figure 1,
11 is a glass fiber, 12 is a jacket, and 8 is a laser diode. As shown in FIG. 3, the entrance angle was slightly shifted from 0 degrees to prevent reflected light from returning to the laser diode light source even if the coupling was poor. For this reason, it has been desired to develop a refractive index matching method in which transmitted light cannot be maximized and reflection is extremely small. Furthermore, in order to solve these problems, a method of using an adhesive as a refractive index matching agent has been considered. However, conventional adhesives cannot change the refractive index, and for this reason, optical systems that use optical members that have a different refractive index from the adhesive, or optical members that have a wide range of refractive index distributions. However, when applied to a conventional device, the disadvantage is that transmission loss and reflection toward the input side become large. Furthermore, it is difficult for conventional adhesives to satisfy all of the requirements for wettability to optical components, light transmittance, adhesive strength, and heat resistance when applied to optical systems. It has been desired to develop a refractive index matching agent and a refractive index matching method using the same. [Object of the Invention] The present invention relates to a refractive index matching method using a refractive index matching agent that maintains fluidity during operation and solidifies after curing and does not flow out. An object of the present invention is to provide a method for manufacturing an optical member with excellent workability and long-term reliability. [Structure of the Invention] To summarize the present invention, the present invention is an invention of a method for manufacturing an optical member, which comprises the following general formula: [However, n in the formula represents a number from 0 to 5] A multifluorinated epoxy resin and a curing agent, or a mixture of the above multifluorinated epoxy resin and another epoxy resin and a curing agent After heating, mixing, and defoaming a refractive index matching agent whose main components are, it is coated on one side of an optical member or inserted between optical members, and then heated and cured. The present inventors have discovered that a composition containing as main components a multifluorinated epoxy resin represented by the general formula and a curing agent, or a mixture of a multifluorinated epoxy resin and another epoxy resin, and a curing agent is developed. The present inventors have completed the present invention by discovering that the refractive index matching agent can be used as a refractive index matching agent that has excellent workability, does not flow and flow after curing, and has excellent long-term reliability. The multifluorinated epoxy resin represented by the general formula used in the present invention is a known resin that is partially commercially available. The present inventors have found that those in which n in the general formula is in the range of 0 to 5 have the same effect in the above-mentioned uses of the present invention. Examples of other epoxy resins used in the present invention include diglycidyl ether of bisphenol A, phenol novolac, and diglycidyl ether of polyglycol. Examples of the curing agent used in the present invention include amine compounds such as triethylenetetramine, polyamide resin compounds, and acid anhydride compounds such as methylnadic anhydride. The amount of curing agent is determined by adhesive strength, water resistance, moisture resistance,
From the viewpoint of obtaining an adhesive composition with excellent heat resistance, the amount is preferably 0.8 to 1.0 equivalent per equivalent of epoxy resin. In the present invention, a curing accelerator such as benzyldimethylamine and 2-ethyl-4-methylimidazole may be added as necessary. The amount of the curing accelerator to be blended is preferably 0.5 to 2 parts by weight per 100 parts by weight of the epoxy resin. In addition, various diluents, modifiers, extenders, softeners, etc. can also be appropriately blended. [Example] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Examples 1 to 3 Multifluorinated epoxy resin represented by the general formula (epoxy equivalent: 225, n=0) [hereinafter abbreviated as FEp]
An epoxy resin containing diglycidyl ether of bisphenol A (manufactured by Yuka Ciel Epoxy Co., Ltd., Epicoat 828) having an epoxy equivalent of 189 was prepared in the proportions shown in Table 1 below, and these epoxy resins 100
50 parts by weight of a polyamide resin compound (Versamide V-140, manufactured by Henkel Japan Co., Ltd.) as a curing agent was added to each part by weight, and three types of optical adhesive compositions were prepared by heating, mixing, and defoaming. The resulting optical adhesive compositions were cured by heating at 90°C for 4 hours, and the shear adhesive strength to quartz, the glass transition temperature of the compositions, the refractive index, and the surface tension of the epoxy resin were investigated. Ta. The results are also listed in Table 1. The comparative example in Table 1 is an adhesive composition obtained by blending the same amount of the same curing agent as in the example with an epoxy resin consisting only of Epicoat 828 manufactured by Yuka Ciel Epoxy Co., Ltd.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば光の透過
率が大きく、接着強度、耐熱性、被着体へのぬれ
性が著しく優れ、かつ必要に応じて屈折率を広範
囲に変化させられる光学部材の製造方法を提供す
ることができる。
As detailed above, the present invention provides an optical system that has high light transmittance, excellent adhesive strength, heat resistance, and wettability to adherends, and is capable of changing the refractive index over a wide range as necessary. A method for manufacturing a member can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のV溝接続の模式断面概略図、第
2図はその斜視図、第3図はレーザー光の光フア
イバへの入光概略図、第4図は透過率と波長の関
係を示すグラフ、第5図は厚さと透過率の関係を
示すグラフ、第6、8、10、12、14〜16
の各図は整合剤厚と反射率の関係を示すグラフ、
第7図はプリズムの組合せ図、第9図は1つのプ
リズム系の模式図、第11図はセルフオツクレン
ズ系の模式図、そして第13図a,bはセルフオ
ツクレンズと光フアイバの接合を示す模式図であ
る。 :光フアイバ、2:V溝、3:エポキシ樹
脂、4:マツチングオイル、5:瞬間接着剤、6
A〜6C:ふた、7:V溝基盤、:レーザーダ
イオード、9:プリズム、10:屈折率整合剤、
13:セルフオツクレンズ。
Figure 1 is a schematic cross-sectional view of a conventional V-groove connection, Figure 2 is a perspective view thereof, Figure 3 is a schematic diagram of laser light entering an optical fiber, and Figure 4 shows the relationship between transmittance and wavelength. Figure 5 is a graph showing the relationship between thickness and transmittance, graphs 6, 8, 10, 12, 14 to 16.
Each figure is a graph showing the relationship between matching agent thickness and reflectance,
Fig. 7 is a diagram of a combination of prisms, Fig. 9 is a schematic diagram of one prism system, Fig. 11 is a schematic diagram of a self-occurring lens system, and Fig. 13 a and b shows the joining of a self-occurring lens and an optical fiber. FIG. 1 : Optical fiber, 2: V groove, 3: Epoxy resin, 4: Matching oil, 5: Instant adhesive, 6
A to 6C: Lid, 7: V-groove base, 8 : Laser diode, 9: Prism, 10: Refractive index matching agent,
13: Self-cleanse.

Claims (1)

【特許請求の範囲】 1 下記一般式: 〔但し、式中のnは0〜5の数を示す〕で表さ
れる多フツ素化エポキシ樹脂と硬化剤、若しくは
上記多フツ素化エポキシ樹脂の他のエポキシ樹脂
との混合物と硬化剤とを主成分とする屈折率整合
剤を加熱、混合、脱泡した後、光学部材の片面に
コーテイングするか、あるいは光学部材の間に挿
入し、その後加熱硬化することを特徴とする光学
部材の製造方法。
[Claims] 1. The following general formula: [However, n in the formula represents a number of 0 to 5] and a curing agent, or a mixture of the above multifluorinated epoxy resin with another epoxy resin and a curing agent. After heating, mixing, and defoaming a refractive index matching agent mainly composed of Method.
JP16526883A 1983-09-09 1983-09-09 Manufacture of optical part Granted JPS6058421A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16526883A JPS6058421A (en) 1983-09-09 1983-09-09 Manufacture of optical part
DE8484306060T DE3475625D1 (en) 1983-09-09 1984-09-05 Optical adhesive composition
EP84306060A EP0137716B1 (en) 1983-09-09 1984-09-05 Optical adhesive composition
US06/647,637 US4591627A (en) 1983-09-09 1984-09-06 Optical adhesive composition
US06/827,059 US4637939A (en) 1983-09-09 1986-02-07 Optical adhesive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16526883A JPS6058421A (en) 1983-09-09 1983-09-09 Manufacture of optical part

Publications (2)

Publication Number Publication Date
JPS6058421A JPS6058421A (en) 1985-04-04
JPS6248971B2 true JPS6248971B2 (en) 1987-10-16

Family

ID=15809097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16526883A Granted JPS6058421A (en) 1983-09-09 1983-09-09 Manufacture of optical part

Country Status (1)

Country Link
JP (1) JPS6058421A (en)

Also Published As

Publication number Publication date
JPS6058421A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
EP0137716B1 (en) Optical adhesive composition
US6196730B1 (en) Fiber optic connector containing a curable adhesive composition
JPS6248971B2 (en)
US6760533B2 (en) Optical adhesive composition and optical device
CN106029812A (en) Adhesive composition for high-power optical fibre
JP3135108B2 (en) Adhesive for fixing optical parts
CA2411185A1 (en) Optical adhesive composition and optical device
JPS6249290B2 (en)
JPH021871B2 (en)
JPH0455230B2 (en)
JPS6144969A (en) Bondable composition and production of optical member by using same
JP2004352771A (en) Ultraviolet-curable epoxy resin composition
JP3073322B2 (en) Optical fiber fixing method
JPS6314010B2 (en)
JP3128314B2 (en) Adhesive for optical fiber
JPH0381384A (en) One-pack type adhesive for oily surface
JPS612780A (en) Adhesive composition
JP2004027140A (en) Optical adhesive composition and optical instrument
JPS61292105A (en) Plastic optical fiber having superior heat resistance
JPS5812312B2 (en) glue
JP3807601B2 (en) Adhesive for optical fiber connector and optical fiber connector
JPH03277676A (en) Adhesive for optical member made of transparent plastics
JP2924403B2 (en) Connector fixed plastic optical fiber
JP2004027141A (en) Optical adhesive composition and optical instrument
JP2003089780A (en) Adhesive for optical fiber connector and optical fiber connector