JPS6248895A - Space dividing light exchange system - Google Patents

Space dividing light exchange system

Info

Publication number
JPS6248895A
JPS6248895A JP60190725A JP19072585A JPS6248895A JP S6248895 A JPS6248895 A JP S6248895A JP 60190725 A JP60190725 A JP 60190725A JP 19072585 A JP19072585 A JP 19072585A JP S6248895 A JPS6248895 A JP S6248895A
Authority
JP
Japan
Prior art keywords
wavelength
optical
terminals
terminal
subscriber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60190725A
Other languages
Japanese (ja)
Other versions
JPH0691675B2 (en
Inventor
Shuji Suzuki
修司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60190725A priority Critical patent/JPH0691675B2/en
Publication of JPS6248895A publication Critical patent/JPS6248895A/en
Publication of JPH0691675B2 publication Critical patent/JPH0691675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

PURPOSE:To attain a direct connection between terminals without using a wavelength conversion device by providing light sources having different wavelengths with each other on each of subscriber's terminals and allocating different transmission wavelengths with each other on each of the terminals in the setting of a channel. CONSTITUTION:Each of subscriber's terminals 101-104 has two light sources having the wavelengths of lambda1 and lambda2, enabling a transmission with switching an optical signal of either one wavelength. For example, when a communication is performed between the terminal 101 and 104, the terminal 101 transmits with a wavelength of lambda1 and the terminal 104 with that of lambda2 and also, by forming the channel in the route of a subscriber fiber 341 optical switches 351 and 354 a subscriber fiber 344 by a light exchanger 105, a connection between the terminals 101 and 104 can be obtained. At such a time, so that a wavelength exchanger is not required between the terminals 101 and 104, the communication can be performed with an optical signal of optical signal speed/modulation system. Besides, the communication in such a way that the terminal 101 transmits with the wavelength of lambda2 and the terminal 104 with that of lambda1 causes no trouble.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数の加入者端末中の任意の加入者端末間を光
信号を用いて接続する空間分割光交換方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a space division optical switching system that connects arbitrary subscriber terminals among a plurality of subscriber terminals using optical signals.

(従来の技術) 伝送路に光ファイバを用いた光フアイバ伝送方式は、光
ファイバが広帯域であることから多量の情報を伝送可能
であることや、光ファイバが誘電雑音を受けない等の利
点があることから、今後広く使用されるものと予想され
る。この光フアイバ伝送方式とともに交換機には、光信
号を一度電気に変換して電気回路で交換することなく光
信号を光の領域で交換できる光交換機が望ましい。その
ような空間分割光交換方式として、従来、第3図に示す
ような特開昭56−78267号公報記載の空間分割光
交換方式が知られている。
(Prior art) Optical fiber transmission systems that use optical fibers as transmission paths have the advantages of being able to transmit large amounts of information because the optical fibers have a wide band, and that the optical fibers are not subject to dielectric noise. Therefore, it is expected that it will be widely used in the future. In addition to this optical fiber transmission system, it is desirable to use an optical switching system that can exchange optical signals in the optical domain without converting optical signals into electricity and exchanging them using electric circuits. As such a space-division light exchange system, a space-division light exchange system as shown in FIG. 3 and described in Japanese Patent Application Laid-Open No. 78267/1984 has been known.

第3図に示した光交換機305は、加入者ファイバ34
1〜344によって接続されている端末301〜304
の内任意の2つの間を接続可能である。光交換機は加入
者ファイバ341〜344が接続された1×3の光スィ
ッチ351〜354と、光スイッチ351.352間の
波長変換器361と、光スイッチ351.354間の波
長変換器362と、光スイッチ353.352間の波長
変換器363と、光スイッチ351.353間の波長変
換器364と、光スィッチ352、354間の波長変換
器365と、光スィッチ353゜354間の波長変換器
366とによって構成される。波長変換器361〜36
6は一方の端面から入力された波長λ1の光信号をλ2
の波長へ波長変換して他方の端面から出力する機能を有
している。同様に他方の端面から入力された波長λ1の
光信号をλ2の波長へ波長変換して一方の端面から出力
する機能をも有している。端末301は送信する電気信
号を波長λ工の光信号へ変換する電気−光変換器311
と、加入者ファイバ341から入力された光信号を電気
信号に変換する光−電気変換器321と、電気−光変換
器311からの波長λ1の光信号を加入者ファイバ34
1へ導びき、光交換機305から加入者ファイバ341
を経由して導びかれた波長λ2の光信号を選択して光−
電気変換器321へ送出する合・分波器331を含んで
いる。他の端末302〜304も同様に電気−光変換器
312〜314、光−電気変換器322〜324、合・
分波5332〜334を含んでいる。
The optical switch 305 shown in FIG.
Terminals 301 to 304 connected by 1 to 344
It is possible to connect any two of them. The optical exchange includes 1×3 optical switches 351 to 354 to which subscriber fibers 341 to 344 are connected, a wavelength converter 361 between the optical switches 351 and 352, and a wavelength converter 362 between the optical switches 351 and 354. A wavelength converter 363 between optical switches 353 and 352, a wavelength converter 364 between optical switches 351 and 353, a wavelength converter 365 between optical switches 352 and 354, and a wavelength converter 366 between optical switches 353 and 354. It is composed of Wavelength converters 361-36
6 converts the optical signal of wavelength λ1 input from one end face to λ2
It has the function of converting the wavelength to the wavelength of , and outputting it from the other end face. Similarly, it also has the function of wavelength converting an optical signal of wavelength λ1 inputted from the other end face to a wavelength of λ2 and outputting it from one end face. The terminal 301 includes an electrical-to-optical converter 311 that converts an electrical signal to be transmitted into an optical signal with a wavelength of λ.
, an optical-to-electrical converter 321 that converts an optical signal input from the subscriber fiber 341 into an electrical signal, and an optical signal with a wavelength λ1 from the electrical-to-optical converter 311 to the subscriber fiber 34.
1 and from the optical switch 305 to the subscriber fiber 341.
Select the optical signal of wavelength λ2 guided through the optical
It includes a multiplexer/demultiplexer 331 that sends out data to an electrical converter 321 . Similarly, the other terminals 302 to 304 have electrical-to-optical converters 312 to 314, optical-to-electrical converters 322 to 324,
It includes branch waves 5332 to 334.

このように、一本の加入者ファイバ341を用いて、双
方向の通信を行なう場合、光−電気変換器321におい
て受信光信号に自己の送信光信号の反射成分が混入する
事を防ぐ為に、送信と受信をλ1とλ2の別波長とし、
これによって光−電気変換器321の前に設けた合・分
波器331によって波長λ1の送信光信号の反射成分を
除去し、波長勉の受信信号のみを光−電気変換する。端
末301と304が通信する場合は、第3図において太
線で示すように、端末301から端末304へ送信する
信号は電気−光変換器311で波長λ1の光信号へ変換
され、合分波器331、加入者ファイバ341、光スィ
ッチ351を経由して波長変換器362の一端へ入力さ
れる。波長変換器362でこの波長λ1の光信号は波長
λ2に波長変換された後、光スィッチ354、加入者フ
ァイバ344、合・分波器334経出で光−電気変換器
324へ入力され電気信号へ変換される。一方端末30
4から端末301へ送信する信号は、電気−光変換器3
14で波長λ1の光信号へ変換され、合・分波器334
、加入者ファイバ344、光スィッチ354を経由して
波長変換器362の他端へ入力される。波長変換536
2でこの波長λ1の光信号は油に波長変換された後、光
スィッチ351、加入者ファイバ341、合・分波器3
31経出で光−電気変換器321へ入力され電気信号へ
変換される。このようにして光交換機305内で波長λ
1とλ2の波長変換を行なう事によって送信波長と受信
波長が同じ端末同志が通信可能となる。
In this way, when performing bidirectional communication using one subscriber fiber 341, in order to prevent the reflected component of the own transmitted optical signal from being mixed into the received optical signal at the optical-to-electrical converter 321, , transmitting and receiving using different wavelengths of λ1 and λ2,
As a result, the reflection component of the transmitted optical signal of wavelength λ1 is removed by the multiplexer/demultiplexer 331 provided before the optical-to-electrical converter 321, and only the received signal of wavelength λ1 is optical-to-electrically converted. When the terminals 301 and 304 communicate, as shown by the bold line in FIG. 331, a subscriber fiber 341, and an optical switch 351 to one end of the wavelength converter 362. The optical signal with the wavelength λ1 is wavelength-converted into the wavelength λ2 by the wavelength converter 362, and then input to the optical-to-electrical converter 324 through the optical switch 354, the subscriber fiber 344, and the multiplexer/demultiplexer 334, where it becomes an electrical signal. is converted to On the other hand, terminal 30
4 to the terminal 301 is sent from the electrical-to-optical converter 3
14, it is converted into an optical signal of wavelength λ1, and is sent to a multiplexer/demultiplexer 334.
, subscriber fiber 344 and optical switch 354 to the other end of wavelength converter 362 . Wavelength conversion 536
2, this optical signal of wavelength λ1 is wavelength converted into oil, and then sent to an optical switch 351, a subscriber fiber 341, and a multiplexer/demultiplexer 3.
31, the signal is input to an optical-to-electrical converter 321 and converted into an electrical signal. In this way, within the optical exchanger 305, the wavelength λ
By performing wavelength conversion between λ1 and λ2, terminals having the same transmitting wavelength and receiving wavelength can communicate with each other.

第4図は第3図における波長変換器361〜366の構
成を示す図である。ファイバ401から入力された光信
号の内波長λ1の光信号は合・分波器402で選択され
波長変換デバイス403へ入力される。波長変換デバイ
ス403は入力された波長λlの光信号を波長λ2に波
長変換する。波長変換された波長λ2の光信号は今。
FIG. 4 is a diagram showing the configuration of wavelength converters 361 to 366 in FIG. 3. Among the optical signals inputted from the fiber 401, an optical signal having a wavelength λ1 is selected by the multiplexer/demultiplexer 402 and inputted to the wavelength conversion device 403. The wavelength conversion device 403 converts the input optical signal of wavelength λl to wavelength λ2. The wavelength-converted optical signal of wavelength λ2 is now.

分波器405によってファイバ406へ導びかれる。一
方ファイバ406から入力された光信号の内波長λ1の
光信号は合・分波器405で選択され波長変換デバイス
404へ入力される。波長変換デバイス404は入力さ
れた波長λ1の光信号をλ2に波長変換する。波長変換
された波長λ2の光信号は合・分波器402によってフ
ァイバ401へ導びかれる。第4図における波長変換デ
バイス403,404としては例えば1978年9月発
行アイ・イー・イー・イー、ジャーナル・オプ・カンタ
ム・エレクトロニクス(IEEE、 Journal 
of Quantum Electronics)QE
−14巻、11号、810〜813ページ記載のpnp
n構造の光検出器と発光ダイオードの複合素子が使用で
きる。
It is guided to a fiber 406 by a demultiplexer 405 . On the other hand, an optical signal with a wavelength λ1 among the optical signals inputted from the fiber 406 is selected by the multiplexer/demultiplexer 405 and inputted to the wavelength conversion device 404. The wavelength conversion device 404 converts the input optical signal of wavelength λ1 into wavelength λ2. The wavelength-converted optical signal of wavelength λ2 is guided to fiber 401 by multiplexer/demultiplexer 402. Examples of the wavelength conversion devices 403 and 404 in FIG.
of Quantum Electronics) QE
- pnp described in volume 14, issue 11, pages 810-813
A composite element of an n-structure photodetector and a light emitting diode can be used.

(発明が解決しようとする問題点) このような、pnpn構造受光素子と発光ダイオードの
複合デバイスを用いた波長変換デバイスの最高動作周波
数は100MHz程度であり、100MHz以上の高速
な光信号の変換は出来ない。さらにS型負性抵抗の特性
を有しているので、入力光量と出力光量の関係は非線型
であり、アナログ信号で強度変調された光信号の交換も
不可能である。このように波長変換デバイスを用いた空
間分割光交換方式では、端末間を通信する光信号の速度
・変調方式に制限が存在した。
(Problems to be Solved by the Invention) The maximum operating frequency of such a wavelength conversion device using a composite device of a pnpn structure light receiving element and a light emitting diode is about 100 MHz, and high-speed optical signal conversion of 100 MHz or higher is impossible. Can not. Furthermore, since it has the characteristic of S-type negative resistance, the relationship between the amount of input light and the amount of output light is nonlinear, and it is also impossible to exchange optical signals intensity-modulated with analog signals. In this way, in the space-division optical switching system using a wavelength conversion device, there are limitations on the speed and modulation method of optical signals communicated between terminals.

本発明の目的は、波長変換デバイスを使用しない空間分
割光交換方式を提供し、端末間を任意の速度・任意の変
調方式で通信可能とする事にある。
An object of the present invention is to provide a space division optical switching system that does not use a wavelength conversion device, and to enable communication between terminals at any speed and any modulation method.

(問題を解決するための手段) 本発明の空間分割光交換方式は各加入者端末に少なくと
も互いに波長の異なる光源を設け通話路設定時に被呼加
入者端末、発呼加入者端末にそれぞれ互いに異なる送信
波長を割り当てる事を特徴とする。
(Means for Solving the Problem) In the space division optical switching system of the present invention, each subscriber terminal is provided with at least light sources with different wavelengths, and when setting a communication path, the called subscriber terminal and the calling subscriber terminal have different wavelengths. It is characterized by assigning transmission wavelengths.

(作用) 本発明では、上述のように端末において2つの波長の光
源を用意し2つの波長の光信号のいずれか一方を送信波
長として使用する事によって、光交換機は波長変換デバ
イスを介在させる事なく直接、端末間を接続すれば良く
、端末間は、任意の信号速度・変調形式の光信号で通信
できる。
(Function) In the present invention, as described above, by preparing a light source of two wavelengths at the terminal and using one of the optical signals of the two wavelengths as the transmission wavelength, the optical exchange can intervene with a wavelength conversion device. It is sufficient to directly connect the terminals without any need for communication between the terminals, and the terminals can communicate using optical signals of any signal speed and modulation format.

(実施例) 以下本発明の実施例について図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

第1図において第3図と同一の番号付したものは、第3
図と同一の構成要素を表わす。第1図において光交換機
105は第3図における光交換5305内の波長変換器
361〜366を除去し、光スイツチ351〜354間
を直接接続したものであり端末101〜104は、波長
λ1゜λ2の2つの光源と有し、いずれか一方の波長の
光信号を切り換えて送信する事が出来る。例えば、端末
101と104が通信する場合は、端末101は波長λ
1で送信し、端末104は波長λ2で送信するとともに
第1図の太線で示すように交換機105が加入者ファイ
バ341−光スイッチ351.354−加入者ファイバ
344の経路で通話路を形成する事により、端末101
.104間を接続することができる。この時、端末10
1.104間には波長変換器を必要としない為、任意の
信号速度・変調方式の光信号で通信可能である。なお、
端末101は波長入2で送信し、端末104は波長λ1
で送信してもさしつかえない。どちらの端末がどの波長
で送信するかは端末間の通信を開始する前に光交換機1
05の制御回路から各端末の制御回路へ加入者線信号に
よって指示される。あるいは、発呼側の端末がλ1で送
信し、着呼側の端末がλ2で送信する様にあらかじめ定
めておいても良い。
The same numbers in Figure 1 as in Figure 3 refer to Figure 3.
Represents the same components as in the figure. In FIG. 1, the optical exchange 105 removes the wavelength converters 361 to 366 in the optical exchange 5305 in FIG. 3 and directly connects the optical switches 351 to 354. It has two light sources, and the optical signal of either wavelength can be switched and transmitted. For example, when terminals 101 and 104 communicate, terminal 101 uses wavelength λ
1, and the terminal 104 transmits at the wavelength λ2, and the exchange 105 forms a communication path from the subscriber fiber 341 to the optical switch 351.354 to the subscriber fiber 344, as shown by the thick line in FIG. Terminal 101
.. 104 can be connected. At this time, terminal 10
Since no wavelength converter is required between 1.104 and 1.104, communication is possible with optical signals of any signal speed and modulation method. In addition,
Terminal 101 transmits at wavelength 2, and terminal 104 transmits at wavelength λ1.
It is okay to send it by . The optical switch 1 determines which terminal transmits at which wavelength before starting communication between the terminals.
05 control circuit to each terminal's control circuit by a subscriber line signal. Alternatively, it may be determined in advance that the calling side terminal transmits at λ1 and the called side terminal transmits at λ2.

第2図は第1図の本発明の実施例における端末101〜
104の具体例を示す図である。送信信号はスイッチ2
01によって切り換えられ、電気−光交換器202また
は203のいずれか一方へ入力される。送信信号は電気
−光交換器202へ入力されると波長λ1の光信号に変
換され、電気−光交換器203へ入力されると波長劫の
光信号に変換される。電気−光交換器202、203の
出力光信号は光カプラ209によって加入者線ファイバ
210へ導びかれる。光交換機から加入者ファイバ21
0によって端末へ送られてきた光信号は光カプラ209
によって分岐され、波長フィルタ206、207へ入力
される。波長フィルタ206は入力された光信号の同波
長λ1の光信号のみ透過して光−電気変換回路205へ
入力し、波長フィルタ207は入力された光信号の同波
長λ2の光信号のみ透過して光−電気変換回路206へ
入力する。したがって光−電気変換回路205は光カプ
ラ209の分岐出力信号の同波長λ1の光信号のみ電気
信号に変換し、光−電気変換器208は光カプラ209
の分岐出力信号の同波長λ2の光信号のみ電気信号に変
換する。スイッチ204は光−電気変換器205.20
8のいずれが一方の出力電気信号を受信信号として選択
する。このようにスイッチ201.204の切り換えに
より端末の送信波長、受信波長を変更できる。第2図で
は送信波長λ1、受信波長大2の状態となっている。ス
イッチ201.204をいずれも逆に切り換えれば送信
波長λ2、受信波長λ1の状態となる。
FIG. 2 shows the terminals 101 to 101 in the embodiment of the present invention shown in FIG.
104 is a diagram showing a specific example. The transmission signal is switch 2
01 and is input to either the electrical-optical exchanger 202 or 203. When the transmission signal is input to the electric-to-optical exchanger 202, it is converted into an optical signal of wavelength λ1, and when input to the electric-to-optical exchanger 203, it is converted to an optical signal of a different wavelength. The output optical signals of the electro-optical exchangers 202, 203 are guided by an optical coupler 209 to a subscriber line fiber 210. From optical switch to subscriber fiber 21
The optical signal sent to the terminal by the optical coupler 209
The signals are branched and input to wavelength filters 206 and 207. The wavelength filter 206 transmits only an optical signal having the same wavelength λ1 as the input optical signal and inputs it to the optical-to-electric conversion circuit 205, and the wavelength filter 207 transmits only the optical signal having the same wavelength λ2 as the input optical signal. Input to the optical-electrical conversion circuit 206. Therefore, the optical-electrical converter 205 converts only the optical signal having the same wavelength λ1 of the branched output signal of the optical coupler 209 into an electrical signal, and the optical-electrical converter 208
Only the optical signal having the same wavelength λ2 of the branched output signal is converted into an electrical signal. Switch 204 is an optical-to-electrical converter 205.20
8 selects one output electrical signal as the received signal. In this way, the transmission wavelength and reception wavelength of the terminal can be changed by switching the switches 201 and 204. In FIG. 2, the transmission wavelength is λ1 and the reception wavelength is 2. If both switches 201 and 204 are switched in the opposite direction, the state will be such that the transmission wavelength is λ2 and the reception wavelength is λ1.

(発明の効果) このように本発明によれば、波長変換デバイスを使用し
ない空間分割光交換方式が得られ、端末間で任意の速度
、任意の変調方式の通信が可能となる。
(Effects of the Invention) As described above, according to the present invention, a space division optical switching system that does not use a wavelength conversion device is obtained, and communication between terminals at any speed and using any modulation method is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、第2図は第1図にお
ける端末101〜104の具体例を示す図、第3図は従
来の空間分割光交換方式を示す図、第4図は第3図にお
ける波長変換器361〜366の構成を示す図である。 図において、101〜104.301〜304は端末、
105゜305は光交換機、210.351〜354は
光スィッチ、201゜204はスイッチ、202.20
3.311.314は電気−光変換器、205.208
.321.324は光−電気変換器、206゜207は
波長フィルタ、209は光カプラ、331.334゜4
02、405は合・分波器、361〜366は波長変換
器、403゜404は波長変換器デバイスを各々表わす
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a specific example of terminals 101 to 104 in FIG. 1, FIG. 3 is a diagram showing a conventional space-division optical switching system, and FIG. 3 is a diagram showing the configuration of wavelength converters 361 to 366 in FIG. 3. FIG. In the figure, 101 to 104. 301 to 304 are terminals,
105゜305 is an optical exchange, 210.351-354 is an optical switch, 201゜204 is a switch, 202.20
3.311.314 is an electro-optical converter, 205.208
.. 321.324 is an optical-electrical converter, 206°207 is a wavelength filter, 209 is an optical coupler, 331.334°4
Reference numerals 02 and 405 represent multiplexers/demultiplexers, 361 to 366 represent wavelength converters, and 403 and 404 represent wavelength converter devices, respectively.

Claims (1)

【特許請求の範囲】[Claims] 各加入者端末に少なくとも互いに波長の異なる光源を設
け通話路設定時に被呼加入者端末、発呼加入者端末にそ
れぞれ互いに異なる送信波長を割り当てることを特徴と
する空間分割光交換方式。
A space-division optical switching system characterized in that each subscriber terminal is provided with at least a light source having a different wavelength from each other, and different transmission wavelengths are assigned to a called subscriber terminal and a calling subscriber terminal, respectively, when setting up a communication path.
JP60190725A 1985-08-28 1985-08-28 Space division optical switching system Expired - Lifetime JPH0691675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60190725A JPH0691675B2 (en) 1985-08-28 1985-08-28 Space division optical switching system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60190725A JPH0691675B2 (en) 1985-08-28 1985-08-28 Space division optical switching system

Publications (2)

Publication Number Publication Date
JPS6248895A true JPS6248895A (en) 1987-03-03
JPH0691675B2 JPH0691675B2 (en) 1994-11-14

Family

ID=16262769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60190725A Expired - Lifetime JPH0691675B2 (en) 1985-08-28 1985-08-28 Space division optical switching system

Country Status (1)

Country Link
JP (1) JPH0691675B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498505A (en) * 1978-01-20 1979-08-03 Nippon Telegr & Teleph Corp <Ntt> Optical exchanger for broad band signal
JPS58100562A (en) * 1981-12-11 1983-06-15 Nec Corp Optical exchange circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498505A (en) * 1978-01-20 1979-08-03 Nippon Telegr & Teleph Corp <Ntt> Optical exchanger for broad band signal
JPS58100562A (en) * 1981-12-11 1983-06-15 Nec Corp Optical exchange circuit

Also Published As

Publication number Publication date
JPH0691675B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5712932A (en) Dynamically reconfigurable WDM optical communication systems with optical routing systems
US4845703A (en) Wavelength division optical switching system having wavelength switching light modulators
JPH03219793A (en) Wavelength division optical exchange
EP0762689B1 (en) Optical branching apparatus and tranmission line setting method therefor
JPH025663A (en) Optical packet exchange
US5715075A (en) Optical processing device operating in a wavelength-synchronized mode and an optical circuit exchanger that uses such an optical processing device
US4957339A (en) Optical communication system, particularly in the subscriber area
US5189544A (en) Bidirectional light waveguide telecommunication system
JPH07202799A (en) Optical distributor
EP1043847B1 (en) Wavelength-division multiplex transmission network device using a transceiver having a 2-input/2-output optical switch
US7174104B2 (en) Transmitting apparatus using multiple lambda source in WDM network
JPS6248895A (en) Space dividing light exchange system
EP2767013A2 (en) Optical signal conversion method and apparatus
JPH07121140B2 (en) WDM optical switching circuit
JPS6139777B2 (en)
JPS6281136A (en) Wavelength multiplex optical receiver
JPH0364136A (en) Bidirectional optical communication system
JP3052452B2 (en) Time Division Multiplexing / Optical Wavelength Division Multiplexing Hybrid Transmission System and Node Equipment for Optical Local Area Network System
JP2668965B2 (en) Optical multi-wavelength conversion circuit
JPS63148726A (en) Wavelength-division multiplex bidirectional optical communication equipment
JPS63105539A (en) Optical subscriber terminal equipment
JPS63296421A (en) Optical terminal equipment for subscriber
JPH0310261B2 (en)
JPH01187537A (en) Wavelength changing switch
JPS63110828A (en) Wavelength divided multiplex optical communication equipment