JPS624855A - Stainless steel cast alloy and its production - Google Patents

Stainless steel cast alloy and its production

Info

Publication number
JPS624855A
JPS624855A JP60229768A JP22976885A JPS624855A JP S624855 A JPS624855 A JP S624855A JP 60229768 A JP60229768 A JP 60229768A JP 22976885 A JP22976885 A JP 22976885A JP S624855 A JPS624855 A JP S624855A
Authority
JP
Japan
Prior art keywords
weight
stainless steel
alloy
approximately
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60229768A
Other languages
Japanese (ja)
Other versions
JPH0672294B2 (en
Inventor
ラルフ エー・メンデルソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Garrett Corp
Original Assignee
Garrett Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Garrett Corp filed Critical Garrett Corp
Publication of JPS624855A publication Critical patent/JPS624855A/en
Publication of JPH0672294B2 publication Critical patent/JPH0672294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Abstract

Cast metal parts such as turbocharger housings which are subject to operating temperatures up to about 2000 DEG F (1093 DEG C) and require good thermal cyclic durability (resistance to thermal cracking) and burst containment properties, are made from a low nickel duplex stainless steel with nitrogen addition by the use of grey and ductile iron casting technology.

Description

【発明の詳細な説明】 C産業上の利用分野) 本発明はステンレス鋼鋳造合金およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a stainless steel casting alloy and a method for producing the same.

本発明によるステンレス鋼鋳造合金は例えばタービンハ
ウジング、ターボチャーシャツ)ウジング、排気マニホ
ルド、燃焼室等の材料として有用であシ、最高2000
°F(約1093℃)の動作範囲内で良好な耐腐蝕性お
よび室温・高温特性を有する。
The stainless steel casting alloy according to the invention is useful as a material for, for example, turbine housings, turbocharger shirts, exhaust manifolds, combustion chambers, etc.
It has good corrosion resistance and room temperature and high temperature properties within the operating range of °F (approximately 1093 °C).

(従来の技術) 一般に自動車や航空機のターボチャーシャツ・ウジング
は最高的2000°F(約1093℃)の高作動温度を
受は且極めて高速で回転するタービン羽根車を、破壊を
来たすことなく確実に収納可能に構成する必要がある。
(Prior Art) In general, turbocharger shirts and housings for automobiles and aircrafts are capable of handling high operating temperatures of up to 2000°F (approximately 1093°C) and rotating turbine impellers at extremely high speeds without causing damage. It must be configured so that it can be stored in

例えばトラックのディーゼルエンジンのターボチャージ
ャにおいては、温度は1300〜1400’? (約7
04〜76000)に達するので、ハウジングの金属温
度が1200〜1300°F(約649〜704°a−
)  となる。一方自動車のターボチャージャにおいて
は作動温度は最高1750〜2000゜F(約954〜
1093℃)tで達するので、ターボチャージャのガス
導入部すなわち舌部がタービン排気ガス温度と大きな差
のない温度となシ且熱が急速に発散されないような断熱
構成がとられているから、ターボチャージャハウジング
の舌部における金属温度が1550〜1950°IF(
約843〜1065℃)に達する。従って相対的に高価
なステンレス鋼鋳造合金を用いないと、排気ガスが初期
にターボチャージャと接触するガス導入部のような金属
部分に熱分解を生ずる危惧がある。
For example, in the turbocharger of a truck diesel engine, the temperature is between 1300 and 1400'? (about 7
04-76000), so the housing metal temperature reaches 1200-1300°F (approximately 649-704°a-
) becomes. On the other hand, automotive turbochargers have operating temperatures of up to 1750-2000°F (approximately 954-2000°F).
1093°C) t, so the gas introduction part of the turbocharger, that is, the tongue part, has a temperature that is not much different from the turbine exhaust gas temperature.The turbocharger has an adiabatic structure that prevents rapid dissipation of heat. The metal temperature at the tongue of the charger housing is 1550-1950°IF (
843-1065°C). Therefore, unless relatively expensive stainless steel casting alloys are used, there is a risk of thermal decomposition in metal parts, such as the gas inlet where the exhaust gases initially come into contact with the turbocharger.

従来、タービンハウジング等にはインターナショナルニ
ッケルカンパニの開発し九Ni Re5istあるいは
約30俤のクロム、20%のニッケル、残りが実質的に
鉄であるクロム・ニッケル・鉄のステンレス鋼合金、H
K30のよう−な市販され延性に富む高ニツケル鋳造合
金が用いられている。
Conventionally, turbine housings and other materials have been manufactured using 9Ni Re5ist, a chromium-nickel-iron stainless steel alloy with approximately 30 chromium, 20% nickel, and the remainder essentially iron, developed by the International Nickel Company.
Commercially available ductile high nickel cast alloys such as K30 are used.

またクロム約26〜30%tpよびニッケル4〜7チを
含む市販のllID系合金も提案されているが、デユー
プレックス組織となっておi)、HD合金のニッケル含
有量が比較的低いためHD合金にシグマ相が生成し極め
てもろくなシ、高温で使用された場合、特に熱サイクル
を受けるとき熱分解が生じていた。一方このようなHD
系合金の欠点はニッケル約18〜22%を含むと共に全
ての組成をオーステナイト相であるHK系ステンレス鋼
合金の如くニッケル含有量の高いステンレス鋼鋳造合金
を採用することによシ解決しておシ、HK系ステンレス
鋼合金はクリープ強さの点では最強のステンN1が2−
10%、C!が0.25〜0.45 %、Mnが0.0
1〜2.5%およびNが0.35〜0.55%のステン
レス鋼錬造合金が提案されておシ、この場合市販の21
−4ステンレス鋼合金の炭素およびマンガンの含有量を
減らすことによシ高温での強度、耐硫化性および耐酸化
性が得られる。
Commercially available llID alloys containing approximately 26-30% chromium and 4-7% nickel have also been proposed, but they have a duplex structure i), and the nickel content of HD alloys is relatively low. A sigma phase forms in the HD alloy, making it extremely brittle, and thermal decomposition has occurred when used at high temperatures, especially when subjected to thermal cycling. On the other hand, HD like this
The drawbacks of the nickel-based alloys can be overcome by using stainless steel cast alloys with high nickel content, such as HK-based stainless steel alloys, which contain approximately 18-22% nickel and are entirely austenitic. , the strongest HK stainless steel alloy in terms of creep strength is Sten N1, which is 2-
10%, C! is 0.25-0.45%, Mn is 0.0%
A stainless steel wrought alloy with 1-2.5% and 0.35-0.55% N has been proposed, in which case the commercially available 21
Reducing the carbon and manganese content of -4 stainless steel alloys provides high temperature strength, sulfidation resistance, and oxidation resistance.

(発明が解決しようとする問題点) しかしながら、ターボチャージャハウジング忙要求され
る高温特性条件を満足し得るようなこれら合金は総じて
相当に高価になり、又ニッケルの含有量が高Bため鋳造
による製造が煩雑になる問題があった。
(Problems to be Solved by the Invention) However, these alloys that can satisfy the high-temperature property conditions required for turbocharger housings are generally quite expensive, and because of their high nickel content, they cannot be manufactured by casting. The problem was that it became complicated.

また上述の米国特許における錬造合金は全てオーステナ
イト相であシ、特に低熱膨張特性を得れなかった。
In addition, all of the wrought alloys in the above-mentioned US patents had an austenite phase, and did not have particularly low thermal expansion characteristics.

しかして本発明の一目的は最高1950°F(約106
5℃)までの作動温度において耐熱分解性および室温強
さが優れ、クリープ強さが高く且耐破断性に富むと共に
安価なステンレス鋼鋳造合金を提供することにある。
It is therefore an object of the present invention to
The object of the present invention is to provide an inexpensive stainless steel casting alloy that has excellent thermal decomposition resistance and room temperature strength at operating temperatures up to 5° C., has high creep strength, is rich in fracture resistance, and is inexpensive.

また本発明の他の目的は優れた鋳造特性を示す低コスト
のステンレス鋼鋳造合金を提供することにある。
Another object of the present invention is to provide a low cost stainless steel casting alloy that exhibits excellent casting properties.

本発明の更に他の目的は高温で使用可能なステンレス鋼
製品を安価に且効果的に鋳造する方法を提供することに
ある。
Still another object of the present invention is to provide a method for inexpensively and effectively casting stainless steel products that can be used at high temperatures.

(問題点を解決するだめの手段) 本発明によれば上記の目的はステンレス鋼鋳造合金が、
フェライトが実質的に20〜80%、残部がオーステナ
イトの金属組織学上の2相を有し、1500九1950
°F(約815へ1065℃)の使用温度と室温との間
における熱サイクルの被熱時の耐熱分解性に優り、溶液
処理を受けて耐酸化腐蝕性に優り、室温における引張強
さが少なくとも75,000psiで伸び率が少なくと
も実質的に7%であり、実質的にシグマ相が存在せず、
クロムが実質的に27〜31重量%、ニッケルが4〜6
重量%、窒素が0.2〜0.5重量%、炭素が0.2〜
0.4 i!%、コルンビュームが0.5〜1.511
:t%、マンガンとモリブデンからなる群から選択され
た硫化生成物が最高1.0重量%、硫黄が0.2〜0.
4重量%、残部が鉄でなることにより達成される。
(Another Means to Solve the Problems) According to the present invention, the above object is achieved by using a stainless steel casting alloy to
It has two metallographic phases of substantially 20-80% ferrite and the remainder austenite, 1500-1950
Excellent thermal decomposition resistance when subjected to heat cycling between the service temperature of 815 °F (approx. an elongation of at least substantially 7% at 75,000 psi and substantially no sigma phase;
Substantially 27-31% by weight of chromium and 4-6% of nickel
% by weight, 0.2-0.5% by weight of nitrogen, 0.2-0.2% by weight of carbon
0.4 i! %, Kornbuum is 0.5-1.511
: t%, up to 1.0% by weight of sulfurized products selected from the group consisting of manganese and molybdenum, 0.2 to 0.0% sulfur.
This is achieved by containing 4% by weight and the balance being iron.

(作用) 本発明によれば、デユーブレックスステンレス鋼合金、
即ちフェライト組織とオーステナイト組織の両方を有す
る2相合金を得ることができ、自動率のターボチャージ
ャハウジング、ガソリンエンジンの排気マニホルド、鋳
造炉や燃焼室のような高温度を受ける、鋳造部品として
使用され得、オーステナイト相の高温特性とフェライト
相の低熱膨張特性とをかね備える作用を得れる。
(Function) According to the present invention, a dubrex stainless steel alloy,
That is, it is possible to obtain a two-phase alloy with both ferritic and austenitic structures, which can be used as cast parts subjected to high temperatures such as automatic turbo charger housings, gasoline engine exhaust manifolds, casting furnaces and combustion chambers. Thus, it is possible to obtain an effect that combines the high-temperature characteristics of the austenite phase and the low thermal expansion characteristics of the ferrite phase.

(実施例) 本発明においてステンレス鋼鋳造製品、特にタービンハ
ウジングに好適に使用されるステンレス鋼鋳造合金は比
較的ニッケル含有量の低いH系ステンレス鋼材で形成さ
れ、ニッケルが窒素と結合して、フェライト相が20〜
80チ、好ましくは40〜60%にされ、残部がオース
テナイト相のフェライト・オーステナイトの二相構造に
改質され、耐熱性が改善される。この合金のミクロ構造
内に存在するフェライトの量は合金の化学的成分、二次
加工技術および採用する熱処理法によシ決定される。フ
ェライト相は鋳造合金の高温特性に寄与しないものと考
えられる。
(Example) In the present invention, the stainless steel casting alloy suitably used for stainless steel casting products, especially turbine housings, is formed of H-series stainless steel material with a relatively low nickel content, and nickel combines with nitrogen to create ferrite. phase is 20~
80%, preferably 40 to 60%, and the remainder is modified into a ferrite-austenite two-phase structure with austenite phase, improving heat resistance. The amount of ferrite present within the microstructure of the alloy is determined by the alloy chemistry, fabrication techniques, and heat treatment methods employed. It is believed that the ferrite phase does not contribute to the high temperature properties of the cast alloy.

溶液処理を行なわない場合、本発明のステンレス鋼鋳造
製品は極めてもろく、溶液処理を施す必要がある。この
とき熱処理前に鋳造鋼がもろさく脆弱性)を持つことを
利用して本発明の鋼鋳造法の生産性を高め得る。即ち鋳
造鋼の湯口を機械、加工によらず、単に折り取りによシ
除去し得る。溶液処理は2000〜2200°F(約1
093〜1204’(:りで1〜4時間実行し、次いで
空気により冷却することが好ましい。この溶液処理後に
、合金は最大24時間、1400〜1600°F(約7
60へ871℃)で強化処理を行うことが望ましいが、
この合金製品は使用中通常この範囲の温度を受けること
になるので合金製品のテスト使用時においてその使用当
初にこの強化処理を行ない得ることが理解されよう。
Without solution processing, the stainless steel cast products of the present invention are extremely brittle and require solution processing. At this time, the productivity of the steel casting method of the present invention can be increased by utilizing the fact that the cast steel is brittle and brittle before heat treatment. That is, the sprue of cast steel can be removed simply by breaking it off, without using a machine or processing. Solution processing is carried out at temperatures between 2000 and 2200°F (approximately 1
093-1204' (: 1-4 hours, followed by air cooling. After this solution treatment, the alloy remains at 1400-1600 degrees Fahrenheit for up to 24 hours.
It is desirable to perform the strengthening treatment at a temperature of 60 to 871 °C.
It will be appreciated that this strengthening treatment may be performed during test use of the alloy product at the beginning of its use since the alloy product will normally be subjected to temperatures in this range during use.

本発明のステンレス鋼鋳造製品は主として固溶体強化母
材内に分散された炭化物により強化される。生成された
2種類の炭化物、すなわちMCとM23C6の内のMO
炭化物(Mは実質的にC,) I/i溶液処理によシ比
較的影響を受けないので、溶液処理後強化成分として残
る。一方もろいM23Cfl成分(Mは実質的にOr)
は溶液処理時に球状化(apher−01d1ze )
又は一部溶解される。この溶解された炭化物は通常低温
で沈澱して合金の強度が向上される。即ち溶液処理によ
’) Mis Os炭化物が再分布、すなわち球状化又
は溶解され、球状化又は小滴化されたM2RCB炭化物
は元の角状の態様の場合よシ延性が高められる。
The stainless steel cast products of the present invention are strengthened primarily by carbides dispersed within a solid solution strengthened matrix. MO of the two types of carbides produced, namely MC and M23C6
Carbides (M substantially C,) I/i are relatively unaffected by solution processing and remain as reinforcing components after solution processing. On the other hand, the brittle M23Cfl component (M is essentially Or)
becomes spheroidal during solution treatment (apher-01d1ze)
Or partially dissolved. This dissolved carbide usually precipitates at low temperatures, improving the strength of the alloy. That is, by solution treatment, the MisOs carbide is redistributed, ie, spheroidized or dissolved, and the spheroidized or dropletized M2RCB carbide becomes more ductile than in its original angular form.

機械加工性を高めるため、硫黄が本発明のステンレス鋼
鋳造合金に0.2〜0.4%添加され、マンガン又はモ
リブデンと結合されて、MnB又はMoBとなる。又鋳
造合金の流動性を高めるよう作用するシリコンが通常市
販の鋼内には最高2チ含まれチオ、?、一方2.5〜1
.5 %のコルンビュームにオビウム)が強度を増すた
めに添加される。コルンビュームは極めて安定したMO
炭化物を生成する。
To enhance machinability, 0.2-0.4% sulfur is added to the stainless steel casting alloy of the present invention and combined with manganese or molybdenum to form MnB or MoB. Also, silicon, which acts to increase the fluidity of cast alloys, is typically present in up to two silicones in commercially available steels. , while 2.5 to 1
.. 5% Cornbium (Obium) is added to increase strength. Cornbium has an extremely stable MO
Produces carbide.

本発明によるステンレス鋼合金における他の特徴は鋳造
工程にある。すなわち、延性ねずみ鉄を鋳造する際に通
常採用されるような低摩の鋳造法を効果的に採用する。
Another feature of the stainless steel alloy according to the invention lies in the casting process. That is, a low-friction casting method, such as that normally employed when casting ductile gray iron, is effectively employed.

主として鋼鋳造は約3100’lF(約1700℃)3
の高温で、一方鉄鋳造は約2600〜2900°F(約
1427〜1593℃)で注型されるから、鋼鋳造法は
鉄鋳造法よシコスト高となる。
Mainly steel casting is approximately 3100'lF (approximately 1700°C)3
Since iron casting is cast at a high temperature of about 2600-2900°F (about 1427-1593°C), steel casting is more expensive than iron casting.

本発明においてはステンレス鋼は約2850°F(約1
566℃)のタップ温度(ステンレス鋼の湯がとシベに
移されるときの温度)で鋳造できることが判明している
。また気孔率を低下させるため湯口を増やす場合、鋼鋳
造に通常採用される構成を本発明の合金の鋳造に採用で
き、鋳造製品の品質を顕著に向上できる。本発明によシ
鋳造される合金製品は独特の化学的成分およびミクロ構
造を有すると共に、溶液処理時に一部溶解されるもろい
炭化物成分”ts’sが存在するため、湯口を折り取シ
除去できる。即ち注型連続状態でこの炭化物成分が存在
するので、通常オーステナイト型鋼鋳造に採用されるよ
うなコスト高の機械加工作業による湯口除去法に因るこ
となく、単なる折夛取シによル湯口を除去できる。
In the present invention, stainless steel is used at approximately 2850°F (approximately 1
It has been found that casting can be performed at a tap temperature (the temperature at which stainless steel is transferred to the cauldron) of 566°C. Furthermore, when increasing the number of sprues to reduce porosity, the configuration normally employed in steel casting can be employed in casting the alloy of the present invention, and the quality of the cast product can be significantly improved. The alloy products cast according to the present invention have a unique chemical composition and microstructure, and the presence of brittle carbide components, which are partially dissolved during solution processing, can be removed by breaking off the sprue. In other words, since this carbide component is present in the continuous pouring state, the sprue can be removed by simply removing the sprue instead of using the costly machining process normally used in austenitic steel casting. can be removed.

実験例 本発明による表1に示す各種のDMS 016合金を用
いて鋳造しタービンハウジングを作成し、これらのター
ビンハウジングの特性を試験した。この結果を表Hに示
す。また表IにはDMSO16合金に近いHe 、 H
DおよびHE系合金も併記しである。
Experimental Examples Turbine housings were cast using various DMS 016 alloys shown in Table 1 according to the present invention, and the characteristics of these turbine housings were tested. The results are shown in Table H. Table I also shows He, H, which is close to the DMSO16 alloy.
D and HE alloys are also listed.

注型温度は12本のとシベを約2733〜27700F
(約1500〜1521℃)にした。湯材は本発明によ
るDMSO16合金の所望の化学特性に近い市販の混合
物を用いた。
The casting temperature is approximately 2733-27700F for 12 pieces.
(approximately 1500 to 1521°C). A commercially available mixture having close to the desired chemical properties of the DMSO16 alloy according to the present invention was used as the hot water material.

第1図には0.16%のNで改質され、約10%のオー
ステナイトを含むDM8016合金のミクロ構造が40
0倍に拡大して示される。図中の明るい部分はオーステ
ナイト相、暗い部分はフェライト相である。また第2図
〜第4図には夫々異なった合金のミクロ構造(Nが夫々
0.20 、0.32および0.35チ)が示されてお
シ、夫々オーステナイトが約20%。
Figure 1 shows the microstructure of DM8016 alloy modified with 0.16% N and containing approximately 10% austenite.
Shown at 0x magnification. The bright parts in the figure are the austenite phase, and the dark parts are the ferrite phase. Also shown in FIGS. 2-4 are the microstructures of different alloys (0.20, 0.32 and 0.35 N, respectively) and about 20% austenite, respectively.

40〜50%および50〜55%含まれる。40-50% and 50-55%.

表         I O1,5−2,30,5(最大)、2−.6Cjr  
     1.6−2,2  26−30    24
−28Ni         34−38     4
−7       18−22Mn      0.7
(最大)1.5(最大)   2.0(最大)s14.
s −5,32,0(最大)   2.0(最大)MO
o、s (最大)   o、s(最大)SO,06(最
大)  0.01(最大)  0.04(最大)cb 
           −−− N           、02          
、Q2           −Fe     残り 
   残部     残シフエライト%     −−
★ オーステナイト係  −−− ★ 基本的には10%よシ低いフェライト含有量のオー
ステナイト軸 顕微鏡写真での線切片推定法(1ine
 1ntercept θθt im。
Table I O1,5-2,30,5(max),2-. 6Cjr
1.6-2,2 26-30 24
-28Ni 34-38 4
-7 18-22Mn 0.7
(Max) 1.5 (Max) 2.0 (Max) s14.
s -5,32,0 (max) 2.0 (max) MO
o, s (max) o, s (max) SO, 06 (max) 0.01 (max) 0.04 (max) cb
--- N, 02
, Q2 −Fe remainder
Remaining amount Remaining sipherite% −−
★ Austenite section --- ★ Basically, austenite axis with ferrite content as low as 10% Line intercept estimation method using micrographs (1ine
1ntercept θθt im.

*** Mgが0.035〜0.09チ、1−.2  
     Q、19       .16      
 .2428−32      29.65     
 28.39     30.944、−8     
  5.47       5.21      5,
331.0(最大)   0.67    .49  
  .652.0(最大)   1.72    1.
49    .900.1(最大)   0.1(最大
)  、12    .34−−        .1
4       .28−           − 
        −        .87−    
     0.2        .35      
 .32残シ    残り    残部   残多−5
0★★      40★★      45★★ht
ion )に近似 タービンハウジングには、ハウジング内に回転る羽根車
が確実に収納され保持されて、ターボハウジングが破断
を来たさないことが要求され。収納テストにおいては、
所定の合金で作られタービンハウジング内に、所定のテ
スト条件にい、羽根車の回転速度を上昇せしめて羽根車
を断させたときも確実に収納可能か否かを調べる。
*** Mg is 0.035 to 0.09, 1-. 2
Q, 19. 16
.. 2428-32 29.65
28.39 30.944, -8
5.47 5.21 5,
331.0 (maximum) 0.67. 49
.. 652.0 (maximum) 1.72 1.
49. 900.1 (maximum) 0.1 (maximum), 12. 34--. 1
4. 28--
−. 87-
0.2. 35
.. 32 remaining remaining remaining remaining -5
0★★ 40★★ 45★★ht
ion) The turbine housing is required to reliably house and hold the rotating impeller within the housing so that the turbo housing does not break. In the storage test,
It is examined whether the turbine housing can be reliably housed in a turbine housing made of a predetermined alloy under predetermined test conditions, even when the rotational speed of the impeller is increased and the impeller is disconnected.

−ボチャージャのメーカは通常例えば自動車(717ン
)エンジン、ディーゼルエンジンおよび空機用エンジン
のターボチャージャに対しこの納テストを多数回行なう
。自動車エンジンおよディーゼルエンジン用のターボチ
ャージャに対るテストは通常相対的に強度のある同一の
羽根を用いて行なうが、航空機用エンジンのターホヤ−
ジャに対するテストは意図的に機械的に弱羽根車を用い
て収納テストを遂行する。本発明よる合金、すなわちD
MS0162 に対し収納テスを行なった。シャフト並
びに羽根車は簡単に破ニするような航空機用の標準試験
要綱に従い、バ部に1つの軸方向に延びる穴を且背ディ
スクに3つの穴をあけ・・ブ部が3片に破裂するよう設
けた。タービンのガス導入部温度はタービンの入口7ラ
ンジで1750°F(約954℃)に゛なるように調整
し、且この温度で10分間、速度97,500rpmで
定常に回転した。次にターボチャージャを、弱化せしめ
た羽根車が破断するまで急加速し、約159、OOOr
pm で破断させた。この状態でも破壊された羽根車が
ハウジング内に確実に収容され保持されることが判明し
た。このテスト結果から、本発明による合金DMSO1
62で作成したターボチャージャハウジングが、現在航
空機のターボチャージャハウジングに採用されているオ
ーステナイト合金であるHK30+Obに対するものと
同一の収納テストに合格するものであることが判明した
- Bocharger manufacturers usually carry out this delivery test many times, for example on turbochargers for automobile (717) engines, diesel engines and aircraft engines. Tests on turbochargers for automobile and diesel engines are usually performed using the same relatively strong blades, but tests on turbochargers for aircraft engines
The test for the jar intentionally performs a containment test using a mechanically weak impeller. The alloy according to the invention, namely D
A storage test was conducted on MS0162. In accordance with the standard test guidelines for aircraft, where the shaft and impeller can easily break, one axially extending hole was drilled in the bar section and three holes were drilled in the back disk...the bulb section burst into three pieces. I set it up like this. The gas inlet temperature of the turbine was adjusted to 1750° F. (about 954° C.) at the turbine inlet 7 lange, and the turbine was rotated steadily at this temperature for 10 minutes at a speed of 97,500 rpm. Next, the turbocharger is rapidly accelerated until the weakened impeller ruptures to approximately 159 OOOr
It was broken at pm. It was found that even in this state, the destroyed impeller was reliably accommodated and retained within the housing. From this test result, the alloy DMSO1 according to the invention
It was found that the turbocharger housing made in 62 passed the same containment test for HK30+Ob, an austenitic alloy currently used in aircraft turbocharger housings.

更に第5図に示す周知の型式の航空機用のタービンハウ
ジングαOを本発明による合金DMSO162で鋳造し
1、ガス導入部温度1750°F(約954℃)で60
0時間のガス放置サイクルの耐久テストを行なった。こ
のテス、・後のタービンハウジングを検査した結果、舌
部(121並びに渦巻き部(ガス通過)面の頂部α4の
いずれにも亀裂が発見されなかった。
Furthermore, a turbine housing αO for an aircraft of the known type shown in FIG.
A durability test of a 0-hour gas leaving cycle was conducted. As a result of inspecting the turbine housing after this test, no cracks were found in either the tongue portion (121) or the top portion α4 of the spiral portion (gas passage) surface.

これKよシ合金DMEIO162で鋳造され九ノ・ウジ
ングの耐熱分解性も優れていることが判明した。
It was found that this was cast with K alloy DMEIO162 and had excellent heat decomposition resistance.

1500°F(約816’(りで酸化テストも行なった
が、100時間経過後0.03%の重量損だけであつ九
An oxidation test was also conducted at 1500°F (approximately 816°C), but after 100 hours there was only a 0.03% weight loss.

1700°F(約927℃)で硫化テストも行なったが
、1時間で約0.4%の重量損だけであった。
A sulfidation test at 1700°F (about 927°C) was also conducted and only resulted in about 0.4% weight loss in one hour.

本発明の合金は300−1000”Cの範囲に亘シ、l
s、e X 1 o−’/’c (10,I X 10
−’/°F)の線膨張率を示した。この線膨張率はHK
30ステンレス鋼と実質的に同一である。
The alloy of the present invention can be used over a range of 300-1000"C.
s, e X 1 o-'/'c (10, I X 10
-'/°F). This coefficient of linear expansion is HK
30 stainless steel.

第5図に示すタービンノ・ウジングの素子有限熱応力モ
デルを標準のN1Reeist  材料(D−り8)と
本発明による合金で夫々鋳造して比較した。この結果を
表■に示す。これによシ表菖からも明らかなように、D
MSO162の方が応力が大きく疲れ寿命も長いことが
判明した。この場合舌部α2の温度が、152Q’? 
(約827℃)であるとき廃棄する湯口部μs内の温度
は14800F (約804℃)であった。これらの結
果は限られたクリープ(材料試駿忙荷重を加えた結果生
じる歪であって、耐荷重時間に依存する歪を指す試験デ
ータに基づいてはいるが、本発明によればクリープ試験
データも顕著に改善、された。即ち表11[K示すクリ
ープ試験データから明らかなようK、本発明による合金
DMSO162の耐久性が犬であることが判明した。
The element finite thermal stress model of the turbine housing shown in FIG. 5 was compared by casting the standard N1Reeist material (D-RI8) and the alloy according to the present invention. The results are shown in Table ■. As is clear from the irises on the surface, D
It was found that MSO162 had higher stress and longer fatigue life. In this case, the temperature of the tongue α2 is 152Q'?
(approximately 827°C), the temperature inside the sprue section μs to be discarded was 14,800F (approximately 804°C). Although these results are based on test data with limited creep (which refers to the strain that occurs as a result of applying a material test load and is dependent on the load-bearing time), according to the present invention, the creep test data As is clear from the creep test data shown in Table 11, the durability of the alloy DMSO162 according to the invention was found to be excellent.

素子有限応力分析を、疲れ亀裂が生ずることが予期され
る2つの臨界面、即ち舌部α2および湯口部(至)に対
し行なった。これによ、9 DM80162はD5S(
MiReeiet ) K比し、高温における強度が高
く且弾性率も高くなる反面、熱膨張率が僅かに低くなる
ことが判明した。従って本発明による合金は高い熱応力
を持つことが理解されよう。
Element finite stress analysis was performed on two critical surfaces where fatigue cracks are expected to occur, namely the tongue α2 and the sprue (to). With this, 9 DM80162 is D5S (
It was found that the strength and modulus of elasticity at high temperatures were higher than that of MiReieet) K, but the coefficient of thermal expansion was slightly lower. It will therefore be appreciated that the alloy according to the invention has high thermal stresses.

異なる量の窒素(N)を含むDMSO16のサンプルを
5個作成し機械的テストを行なった。このテスト結果を
表■に示す。満足する延性を得るに必要な伸び率は最小
約7チであり、表■のデータから最小的0.20%の窒
素fN)が必要であることが理解されよう。戎■からも
明らかなように、窒素成分が、0.20チ以上のDMS
016合金の鋳造サンプルには脆弱なシグマ相が実質的
に含まれていないことが判明した。窒素(N)の最大溶
解度は約0.6%であり、窒素fN)が0.5チのとき
もろい窒素化合物が現われ延性が低下する。
Five samples of DMSO16 containing different amounts of nitrogen (N) were prepared and mechanically tested. The test results are shown in Table ■. The elongation required to obtain satisfactory ductility is a minimum of about 7 inches, and it can be seen from the data in Table 1 that a minimum of 0.20% nitrogen (fN) is required. As is clear from Ebisu■, DMS with a nitrogen content of 0.20 or more
Cast samples of the 016 alloy were found to be substantially free of the brittle sigma phase. The maximum solubility of nitrogen (N) is about 0.6%, and when nitrogen (fN) is 0.5%, brittle nitrogen compounds appear and the ductility decreases.

家  !  マ  Cロ  ロ  O〜  〜  膿 
 哨〜I   −−−−ヘ  ヘ  cQ   の  
の  のス ; ; ≦ ; ≦ ≦ ≦ ; ≦ ≦
上述したテストおよび模擬環境あるいは実環境にさらし
たタービンハウジングについて、本発明のDMSo 1
6合金はよるものはD5SNiResistに比べ鋳造
性、機械加工性および使用特性のいずれも少なくとも同
等以上であり、多岐に亘ってHK30ステンレス鋼ない
しは高価な・・イニッケル材の特性に近く、所定の条件
を満足するものと考え得よう。
House ! Ma C Ro Lo O~ ~ Pus
Watch~I -----he he cQ's
; ; ≦ ; ≦ ≦ ≦ ; ≦ ≦
For the turbine housings exposed to the above-mentioned tests and simulated or real environments, the DMSo 1 of the present invention
Compared to D5SNiResist, Alloy 6 has castability, machinability, and usability characteristics that are at least equivalent to or better than D5SNiResist, and are close to those of HK30 stainless steel or expensive Ni-nickel materials, and can be used under specified conditions. I think it's satisfying.

本発明は上述した実施例に限定されるものではなく、特
許請求の範囲の技術的思想に含まれる設計変更を包有す
ることは理解されよう。
It will be understood that the present invention is not limited to the embodiments described above, but encompasses design modifications that fall within the technical spirit of the claims.

(発明の効果) 上述のように構成された本発明によれば、低ニッケルの
デユーブレックスステンレス鋼に窒素全適量添加するこ
とによシ、耐熱分解性を向上でき、高ニツケルステンレ
ス鋼を得る従来の構成ニ比へ合金が効果的に改良され得
、且オーステナイトステンレス鋼と実質的に同一の強度
特性、耐腐蝕性およびクリープ特性が得ることができる
。また特にニッケルではなく窒素を添加することによシ
、合金の耐熱分解性、即ち強度を高くする反面、熱膨張
を小さくし得、機能的にHE外、ステンレス鋼合金と等
価な合金を大巾に低摩に提供できる等の効果を実現する
(Effects of the Invention) According to the present invention configured as described above, by adding an appropriate amount of nitrogen to low nickel duplex stainless steel, the thermal decomposition resistance can be improved and high nickel stainless steel can be obtained. The alloy can be effectively modified to a conventional configuration and provide substantially the same strength, corrosion resistance and creep properties as austenitic stainless steel. In addition, by adding nitrogen instead of nickel, the thermal decomposition resistance of the alloy, that is, the strength, can be increased, while the thermal expansion can be reduced, making it possible to make alloys that are functionally equivalent to stainless steel alloys other than HE. Realizes effects such as being able to provide low maintenance costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は夫々0.16%、 0.20チ、 
0.32チおよび0.35%の窒素(N) ft含んだ
本発明によるDMSOI6で鋳造されたタービンハウジ
ングからのサンプルのミクロ組織’i 400倍に拡大
して示す図、第5図はテスト用のタービンノ1ウジング
モデルの斜視図である。 10・・・タービンハウジング、12・・・舌部、14
・・・頂部、16・・・湯口部
Figures 1 to 4 are 0.16% and 0.20chi, respectively.
Microstructure of a sample from a turbine housing cast in DMSOI6 according to the invention containing 0.32 and 0.35% nitrogen (N) ft. FIG. 2 is a perspective view of a turbine housing model. 10... Turbine housing, 12... Tongue, 14
... Top, 16... Sprue part

Claims (10)

【特許請求の範囲】[Claims] (1)フェライトが実質的に20〜80%、残りがオー
ステナイトの金属組織学上の2相を有し、1500〜1
950°F(約815〜1065℃)の使用温度と室温
との間における熱サイクルの被熱時の耐熱分解性に優り
、溶液処理を受けて耐酸化腐蝕性に優り、室温における
引張強さが少なくとも75,000psiで伸び率が少
なくとも実質的に7%であり、実質的にシグマ相が存在
せず、クロムが実質的に27〜31重量%、ニッケルが
4〜6重量%、窒素が0.2〜0.5重量%、炭素が0
.2〜0.4重量%、コルンビュームが0.5〜1.5
重量%、マンガンとモリブデンからなる群から選択され
た硫化生成物が最高1.0重量%、硫黄が0.2〜0.
4重量%、残りが鉄でなるステンレス鋼鋳造合金。
(1) It has two metallographic phases of 20 to 80% ferrite and the rest is austenite, and 1500 to 1
It has excellent thermal decomposition resistance when subjected to heat cycling between the service temperature of 950°F (approximately 815-1065°C) and room temperature, has excellent oxidative corrosion resistance when subjected to solution treatment, and has excellent tensile strength at room temperature. elongation of at least substantially 7% at at least 75,000 psi, substantially no sigma phase, substantially 27-31% by weight chromium, 4-6% by weight nickel, and 0.5% by weight nitrogen. 2-0.5% by weight, 0 carbon
.. 2-0.4% by weight, Cornbium 0.5-1.5
% by weight, sulfurized products selected from the group consisting of manganese and molybdenum up to 1.0% by weight, sulfur 0.2-0.
Stainless steel casting alloy consisting of 4% by weight and the balance iron.
(2)窒素含有量が0.3〜0.4重量%である特許請
求の範囲第1項記載のステンレス鋼鋳造合金。
(2) The stainless steel casting alloy according to claim 1, wherein the nitrogen content is 0.3 to 0.4% by weight.
(3)40〜60%のフェライト相、残りがオーステナ
イト相の2相組織である特許請求の範囲第1項記載のス
テンレス鋼鋳造合金。
(3) The stainless steel casting alloy according to claim 1, which has a two-phase structure of 40 to 60% ferrite phase and the remainder austenite phase.
(4)実質的にクロムが31重量%、ニッケルが5重量
%、炭素が0.24重量%、マンガンが0.65重量%
、シリコンが1重量%、モリブデンが0.35重量%、
硫黄が0.3重量%、コルンビュームが0.9重量%、
窒素が0.32重量%、残りが鉄である特許請求の範囲
第1項記載のステンレス鋼鋳造合金。
(4) Substantially 31% by weight of chromium, 5% by weight of nickel, 0.24% by weight of carbon, and 0.65% by weight of manganese.
, 1% by weight of silicon, 0.35% by weight of molybdenum,
Sulfur is 0.3% by weight, Cornbium is 0.9% by weight,
2. A stainless steel casting alloy according to claim 1, comprising 0.32% by weight of nitrogen and the balance being iron.
(5)溶液処理が実質的に2000〜2200°F(約
1093〜1204℃)で1〜4時間行なつて作成され
た特許請求の範囲第1項記載のステンレス鋼鋳造合金。
5. The stainless steel cast alloy of claim 1 prepared by solution processing at substantially 2000-2200°F (approximately 1093-1204°C) for 1-4 hours.
(6)溶液処理後、空気で冷却され、最高24時間、1
400〜1600°F(約760〜871℃)で強化熱
処理が行なわれて作成された特許請求の範囲第5項記載
のステンレス鋼鋳造合金。
(6) After solution treatment, cooled with air for up to 24 hours, 1
6. A stainless steel casting alloy according to claim 5, which is prepared by a strengthening heat treatment at 400-1600°F (approximately 760-871°C).
(7)鋼混合物を溶融して、クロムが実質的に27〜3
1重量%、ニッケルが4〜6重量%、炭素が0.2〜0
.4重量%、マンガンが0.5〜1.0重量%、モリブ
デンが最大1.0重量%、シリコンが1〜2重量%、コ
ルンビュームが0.5〜1.5重量%、窒素が0.3〜
0.4重量%、燐が最大0.03重量%、硫黄が0.2
〜0.4重量%、銅が最大0.50重量%、アルミニウ
ムが最大0.20重量%の合金湯を作成する工程と、合
金湯を所定の時間実質的に約2850〜2900°F(
約1566〜1593℃)の温度まで加熱して合金を均
質化する工程と、実質的に2850°F(約1566℃
)のタップ温度で多孔度を最小にする湯口状の型に注入
する工程と、鋳造された合金を1〜4時間以上の間実質
的に約2000乃至2200°F(約1093〜120
4℃)で溶液処理し、M_2_3C_6炭化物を再分散
させる工程とを包有してなる、フェライト相が実質的に
20〜80%、残りがオーステナイト相の2相組織のス
テンレス鋼鋳造合金の製造方法。
(7) Melt the steel mixture so that the chromium is substantially 27 to 3
1% by weight, nickel 4-6% by weight, carbon 0.2-0
.. 4% by weight, manganese 0.5-1.0% by weight, molybdenum up to 1.0% by weight, silicon 1-2% by weight, columbium 0.5-1.5% by weight, nitrogen 0.3%. ~
0.4% by weight, max. 0.03% phosphorus, 0.2% sulfur
~0.4 wt%, up to 0.50 wt% copper, and up to 0.20 wt% aluminum;
homogenizing the alloy by heating to a temperature of approximately 2850°F (approximately 1566°C);
) into a sprue-like mold that minimizes porosity at a tap temperature of approximately
A method for producing a cast stainless steel alloy having a two-phase structure of substantially 20 to 80% ferrite phase and the remainder austenite phase, comprising the steps of solution treatment at 4°C) and redispersion of M_2_3C_6 carbides. .
(8)鋳造合金を室温まで冷却した後、溶液処理前に湯
口を折り取つて除去する工程を包有してなる特許請求の
範囲第7項記載の製造方法。
(8) The manufacturing method according to claim 7, comprising the step of cooling the cast alloy to room temperature and then breaking off and removing the sprue before solution treatment.
(9)溶液処理された後、鋳造合金を空気で冷却してな
る特許請求の範囲第7項記載の製造方法。
(9) The manufacturing method according to claim 7, wherein the cast alloy is cooled with air after solution treatment.
(10)溶液処理後鋳造合金を実質的に1400〜16
00°F(約760〜871℃)で、最高24時間の間
強化処理してなる特許請求の範囲第7項記載の製造法。
(10) The cast alloy after solution treatment is substantially 1400-16
8. The method of claim 7, wherein the method is toughened at 00 DEG F. (760-871 DEG C.) for up to 24 hours.
JP60229768A 1985-06-26 1985-10-15 Stainless steel casting alloy and manufacturing method thereof Expired - Lifetime JPH0672294B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74915385A 1985-06-26 1985-06-26
US749153 1985-06-26

Publications (2)

Publication Number Publication Date
JPS624855A true JPS624855A (en) 1987-01-10
JPH0672294B2 JPH0672294B2 (en) 1994-09-14

Family

ID=25012500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229768A Expired - Lifetime JPH0672294B2 (en) 1985-06-26 1985-10-15 Stainless steel casting alloy and manufacturing method thereof

Country Status (6)

Country Link
EP (1) EP0207697B1 (en)
JP (1) JPH0672294B2 (en)
AT (1) ATE46194T1 (en)
BR (1) BR8505304A (en)
DE (1) DE3665488D1 (en)
ES (1) ES8707569A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487174A (en) * 2018-11-30 2019-03-19 山西太钢不锈钢股份有限公司 A kind of two phase stainless steel manufacturing method of plate thereof for taking into account elevated temperature strength and low-temperature flexibility

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331535A (en) * 1986-07-23 1988-02-10 Jgc Corp Apparatus for treating carbon-containing compound having carbon precipitation suppressing property
ES2111405T3 (en) * 1994-05-17 1998-03-01 Ksb Ag HARD CAST IRON WITH HIGH CORROSION AND WEAR RESISTANCE.
US6761777B1 (en) * 2002-01-09 2004-07-13 Roman Radon High chromium nitrogen bearing castable alloy
WO2012170188A2 (en) * 2011-06-06 2012-12-13 Borgwarner Inc. Exhaust-gas turbocharger
US10975718B2 (en) 2013-02-12 2021-04-13 Garrett Transportation I Inc Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
US9534281B2 (en) 2014-07-31 2017-01-03 Honeywell International Inc. Turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
US9896752B2 (en) * 2014-07-31 2018-02-20 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
US10316694B2 (en) 2014-07-31 2019-06-11 Garrett Transportation I Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
DE102016208301A1 (en) * 2016-05-13 2017-11-16 Continental Automotive Gmbh Steel material for high temperature applications and turbine housings made of this material
CN109766634B (en) * 2019-01-11 2023-04-18 徐州徐工矿业机械有限公司 Mining large-scale steel casting digital forward research and development method
EP3959452A1 (en) * 2019-04-25 2022-03-02 Volvo Truck Corporation A flywheel arrangement, a vehicle and a method of manufacturing a flywheel arrangement
DE102020128884A1 (en) 2020-11-03 2022-05-05 BMTS Technology GmbH & Co. KG Austenitic steel alloy and turbine housing or turbine housing component for an exhaust gas turbocharger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563729A (en) * 1968-04-16 1971-02-16 Crucible Inc Free-machining corrosion-resistant stainless steel
US3969109A (en) * 1974-08-12 1976-07-13 Armco Steel Corporation Oxidation and sulfidation resistant austenitic stainless steel
US4405389A (en) * 1982-10-21 1983-09-20 Ingersoll-Rand Company Austenitic stainless steel casting alloy for corrosive applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487174A (en) * 2018-11-30 2019-03-19 山西太钢不锈钢股份有限公司 A kind of two phase stainless steel manufacturing method of plate thereof for taking into account elevated temperature strength and low-temperature flexibility

Also Published As

Publication number Publication date
ES8707569A1 (en) 1987-08-01
EP0207697B1 (en) 1989-09-06
BR8505304A (en) 1987-02-17
DE3665488D1 (en) 1989-10-12
EP0207697A1 (en) 1987-01-07
ATE46194T1 (en) 1989-09-15
JPH0672294B2 (en) 1994-09-14
ES556779A0 (en) 1987-08-01

Similar Documents

Publication Publication Date Title
US20060266439A1 (en) Heat and corrosion resistant cast austenitic stainless steel alloy with improved high temperature strength
EP1931810B1 (en) High silicon niobium casting alloy and process for producing the same
JPS624855A (en) Stainless steel cast alloy and its production
ES2805875T3 (en) Cr-mn-n heat resistant austenitic steel and a manufacturing procedure for the same
JP2009509035A5 (en)
US20200048739A1 (en) Nickel alloy
EP0257769B1 (en) High temperature bushing alloy
JP2004269979A (en) Heat resistant cast steel, heat resistant member made of cast steel, and production method therefor
JP7477278B2 (en) New austenitic alloys for turbochargers
EP0359085B1 (en) Heat-resistant cast steels
JP2002206143A (en) High strength low thermal expansion casting steel and ring-shaped parts for blade ring of gas turbine and for seal ring holding ring consisting of the high strength low thermal expansion casting steel
EP0109040B1 (en) Heat-resisting spheroidal graphite cast iron
KR20030055751A (en) Cast iron with improved oxidation resistance at high temperature
JPS5837382B2 (en) Heat treatment method for nickel-based heat-resistant alloy
JP2021008649A (en) Austenitic stainless cast steel
CN106676366B (en) The preparation method of high-temperature alloy
JPH06240404A (en) High grade high carbon cementite alloy cast iron
JPH07113139B2 (en) Exhaust manifold and automobile turbine housing with excellent castability and heat fatigue resistance
JP2004169135A (en) Ferritic heat resistant spheroidal graphite cast iron
JPS6233744A (en) Heat-resistant cast steel
JPS63162831A (en) Co-base super heat-resisting alloy for casting
JPH0116293B2 (en)
JPH06287666A (en) Heat resistant cast co-base alloy
JPH07224337A (en) Heat resistant cast co-base alloy and gas turbine stator blade using the same
JPH0711365A (en) Single crystal nickel base superalloy