JPS6248966A - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine

Info

Publication number
JPS6248966A
JPS6248966A JP13258286A JP13258286A JPS6248966A JP S6248966 A JPS6248966 A JP S6248966A JP 13258286 A JP13258286 A JP 13258286A JP 13258286 A JP13258286 A JP 13258286A JP S6248966 A JPS6248966 A JP S6248966A
Authority
JP
Japan
Prior art keywords
high voltage
ignition
ignition coil
coil
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13258286A
Other languages
Japanese (ja)
Inventor
Michio Iyoda
伊与田 道雄
Kunio Makita
牧田 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP13258286A priority Critical patent/JPS6248966A/en
Publication of JPS6248966A publication Critical patent/JPS6248966A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enable the safe operation of an engine by checking a secondary high voltage which is generated when an ignition coil is turned on, by means of a high voltage diode provided in an integrated form with the inside of said ignition coil. CONSTITUTION:In regular ignition timing, since a secondary side is connected so that a high voltage with negative polarity is generated on the bottom side terminal of both the terminals of a secondary coil 4b, a voltage applied to a high tension diode is in the forward direction. Thereby, when a power transistor 23 is off, the circuit for an ignition plug 8 is broken causing the plug 8 to be ignited. Although a secondary high voltage is generated when the power transistor 23 is on, however, a voltage with an opposite polarity to one in the case of regular ignition timing is generated on the secondary coil 4b, generating a high voltage with positive polarity on the bottom side terminal. Accordingly, an opposite voltage is applied to the high tension diode 7, and a secondary high voltage applied to the ignition plug 8 is checked, without causing the circuit of the ignition plug 8 to be broken when the transistor 23 is turned on. Thereby, an engine can be safety operated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関点火装置に関するもので、特に点火コ
イルを導通(以下ONと言う)する時に、この点火コイ
ルの二次側に発生する二次高電圧の゛内燃機関に与える
異常現象(不具合)を防止するようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an internal combustion engine ignition system, and in particular, when the ignition coil is turned on (hereinafter referred to as ON), the secondary side generated on the secondary side of the ignition coil is This system is designed to prevent abnormal phenomena (failures) caused by high voltage internal combustion engines.

〔従来の技術〕[Conventional technology]

従来周知の構成においては、点火コイルの二次側の二次
高電圧端子はディストリビュータによる分配機構を有す
るものにおいては、ディストリビュータのロータとキャ
ップの電極を経て各点火プラグに接続され、又ダブル点
火コイル(同時着火コイルともいう)を持つものにおい
ては二つの二次高電圧端子は直接各気筒の点火プラグに
接続されており、内燃機関の回転に同期して点火コイル
の導通(ON)、遮断(以下OFFと言う)を(り返し
、適正な点火タイミングに各点火プラグに二次高電圧を
供給している。
In a conventionally well-known configuration, the secondary high voltage terminal on the secondary side of the ignition coil is connected to each spark plug via the rotor of the distributor and the electrode of the cap in the case of a distribution mechanism using a distributor. In those with simultaneous ignition coils, the two secondary high voltage terminals are directly connected to the spark plugs of each cylinder, and the ignition coils are turned on and off in synchronization with the rotation of the internal combustion engine. (hereinafter referred to as OFF), a secondary high voltage is supplied to each spark plug at the appropriate ignition timing.

また、点火コイルの一次側のON、OFFは通常ディス
トリビュータ内に組み込まれた機械的接点(ポイント)
や、又は点火信号源の信号を波形整形処理して点火コイ
ルの開閉素子としてパワートランジスタ等の半導体を使
用したものが使われている。そして、ポイント又は半導
体によるものにおいても通常ONする時の開閉スピード
は制御されておらず、ポイントと並列に挿入されている
コンデンサー又は半導体等のスイッチングスピードによ
って決定されるスピードにて点火コイルがONされる。
In addition, the ON/OFF of the primary side of the ignition coil is usually a mechanical contact (point) built into the distributor.
Alternatively, a semiconductor such as a power transistor is used as the switching element of the ignition coil by waveform shaping the signal of the ignition signal source. Even with points or semiconductors, the opening and closing speed when turning on is not controlled, and the ignition coil is turned on at a speed determined by the switching speed of the capacitor or semiconductor inserted in parallel with the point. Ru.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述した従来のものでは、開閉素子がONと
同時に点火コイルの1次側の両端にはほぼ電源電圧から
素子による降下分をさし引いた電圧に等しい電圧が加え
られ、点火コイルは一次回路を構成している点火コイル
、外付抵抗などによって決定される一次電流が流れ始め
る。
However, in the conventional device described above, a voltage approximately equal to the power supply voltage minus the drop caused by the element is applied to both ends of the primary side of the ignition coil at the same time as the switching element is turned on, and the ignition coil is applied to the primary side of the ignition coil. The primary current determined by the ignition coil, external resistance, etc. that make up the circuit begins to flow.

一般的に言えば点火タイミングを決定する時期に開閉素
子が開いて、その−次電流回路をOFFして二次高電圧
を発生させる場合にのみ注目されているが、点火コイル
をONする時においても当然過渡現象が生じ、その結果
点火コイルの二次側には二次高電圧が発生する。この点
火コイルをONしたときに発生する二次高電圧はOFF
した時の正規点火タイミングに発生する二次高電圧と極
性は逆になり、出力電圧波形の振動周波数等はほぼ等し
い。この波形を第1図に示す。第1図において、a、C
は点火タイミングにおける二次波形で、aは二次側がオ
ープン時における波形、Cはブレーク時における波形、
bが点火コイルをONした時の波形である。このb点に
おける二次高電圧(第1図のVZ)の値は正規点火タイ
ミングにおける出力電圧レベルの十分の一程度になって
いるものの、電源が14Vにおいては点火コイルにより
2〜4KV程度生じる。この点火コイルをONした時の
二次高電圧の電源電圧特性を第2図に示す。この電圧は
電源電圧にほぼ比例して増大すると共に、各種点火コイ
ルによってa、b、cで示すごとく出力レベルがちがう
ことを示している。
Generally speaking, attention is focused only on the case where the switching element opens when determining the ignition timing and turns off the secondary current circuit to generate a secondary high voltage, but when the ignition coil is turned on, Naturally, a transient phenomenon occurs, and as a result, a secondary high voltage is generated on the secondary side of the ignition coil. The secondary high voltage generated when this ignition coil is turned on is turned off.
The polarity is opposite to that of the secondary high voltage that occurs at the normal ignition timing when the ignition occurs, and the oscillation frequency of the output voltage waveform is almost the same. This waveform is shown in FIG. In Figure 1, a, C
is the secondary waveform at the ignition timing, a is the waveform when the secondary side is open, C is the waveform at the time of break,
b is the waveform when the ignition coil is turned on. Although the value of the secondary high voltage (VZ in FIG. 1) at point b is about one-tenth of the output voltage level at the normal ignition timing, when the power source is 14V, the ignition coil generates about 2 to 4KV. FIG. 2 shows the power supply voltage characteristics of the secondary high voltage when this ignition coil is turned on. This voltage increases almost in proportion to the power supply voltage, and the output levels differ as shown by a, b, and c depending on the various ignition coils.

以上述べたように点火コイルをONした時にも点火コイ
ルの二次側には二次高電圧が発生するが、この二次高電
圧は通常ディストリビュータの回転式配電器を通して、
又ディストリビュータの配電器を使用しないものにおい
ては直接点火プラグにtB 続されるので、点火プラグ
には二次高電圧が印加される。このように正規の点火タ
イミングと異なるところで、二次高電圧が印加されるの
で、この二次高電圧がブレークして着火すると、機関に
とって取り返しのつかない不具合が起きる可能性がある
。ディストリビュータによる回転式配電器においては通
常閉角度が一定のものが多く、各気筒の配電端子のほぼ
中間(閉角度相当角度)で点火コイルをONするので、
その時のロータと配電端子間は割合にエアギャップがあ
り、点火栓がブレークする可能性はほとんどないが、皆
無とは言えない。また閉角度制御された点火装置におい
ては第1図に示すb点の位置はa点と0点の任意の位置
において発生することができ、エアギャップが十分にと
れなくて点火プラグがブレークして機関に不具合を起こ
す可能性は大となり、このためにディストリビュータの
高圧配電部の直径を大きくするなどの耐電圧対策の必要
が生じる。また、直接点火プラグに接続されているもの
においてはON時に発生する二次高電圧により不具合を
起こすことは勿論である。またこのような不具合は点火
装置の高性能化にともなって二次電圧の増大、巻線比の
増加などの傾向があり、二次高電圧の増大はさけられな
い。機関にとっては二次高電圧によって不具合を起こす
可能性が更に大きくなっている。
As mentioned above, even when the ignition coil is turned on, a secondary high voltage is generated on the secondary side of the ignition coil, but this secondary high voltage is normally passed through the rotary power distribution device of the distributor.
Furthermore, in those that do not use a distributor, the spark plug is connected directly to the spark plug, so a secondary high voltage is applied to the spark plug. In this way, since the secondary high voltage is applied at a point different from the normal ignition timing, if this secondary high voltage breaks and ignites, there is a possibility that an irreversible problem will occur for the engine. Most rotary power distribution devices using a distributor usually have a constant closing angle, and the ignition coil is turned on approximately halfway between the power distribution terminals of each cylinder (an angle equivalent to the closing angle).
At that time, there is a relatively large air gap between the rotor and the power distribution terminal, so there is almost no possibility that the spark plug will break, but it is not impossible. In addition, in an ignition system with closed angle control, the position of point b shown in Figure 1 can occur at any position between point a and point 0, and the spark plug may break due to insufficient air gap. There is a high possibility that the engine will malfunction, and for this reason, it will be necessary to take measures to withstand voltage, such as increasing the diameter of the high-voltage power distribution part of the distributor. Further, in the case of a spark plug directly connected to the spark plug, it goes without saying that problems may occur due to the secondary high voltage generated when the spark plug is turned on. Furthermore, such problems tend to occur as the secondary voltage increases and the winding ratio increases as the performance of the ignition device increases, and an increase in the secondary high voltage is unavoidable. For engines, the possibility of malfunctions caused by secondary high voltages is even greater.

発明者らが、この点火コイルに発生する二次高電圧によ
って、点火栓がブレークして、そのブレークの様子を確
認した結果では正規の点火タイミングにおけるブレーク
と同じくほぼ同じアーク時間、アーク電流、アークエネ
ルギーが共に確認され、ブレークすると機関に不具合が
起きる。上記ONした場合とOFFして点火コイルの一
次電流を遮断してブレークした場合の二次高電圧波形、
アーク電流波形を第3図に示す。機関の不具合の様子を
第4図の機関の指圧線図に示す。正常時には圧力ピーク
点が実線で示すごとく上死点後100くらいに表れるの
に対して点火コイルがONした時にブレークしたものの
圧力波形は破線で示すごとく圧力ピーク点がほぼ上死点
に表れ、その圧力値も正常時と比較して2から3倍くら
いになり、当然圧力上昇率は大きくなる。そしてこのよ
うな不具合波形時には機関トルクが急激に減少するのみ
ならず、異常な振動等を発生し、ひいては機関を破壊さ
せるという重大な欠点を有する。また、ノッキング、ア
フターバーン等の現象が起こる可能性もあるという重大
な欠点がある。
The inventors confirmed that the ignition plug breaks due to the secondary high voltage generated in the ignition coil, and the results show that the arc time, arc current, and arc are almost the same as the break at normal ignition timing. Energy is confirmed together, and if a break occurs, the engine will malfunction. The secondary high voltage waveforms when turned ON and when turned OFF to interrupt the primary current of the ignition coil and break,
Figure 3 shows the arc current waveform. The condition of the engine malfunction is shown in the engine acupressure diagram in Figure 4. Under normal conditions, the pressure peak point appears approximately 100 degrees after top dead center, as shown by the solid line, whereas in the pressure waveform that breaks when the ignition coil is turned on, the pressure peak point appears approximately at top dead center, as shown by the broken line. The pressure value will also be about 2 to 3 times higher than normal, and the rate of pressure increase will naturally increase. When such a defective waveform occurs, the engine torque not only decreases rapidly, but also causes abnormal vibrations and the like, resulting in serious drawbacks such as destruction of the engine. Furthermore, there is a serious drawback that phenomena such as knocking and afterburn may occur.

また従来、上記の欠点を解消するため、点火コイルの一
次電流を断続する回路に付加回路を設けて、−次電流の
立ち上がりをゆるやかにするものも考えられている(例
えば、実開昭51−105932号公報)が、このもの
では、点火コイルをONしたときの二次電圧を小さくす
ることはできるものの、その発生を阻止することができ
ないので、まだ不十分であった。
Conventionally, in order to eliminate the above-mentioned drawbacks, it has been considered to provide an additional circuit to the circuit that intermittents the primary current of the ignition coil to slow the rise of the secondary current (for example, Although this method can reduce the secondary voltage when the ignition coil is turned on, it is still insufficient because it cannot prevent the secondary voltage from occurring.

そこで、本発明は、外部付加回路を設けることなく、点
火コイルON時の点火プラグの誤点火を確実に阻止し、
機関を安全に運転するようにしたものである。
Therefore, the present invention reliably prevents the ignition plug from erroneously igniting when the ignition coil is turned on without providing an external additional circuit.
This allows the engine to operate safely.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明は、内燃機関の回転に同期して開閉する
スイッチング手段と、このスイッチング手段の開閉によ
り一方向のみに流れる一次電流が断続され、かつ二次側
の一端のみに高圧端子を有し、二次側の他端を低圧側に
接続した点火コイルと、この点火コイルの高圧端子に接
続され、前記スイッチング手段の開放時において前記点
火コイルの2次側に発生する高電圧によって点火火花を
発生する点火プラグと、前記点火コイルの二次側におい
てその2次側コイルの一端と前記高圧端子との間のみに
挿入接続され、前記スイッチング手段の閉成時において
前記点火コイルの二次側に過渡的に発生する高電圧が前
記点火プラグに印加されるのを阻止する高圧ダイオード
とを備え、この高圧ダイオードを前記点火コイル内に一
体的に絶縁して設けたことを特徴とする内燃機関点火装
置を提供するものである。
Therefore, the present invention has a switching means that opens and closes in synchronization with the rotation of the internal combustion engine, a primary current that flows only in one direction by opening and closing the switching means, and a high voltage terminal only at one end of the secondary side. The other end of the secondary side is connected to an ignition coil connected to the low voltage side, and the high voltage terminal of this ignition coil is connected to generate an ignition spark by the high voltage generated on the secondary side of the ignition coil when the switching means is opened. an ignition plug inserted and connected only between one end of the secondary coil and the high voltage terminal on the secondary side of the ignition coil, and when the switching means is closed, a transient voltage is applied to the secondary side of the ignition coil. an internal combustion engine ignition device comprising: a high-voltage diode that prevents high voltage generated by the spark plug from being applied to the spark plug; and the high-voltage diode is integrally insulated and provided within the ignition coil. It provides:

〔作用〕[Effect]

これにより、点火コイルの二次側に発生したON時の二
次電圧は、点火コイル内に一体的に設けた高圧ダイオー
ドによって阻止されて高圧端子に印加されず、OFF時
の正規点火タイミングの二次電圧は高圧ダイオードおよ
び高圧端子を介して点火プラグに供給される。
As a result, the secondary voltage generated on the secondary side of the ignition coil when it is ON is blocked by the high voltage diode that is integrally provided within the ignition coil and is not applied to the high voltage terminal, which is twice the normal ignition timing when it is OFF. The next voltage is supplied to the spark plug via a high voltage diode and a high voltage terminal.

(実施例〕 以下本発明を図に示す実施例について説明する。(Example〕 The present invention will be described below with reference to embodiments shown in the drawings.

第5図において、1は内燃機関の回転と同期した信号を
発生する点火信号発生装置をなす交流発電機、2はその
交流信号を波形整形する波形整形回路、3は電源をなす
バッテリー、4は点火コイルで一次コイル4aと二次コ
イル4bとを有する。
In FIG. 5, 1 is an alternating current generator that serves as an ignition signal generator that generates a signal synchronized with the rotation of the internal combustion engine, 2 is a waveform shaping circuit that shapes the waveform of the alternating current signal, 3 is a battery that serves as a power source, and 4 is a battery that serves as a power source. The ignition coil has a primary coil 4a and a secondary coil 4b.

5は点火コイル4の一次コイル4aの一次電流制限用の
外付抵抗、6は波形整形回路2よりの点火信号を増幅し
て点火コイル4の一次コイル4aを断続するスイッチン
グ回路である。7は高圧ダイオード、8は点火コイル4
の二次コイル4bの一端に、図示しないディストリビュ
ータを介して接続されている点火プラグで正規点火時に
は点火プラグ8は負極性の電圧となるように接続されて
いる。
5 is an external resistor for limiting the primary current of the primary coil 4a of the ignition coil 4, and 6 is a switching circuit that amplifies the ignition signal from the waveform shaping circuit 2 and connects and disconnects the primary coil 4a of the ignition coil 4. 7 is a high voltage diode, 8 is an ignition coil 4
A spark plug 8 is connected to one end of the secondary coil 4b via a distributor (not shown) so that a negative voltage is applied to the spark plug 8 during normal ignition.

そして、波形整形回路2およびスイッチング回路6の詳
細回路を説明すると、9は温度補償用ダイオード、10
はトランジスタ11の耐圧保護用ダイオード、12はト
ランジスタ11のバイアス用抵抗、13はトランジスタ
11の負荷抵抗である。14は定電圧ダイオード、15
はノイズ吸収用コンデンサ、16は定電圧回路用のドロ
ッパ抵抗である。17はトランジスタ18のベース抵抗
、19はトランジスタ18の負荷抵抗、20は電流増幅
トランジスタ、21はトランジスタ20の負荷抵抗、2
2は発振防止用コンデンサ、23は点火コイル4の一次
側をON、OFFするスイッチング手段としてのパワー
トランジスタでダーリントントランジスタよりなる。2
4はパワートランジスタ23のベース・エミッタ間抵抗
であり、25はパワートランジスタ23の耐圧保護用の
ツェナーダイオードである。26はパワートランジスタ
23の耐圧保護用ツェナーダイオードでそのツェナー電
圧は約350Vに設定されている。
Describing the detailed circuits of the waveform shaping circuit 2 and the switching circuit 6, 9 is a temperature compensation diode, 10 is
12 is a bias resistance of the transistor 11, and 13 is a load resistance of the transistor 11. 14 is a constant voltage diode, 15
16 is a noise absorbing capacitor, and 16 is a dropper resistor for a constant voltage circuit. 17 is a base resistance of the transistor 18, 19 is a load resistance of the transistor 18, 20 is a current amplification transistor, 21 is a load resistance of the transistor 20, 2
2 is an oscillation prevention capacitor, and 23 is a power transistor as a switching means for turning on and off the primary side of the ignition coil 4, which is a Darlington transistor. 2
4 is a base-emitter resistance of the power transistor 23, and 25 is a Zener diode for voltage protection of the power transistor 23. 26 is a Zener diode for voltage protection protection of the power transistor 23, and its Zener voltage is set to about 350V.

次に、上記構成においてその作動を説明する。Next, the operation of the above configuration will be explained.

交流信号発電機1により内燃機関の回転に同期して第6
図(A)で示す交流信号が発生し、この信号に基づいて
波形整形回路2により第6図(B)に示す矩形波出力が
得られ、この矩形波出力によって一次コイル4aの0N
−OFF用のパワートランジスタ23をON、OFFす
る。交流信号発電機lが第6図(A)に示す波形におい
てa−b間は通常トランジスタ11はOFF、トランジ
スタ18はON、トランジスタ20、パワートランジス
タ23は共にOFFになり、b−c間においては上記の
0N−OFFが逆になり、最終的にパワートランジスタ
23はONになる。第6図(C)にパワートランジスタ
23のコレクタ波形を示す。
The sixth AC signal generator 1 synchronizes with the rotation of the internal combustion engine.
An alternating current signal shown in FIG. 6(A) is generated, and based on this signal, the waveform shaping circuit 2 obtains a rectangular wave output shown in FIG. 6(B), and this rectangular wave output causes the primary coil 4a to
- Turns the OFF power transistor 23 ON and OFF. In the waveform of the AC signal generator l shown in FIG. 6(A), normally between a and b the transistor 11 is OFF, the transistor 18 is ON, the transistor 20 and the power transistor 23 are both OFF, and between b and c The above ON-OFF state is reversed, and the power transistor 23 is finally turned ON. FIG. 6(C) shows the collector waveform of the power transistor 23.

第6図(八)のa、c点は正規点火タイミングであり、
二次コイル4bの両端子のうち、下側端子には負極性の
高電圧が発生するように二次側が接続されているので、
高圧ダイオード7に対して順方向になり、パワートラン
ジスタ23のOFFにおいては点火プラグ8がブレーク
して点火する。
Points a and c in Figure 6 (8) are the normal ignition timing,
Since the secondary side is connected to the lower terminal of both terminals of the secondary coil 4b so that a negative high voltage is generated,
It is in the forward direction with respect to the high voltage diode 7, and when the power transistor 23 is OFF, the spark plug 8 breaks and ignites.

b点においてはパワートランジスタ23はONするが、
このON時において上述したように二次高電圧が発生す
るものの、b点において発生する二次高電圧は二次コイ
ル4bには正規点火タイミングとは前述したように逆極
性の電圧が発生し、下側端子には正極性の高電圧が発生
する。したがって、高圧ダイオード7に対し逆電圧とな
り、高圧ダイオード7がない場合には点火プラグ8に印
加される二次高電圧を1、この高圧ダイオード7でもっ
て阻止することができ、ON時に点火プラグ8はブレー
クさせないようにすることができる。この高圧ダイオー
ド7は第1図す点におけるV2の耐圧以上あれば十分で
あるが、実施例においては逆耐圧VRM=4KVの高圧
ダイオードを使用している。第6図(D)には高圧ダイ
オード7を挿入した時の二次コイル4bの下側端子(す
なわち負極性高圧端子)の波形を示し、第6図(E)に
は高圧ダイオード7を挿入しない場合の同上の波形を示
す。この第6図の(D) 、 (E)の波形かられかる
ように高圧ダイオード7を用いることにより、ON時に
発生する二次高電圧が点火プラグ8に印加されるのを確
実に阻止することができる。
At point b, the power transistor 23 is turned on, but
Although a secondary high voltage is generated as described above at this ON time, the secondary high voltage generated at point b generates a voltage in the secondary coil 4b with a polarity opposite to that of the normal ignition timing as described above. A positive high voltage is generated at the lower terminal. Therefore, the voltage is reverse to the high voltage diode 7, and if the high voltage diode 7 is not present, the secondary high voltage applied to the spark plug 8 can be blocked by the high voltage diode 7. can be prevented from breaking. It is sufficient that the high voltage diode 7 has a withstand voltage equal to or higher than the withstand voltage of V2 at the point shown in FIG. 1, but in this embodiment, a high voltage diode with a reverse withstand voltage VRM=4 KV is used. FIG. 6(D) shows the waveform of the lower terminal of the secondary coil 4b (i.e., negative high voltage terminal) when the high voltage diode 7 is inserted, and FIG. 6(E) shows the waveform when the high voltage diode 7 is not inserted. The same waveforms as above are shown for the case. As can be seen from the waveforms (D) and (E) in FIG. 6, by using the high voltage diode 7, it is possible to reliably prevent the secondary high voltage generated when the spark plug is turned on from being applied to the spark plug 8. I can do it.

第7図は高圧ダイオード7を点火コイル4内に一体化し
た第5図に示す実施例における点火コイルを示す。この
第7図において、3oは磁気回路を構成する鉄心で閉磁
路タイプのもので、8字形にコアが打ちぬかれ積層され
て構成されている。
FIG. 7 shows an ignition coil according to the embodiment shown in FIG. 5, in which a high voltage diode 7 is integrated into the ignition coil 4. As shown in FIG. In FIG. 7, reference numeral 3o denotes an iron core constituting a magnetic circuit, which is of a closed magnetic circuit type, and is constructed by punching out cores in a figure 8 shape and stacking them.

31は一次コイル4aの両端に設けた低圧端子である。31 are low voltage terminals provided at both ends of the primary coil 4a.

32は二次コイル4bの一端に設けた高圧端子であり、
この高圧端子32には正規点火時においては負極性の二
次電圧が発生する。高圧ダイオード7のアノード側は高
圧端子32に接続されカソード側は二次コイル4bの一
端に接続される。
32 is a high voltage terminal provided at one end of the secondary coil 4b;
A negative secondary voltage is generated at the high voltage terminal 32 during normal ignition. The anode side of the high voltage diode 7 is connected to the high voltage terminal 32, and the cathode side is connected to one end of the secondary coil 4b.

二次コイル4bの他の端末は一次コイル4aの一端(低
圧側)に接続されている。36はケースでありエポキシ
樹脂37によってボ・ツティングされ固定されている。
The other end of the secondary coil 4b is connected to one end (low voltage side) of the primary coil 4a. 36 is a case which is bolted and fixed with epoxy resin 37.

第7図に示すが如く、高圧ダイオード7を点火コイル4
と同一ケース36内にエポキシ樹脂37によりポツティ
ングしたので、高圧ダイオード7等の沿面でリークする
可能性もなく、小型軽量の点火コイルを供給できる優れ
た特徴がある。
As shown in FIG. 7, the high voltage diode 7 is connected to the ignition coil 4.
Since it is potted in the same case 36 with epoxy resin 37, there is no possibility of leakage along the surface of the high voltage diode 7, etc., and there is an excellent feature that a small and lightweight ignition coil can be provided.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明においては、点火コイルをO
Nした時に発生する二次高電圧を、点火コイル内に一体
的に設けた高圧ダイオードによって阻止するから、点火
コイルをONした時に発生する二次高電圧によ、る点火
プラグのブレークを確実に防ぐことができ、このブレー
クによって発生する内燃機関に対する不具合を防ぎ、外
部付加回路を設けることなく、内燃機関を安全に運転で
きるという優れた効果がある。
As described above, in the present invention, the ignition coil is
The secondary high voltage that occurs when the ignition coil is turned on is blocked by the high voltage diode that is built into the ignition coil, ensuring that the spark plug will not break due to the secondary high voltage that is generated when the ignition coil is turned on. This has the excellent effect of preventing malfunctions to the internal combustion engine caused by this break, and allowing the internal combustion engine to be operated safely without providing an external additional circuit.

さらに、点火コイルの二次側において一端を低圧側に接
続した二次コイルの他端と高圧端子との間のみに高圧ダ
イオードが接続しであるから、配線が簡単で安価である
のみならず、点火コイルの高圧端子側に発生する逆極性
電圧は高圧ダイオードにより確実に阻止されるため、高
圧端子自体に逆極性電圧が印加されるのを確実に防止す
ることができる。
Furthermore, on the secondary side of the ignition coil, one end is connected to the low voltage side, and the high voltage diode is connected only between the other end of the secondary coil and the high voltage terminal, so wiring is not only simple and inexpensive, but also Since the reverse polarity voltage generated on the high voltage terminal side of the ignition coil is reliably blocked by the high voltage diode, it is possible to reliably prevent the reverse polarity voltage from being applied to the high voltage terminal itself.

なお、従来、ディストリビュータを用いることなく各気
筒の点火プラグに高電圧を分配することを目的として、
ダブル点火コイルに正負交互に一次電流を流し、点火コ
イルの二次側に正負交互に高電圧を発生させて各高圧ダ
イオードを介して各点火プラグに高電圧を分配するもの
が考えられている(例えば、特開昭50−43327号
公報)が、このものでは、点火コイルON時に発生する
二次電圧は他の気筒の点火プラグに印加されて、この点
火プラグがブレークする可能性があるものであり、上述
したごとき本発明特有の効果は全く発揮し得ないもので
ある。
In addition, conventionally, the purpose of distributing high voltage to the spark plugs of each cylinder without using a distributor was
It has been considered that a primary current is passed alternately between positive and negative through a double ignition coil, and high voltage is generated alternately between positive and negative on the secondary side of the ignition coil, and the high voltage is distributed to each spark plug via each high-voltage diode ( For example, Japanese Patent Application Laid-Open No. 50-43327), but in this case, the secondary voltage generated when the ignition coil is turned on is applied to the spark plugs of other cylinders, which may cause the spark plugs to break. However, the above-mentioned effects unique to the present invention cannot be exhibited at all.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般の点火コイルの二次側に発生する二次高電
圧波形図、第2図は点火コイルと電源電圧とによるコイ
ルON時二次高電圧発生特性図、第3図は点火プラグが
ブレークした時における正規点火時とコイルON時とに
おける二次電圧とアーク電流波形図、第4図は正常時、
不具合時における内燃機関指圧線図、第5図は本発明装
置の一実施例を示す電気回路図、第6図は第5図図示装
置の作動説明に供する各部波形図、第7図は上記実施例
に適用した点火コイルを示す縦断面図である。 4・・・点火コイル、7・・・高圧ダイオード、8・・
・点火プラグ、23・・・スイッチング手段としてのパ
ワートランジスタ、32・・・高圧端子。 代理人弁理士  岡 部   隆 OFF          ON        OF
F第1図 @ミク電工 第2図 第3図 (TDC)
Figure 1 is a diagram of the secondary high voltage waveform generated on the secondary side of a general ignition coil, Figure 2 is a diagram of secondary high voltage generation characteristics when the coil is turned on due to the ignition coil and power supply voltage, and Figure 3 is a diagram of the secondary high voltage generation characteristic of the ignition coil and power supply voltage. Figure 4 shows the secondary voltage and arc current waveform diagrams during normal ignition and when the coil is ON when there is a break.
5 is an electric circuit diagram showing one embodiment of the device of the present invention; FIG. 6 is a waveform diagram of each part to explain the operation of the device shown in FIG. 5; FIG. 7 is a diagram of the above-mentioned implementation. It is a longitudinal cross-sectional view showing an ignition coil applied to an example. 4...Ignition coil, 7...High voltage diode, 8...
- Spark plug, 23... Power transistor as switching means, 32... High voltage terminal. Representative Patent Attorney Takashi Okabe OFF ON OFF
F Figure 1 @ Miku Electric Works Figure 2 Figure 3 (TDC)

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の回転に同期して開閉するスイッチング手段と
、このスイッチング手段の開閉により一方向のみに流れ
る一次電流が断続され、かつ二次側の一端のみに高圧端
子を有し、二次側の他端を低圧側に接続した点火コイル
と、この点火コイルの高圧端子に接続され、前記スイッ
チング手段の開放時において前記点火コイルの2次側に
発生する高電圧によって点火火花を発生する点火プラグ
と、前記点火コイルの二次側においてその2次側コイル
の一端と前記高圧端子との間のみに挿入接続され、前記
スイッチング手段の閉成時において前記点火コイルの二
次側に過渡的に発生する高電圧が前記点火プラグに印加
されるのを阻止する高圧ダイオードとを備え、この高圧
ダイオードを前記点火コイル内に一体的に絶縁して設け
たことを特徴とする内燃機関点火装置。
A switching means that opens and closes in synchronization with the rotation of the internal combustion engine, and a primary current that flows in only one direction is interrupted by opening and closing of this switching means, and has a high voltage terminal only at one end of the secondary side, and has a high voltage terminal at one end of the secondary side. an ignition coil whose end is connected to a low voltage side; an ignition plug that is connected to a high voltage terminal of the ignition coil and generates an ignition spark by a high voltage generated on the secondary side of the ignition coil when the switching means is opened; The secondary side of the ignition coil is inserted and connected only between one end of the secondary coil and the high voltage terminal, and is connected to the high voltage terminal that transiently occurs on the secondary side of the ignition coil when the switching means is closed. An internal combustion engine ignition device comprising: a high-voltage diode that prevents voltage from being applied to the spark plug, the high-voltage diode being integrally and insulated within the ignition coil.
JP13258286A 1986-06-06 1986-06-06 Ignition device for internal combustion engine Pending JPS6248966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13258286A JPS6248966A (en) 1986-06-06 1986-06-06 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13258286A JPS6248966A (en) 1986-06-06 1986-06-06 Ignition device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10893678A Division JPS5566659A (en) 1978-09-05 1978-09-05 Ignition device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6248966A true JPS6248966A (en) 1987-03-03

Family

ID=15084702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13258286A Pending JPS6248966A (en) 1986-06-06 1986-06-06 Ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6248966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078626A (en) * 2013-10-16 2015-04-23 弘 牧田 Ignition timing generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100437A (en) * 1973-07-31 1975-08-09
JPS5154135A (en) * 1974-11-06 1976-05-13 Nisshin Kk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100437A (en) * 1973-07-31 1975-08-09
JPS5154135A (en) * 1974-11-06 1976-05-13 Nisshin Kk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078626A (en) * 2013-10-16 2015-04-23 弘 牧田 Ignition timing generator

Similar Documents

Publication Publication Date Title
US4463744A (en) Distributorless ignition system with surge absorbing means and apparatus therefor
US4433669A (en) Plasma ignition system for an internal combustion engine
US3980922A (en) Capacitance discharge type breakerless ignition system for an internal combustion engine
JPS5823281A (en) Ignition device of internal combustion engine
US4653460A (en) Ignition system for internal combustion engines
KR890001736B1 (en) Electronic ignition device for internal combustion engines
US3837326A (en) Capacitor discharge ignition system
US4177782A (en) Ignition system providing sparks for two ignition plugs in each cylinder from a single ignition coil
CA1041596A (en) Internal combustion engine ignition system
JPH0680313B2 (en) Internal combustion engine ignition device
JP2000310175A (en) Ignition device for internal combustion engine
KR900005063A (en) Throttle lighting device
JPS6248966A (en) Ignition device for internal combustion engine
US6082344A (en) Ignition device for an internal combustion engine
JP2002004990A (en) Ignition device of internal combustion engine
JPS6394080A (en) Low voltage distribution type igniter for internal combustion engine
JPS61294167A (en) Ignitor for internal-combustion engine
JP3528296B2 (en) Ignition device for internal combustion engine
JP6515643B2 (en) Ignition control device for internal combustion engine
JP2000009010A (en) Ignition device for internal combustion engine
JP3423672B2 (en) Ignition device for internal combustion engine
US4115758A (en) Visual test indicator for ignition systems
JPH0326303Y2 (en)
JP2010106739A (en) Multi-ignition type ignition device for internal combustion engine
JPS6077385A (en) Spark plug for internal combustion engine