JPS6248299A - Starting system of induction generator - Google Patents

Starting system of induction generator

Info

Publication number
JPS6248299A
JPS6248299A JP60186239A JP18623985A JPS6248299A JP S6248299 A JPS6248299 A JP S6248299A JP 60186239 A JP60186239 A JP 60186239A JP 18623985 A JP18623985 A JP 18623985A JP S6248299 A JPS6248299 A JP S6248299A
Authority
JP
Japan
Prior art keywords
induction generator
excitation
capacitor
self
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60186239A
Other languages
Japanese (ja)
Inventor
Yoshiro Ando
安東 義郎
Toshihiko Nakase
俊彦 中瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP60186239A priority Critical patent/JPS6248299A/en
Publication of JPS6248299A publication Critical patent/JPS6248299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prevent rush currents on forced parallel by connecting a capacitor having capacitance, which can be self-excited, to a stator winding for an induction generator. CONSTITUTION:When a connector 3 is closed during a time when an induction generator 2 is driven by a prime mover 1, a self-excitation phenomenon is generated in an output winding from the induction generator 2 by the remanence of the induction generator 2 and a capacitor 4 for excitation. A thyristor 6 is firing-angle controlled by a controller 7, and currents flowing through a reactor 5 in currents fed from the capacitor 4 are adjusted, thus regulating reactive currents flowing through a stator winding for the induction generator 2, then conforming output voltage from the induction generator 2 to system voltage. When the coincidence of an output from the induction generator 2 and the phase of a system is detected by a detector 8, a switch 10 is closed, and the induction generator 2 is made to run parallel forcibly with the system 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は誘導発電機、なかでも特に励磁巻線?持たず
、固定子巻線を流れる電流の有効分を出力、無効分全励
磁に使用し運転される誘導発電機の起動方式に関し、更
に詳しくは、既に運転されている電力系統に、この皿の
誘導発電機を突入電流が生じることなく強制並列するこ
とを目的とした起動方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention applies to induction generators, especially excitation windings. Regarding the starting method of an induction generator, which is operated by using the active part of the current flowing through the stator windings for output and the reactive part for full excitation, we will introduce the This invention relates to a starting method that aims to forcibly connect induction generators in parallel without generating inrush current.

〔従来の技術〕[Conventional technology]

誘導発電機は同期発電機と比べて構造、制御が簡単であ
り、最近、例えば小型水車発電用等として見直され始め
た。この誘導発電機を励磁という面から見ると、出力巻
線の他に励磁巻線全別途保有するもの、励磁巻線勿持た
ず、電力系統から7■流を供給し、固定子巻線?流れる
電流の有効分(余弦分)を出力、無効分(正弦分)全励
磁に使用するものの2つがある。
Induction generators are simpler in structure and control than synchronous generators, and have recently begun to be reconsidered for use in, for example, small water turbine power generation. Looking at this induction generator from the perspective of excitation, in addition to the output winding, there is a separate excitation winding, and not only the excitation winding, but also the 7 current supplied from the power system, and the stator winding. There are two types: the effective part (cosine part) of the flowing current is used for output, and the reactive part (sine part) is used for full excitation.

一般に、誘導発電機と誘導電動機は同一原理の上に成立
しており、共通部分も多い。特に、励磁コイルを持たな
い後者の誘導発電機は、いわば電動機そのものでちゃ、
このことは、誘導機器を製造する側から見れば、製造コ
ストヲ低下させる上で大きな利点となる。
In general, induction generators and induction motors are based on the same principle and have many parts in common. In particular, the latter type of induction generator, which does not have an excitation coil, is just like an electric motor.
From the perspective of a manufacturer of induction equipment, this is a great advantage in reducing manufacturing costs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、後者の誘導発電機は、励磁巻線を持たないこ
とから1.起動の際には電力系統から励磁電流を取シ入
れ、これを利用して磁界全形成しなければならない。換
Hすれば、発電を行うためには、先ず発電機全系統に並
列させなければならないのである。しかも、この発電機
は、並列時点で定格電流の6〜lO倍位の突入電流が固
定子巻線に流れ、系統の電力容量の小さい場合にその電
圧全大巾に乱すという問題がある。
However, since the latter induction generator does not have an excitation winding, it has 1. When starting up, an excitation current must be taken in from the power system and used to create the entire magnetic field. In other words, in order to generate electricity, the generator must first be connected in parallel to the entire generator system. Moreover, this generator has the problem that an inrush current of about 6 to 10 times the rated current flows through the stator windings when the generators are paralleled, which disturbs the entire voltage range when the power capacity of the system is small.

その上、励磁電流として取シ込む電流は、前述したよう
に無効電流であるため、系統の電圧に対して位相が90
’ずれておシ、このため系統の力率を悪化させる問題も
ある。
Moreover, the current taken in as the excitation current is a reactive current as described above, so the phase is 90° with respect to the grid voltage.
'There is also the problem of worsening the power factor of the system due to misalignment.

このようなことから、誘導発電機、なかでも特に励磁巻
線を持たないものは、置方を供給する側から嫌われ、事
実上使用できないのが現状である。
For this reason, induction generators, especially those without excitation windings, are disliked by those who supply them and are virtually unusable.

しかしながら、この発電機それ自体は、前述したとおシ
、同種電動機と構造が′j$夾上同−で、製造が容易で
あり、また構造、制御も簡単である等、数多くの利点を
有してお9、したがって、並列時の突入電流さえ防止で
きれば、使用範囲が著しく拡大し、その効果が多大であ
ることは言うまでもない。
However, this generator itself has many advantages, such as the structure is the same as that of the same type of electric motor as mentioned above, it is easy to manufacture, and the structure and control are simple. 9. Therefore, it goes without saying that if the inrush current can be prevented when the devices are paralleled, the range of use will be significantly expanded, and the effect will be great.

〔間頭点全解決するための手段〕[Means to resolve all issues]

不発明は自己励磁による発電を利用して、強制並列時の
突入電流全防止するもので、その特徴とするところは、
固定子巻線に流れる電流の有効分全出力、無効分を励磁
に使用し運転される誘導発M、機の前記固定子巻線に自
己mカ磁可能な#量のコンデンサを接続し、前記誘導発
電機全系統に強制並列させるにあたυ、強制並列時の突
入電流全防止す不ため、前記コンデンサにて誘導発電機
に自己励磁を生ぜしめ、前記系統と誘導発電機出力との
間で電圧、位相および周波数全可及的に一致させてから
、強制並列する点にある。
The invention utilizes power generation through self-excitation to completely prevent inrush current during forced paralleling, and its features are:
An induction generator M is operated by using the full output of the effective part of the current flowing through the stator winding and the reactive part for excitation. In order to forcibly connect all induction generator systems in parallel, in order to prevent all inrush current during forced paralleling, the capacitor generates self-excitation in the induction generator, and the voltage between the system and the induction generator output is The point is to match the voltage, phase, and frequency as much as possible, and then force them in parallel.

〔作用〕[Effect]

言うまでもないが、誘導発’+1!機における自己励磁
現象そのものは周知である。すなわち、誘導発電機はコ
ンデンサを接続されていない場合、残留磁気によって微
少な電圧を発生している。これに適当な容量のコンデン
サを接続すれば、コンデンサに盪弱な進み電流が流れ、
それが誘導I電機の励磁電流となって磁束を増大させ、
これが増幅して行くことによって発電に必要な磁界が得
られるのである。この自己励磁は、従来はもっばら系統
よシ励磁電流が供給されない場合に励磁電流を供給する
ためと考えられておシ、強制並列にあたってこの自己励
磁を項部的に活用することは他に例を見ない。
Needless to say, induced departure '+1! The self-excitation phenomenon itself in machines is well known. That is, when an induction generator is not connected to a capacitor, it generates a small voltage due to residual magnetism. If a capacitor of appropriate capacity is connected to this, a weak lead current will flow through the capacitor.
This becomes the exciting current of the induction I electric machine and increases the magnetic flux,
By amplifying this, the magnetic field necessary for power generation is obtained. Conventionally, this self-excitation was thought to be used to supply excitation current when no excitation current was supplied to the system, but there are other examples of using this self-excitation locally in forced paralleling. I don't see it.

本発明の起動方式によれば、自己励磁発電によって固定
子巻線に電磁エネルギーが貯えられる。
According to the starting method of the present invention, electromagnetic energy is stored in the stator windings by self-excitation power generation.

そもそも、強制並列時の突入1(流は、強制並列前に大
容量の出力巻線に1にp4Q エネルギーが貯えられて
いないために、これ全充足させる作用として発生するも
のと考えられるので、自己励磁発電によって予めIK 
E?’4エネルギーを貯えておけば、突入電流の大部分
は消滅することになる。
In the first place, the inrush 1 (current) during forced paralleling is thought to occur as a function of fully filling the large-capacity output winding because p4Q energy is not stored in the large output winding before forced paralleling. IK is generated in advance by excitation power generation.
E? By storing '4 energy, most of the inrush current will disappear.

また、出力巻線に電磁エネルギーが貯えられることにな
れば、電力系統と発電侵との間で?IV圧、位相、周波
数を一致させることも・(“−易となり、これにより強
制並列に伴う一1シり系統へのjjj4デ:”l: i
’nl中な手段で可及的に小さくすることが可能となる
Also, if electromagnetic energy is stored in the output winding, what happens between the power system and power generation? It is also easy to match the IV pressure, phase, and frequency, and this makes it easy to match the IV pressure, phase, and frequency.
'nl It becomes possible to make it as small as possible using reasonable means.

別の面から今少し詳しく説明すると、無負荷で自己励磁
による発電を行う状態では、無負荷に対応した比較的小
さな励磁電流が出力巻線に供給されているが、これはコ
ンデンサにより供給されているものであシ、この時の系
外から見た発電機の出力の力率は不質的に1となってい
る。このコンテ・ンサの容量は、全負荷時に必要な励磁
電流をまかなうには不十分であるが、95%mj後の励
RM流に9+給することは可能である。したがって、コ
ンデンサで自己1qlJ磁させた誘点発′宣機を系統に
並列すれば、系統の59合力率は殆ど変化せず、事実上
、電力容量だけ全増加させることができるのである。
To explain in more detail from another perspective, when power generation is performed by self-excitation with no load, a relatively small excitation current corresponding to no load is supplied to the output winding, but this is not supplied by the capacitor. At this time, the power factor of the generator's output as seen from outside the system is essentially 1. Although the capacity of this capacitor is insufficient to cover the required excitation current at full load, it is possible to supply 9+ excitation RM current after 95% mj. Therefore, if a trigger generator self-magnetized by a capacitor with 1 qlJ is connected in parallel to the system, the 59 resultant power factor of the system will hardly change, and in fact, the power capacity can be completely increased.

〔実施例〕〔Example〕

ネ処 a、出力巻線に接/されるコンデンサ このコンデンサには、誘導発電機の励磁電流全供給する
のに充分な容量が要求される。要求される容量は誘導発
電機の磁気飽和特性との関係で決定さ、れる。この関係
を@1図に例示する。
(a) Capacitor connected to the output winding This capacitor is required to have a capacity sufficient to supply the entire excitation current of the induction generator. The required capacity is determined in relation to the magnetic saturation characteristics of the induction generator. This relationship is illustrated in Figure @1.

無負荷で自己励磁発電に至った場合、誘導発電機の出力
巻線の端子電圧は、磁気飽和曲線とコンデンサ容量を表
わす直線との交点まで上昇する。
When self-excited power generation occurs with no load, the terminal voltage of the output winding of the induction generator rises to the intersection of the magnetic saturation curve and the straight line representing the capacitor capacity.

第1図の例で示せば、表示容量が601LFのコンデン
サを接続して1200 rpm/60Hzで自己励磁発
電に至った場合、242■、8.18A(無負荷)まで
上昇するのである。逆に、40μFのコンデンサでは、
飽和曲線との交点を持たず、したかって1200 rl
)mにおいては自己励磁発電に至らない。
In the example of FIG. 1, if a capacitor with a display capacity of 601 LF is connected and self-excitation power generation is achieved at 1200 rpm/60 Hz, the power will rise to 242 cm and 8.18 A (no load). Conversely, with a 40μF capacitor,
It has no intersection with the saturation curve, so 1200 rl
) m does not lead to self-excitation power generation.

すなわち、1200rpル’60Hzで自己励磁発電に
至るには、第1図の例の場合、50PF’i越える容量
のコンデンサが必要とされるのである。
That is, in the case of the example shown in FIG. 1, a capacitor with a capacity exceeding 50 PF'i is required to achieve self-excitation power generation at 1200 rpm'60 Hz.

なお、コンデンサの容量直線の傾きkは次式で与えられ
る。
Note that the slope k of the capacitance straight line of the capacitor is given by the following equation.

I、AV k−3X2πf−z 工:線電流(−8×相電流) ■:相電圧 f:周波数 C:コンデンサの表示容量 す0強制並列操作 第2図の系統図において、(1)は原動機、(2)は誘
導発電機、(3)は接続器、(4)は誘導発電機<21
の出力巻線に並列接続された励磁用コンデンサ、(5)
は励磁用コンデンサ(4)に並列接続された発!電圧制
御用リアクト/l/、(61はリアク)/I/(53の
電、流制御用サイリスタ、(7)はサイリスタ(6)の
点弧角制御器、(8)は周波数および位相検出器、(9
)は誘導発電機〈21を強制並列しようとする電力系統
、0αは電力系統(9)との開閉器である。なお、励磁
用コンデンサ(4)の容量は上述のように無負荷で自己
励磁可能に設定しである。
I, AV k-3X2πf-z Engineering: Line current (-8 x phase current) ■: Phase voltage f: Frequency C: Capacitor display capacity , (2) is an induction generator, (3) is a connector, (4) is an induction generator <21
excitation capacitor connected in parallel to the output winding of (5)
is the source connected in parallel to the excitation capacitor (4)! Voltage control reactor /l/, (61 is reactor) /I/(53 current, current control thyristor, (7) is firing angle controller of thyristor (6), (8) is frequency and phase detector , (9
) is the power system in which the induction generator <21 is to be forcibly connected in parallel, and 0α is the switch with the power system (9). Note that the capacitance of the excitation capacitor (4) is set to enable self-excitation with no load as described above.

(2)の残留磁気と励磁用コンデンサr41とにより、
誘導発電機<21の出力巻線に自己励磁が起こシミ磁エ
ネルギーが貯えられ纂−るものの、系統(9)との間で
電圧、位相、周波数の差があり、そのまま系統(9)に
強制並列すると、大きな突入電流は流れないまでも、系
統(9)を乱すことは避けられない。
Due to the residual magnetism in (2) and the excitation capacitor r41,
Although self-excitation occurs in the output winding of the induction generator <21 and magnetic energy is stored, there are differences in voltage, phase, and frequency between it and the system (9), so it is forced into the system (9) as it is. If they are connected in parallel, even if a large inrush current does not flow, it is inevitable that the system (9) will be disturbed.

そこで先ず、制御器(7)によシサイリスク(6)ヲ点
弧角制御してコンデンサ(4)より供給される電流のう
ちリアクトル(5)に流れる電流を調節し、これによシ
発電機(2)の固定子巻線に流れる無効電流(励磁電流
)を調節して、誘導発電機<21の出力電圧を系統電圧
に一致させる。
Therefore, first, the controller (7) controls the firing angle of the switch (6) to adjust the current flowing to the reactor (5) out of the current supplied from the capacitor (4), and this causes the generator ( 2) Adjust the reactive current (excitation current) flowing through the stator winding to match the output voltage of the induction generator <21 with the grid voltage.

この時、発電機(2)の出力周波数および位相は、一致
していないの全原則とする。発電機出力と系統の位相は
これらの周波数の最小公倍数に相当するサイクル毎に一
致することは数学的に明らかであり、この一致を検出器
(8)で検出し、位相が一致した瞬間に開閉器00を閉
じて誘導発電機(2)全系統(9)に強制並列する。
At this time, it is generally assumed that the output frequency and phase of the generator (2) do not match. It is mathematically clear that the generator output and the system phase match every cycle corresponding to the least common multiple of these frequencies, and this match is detected by the detector (8), and the moment the phases match, the system opens and closes. 00 is closed and the induction generator (2) is forcibly connected in parallel to the entire system (9).

誘導発電機(2)と系統(9)との間で周波数に大きな
相違がなければ、強制並列によって系統(9)ヲ殆ど乱
さない。周波数が大きく違っている場合は、誘導発電機
(21の回転子の回転数を調節すればよい。
If there is no large difference in frequency between the induction generator (2) and the grid (9), forced paralleling will hardly disturb the grid (9). If the frequencies are significantly different, the rotation speed of the rotor of the induction generator (21) may be adjusted.

これらの調節に自1(す的に行ってもよいこζは言うま
でもない。
It goes without saying that these adjustments can be made on your own.

誘導発電機(2)と系統(9)との間の許容電圧差、許
容位相差、許容周波数差は、系統電力を供給する側が規
定しているのが通例である。
The allowable voltage difference, allowable phase difference, and allowable frequency difference between the induction generator (2) and the grid (9) are usually specified by the side that supplies the grid power.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の起動方式は、
外部よシ励磁電流を供給されて発電を行うことを特徴と
する誘導発を機において、その致命的欠陥であった強制
並列時の突入電流をなくし、電力系統への影響を可及的
に抑えて、この種発電機の利用範囲拡大に大きな効果を
発揮するものである。
As is clear from the above explanation, the activation method of the present invention is
Taking advantage of induction generation, which is characterized by generating electricity by being supplied with an external excitation current, we have eliminated the inrush current during forced paralleling, which was its fatal flaw, and suppressed the impact on the power system as much as possible. This will have a great effect on expanding the scope of use of this type of generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘導発電機磁気の飽和曲線と励磁コンデンサの
容量と自己励磁に関する関係全示すグラフ、第2図は本
発明の起動方式の実施例全示す系統図である。 口中、1:原動機、2:誘導発電機、4:励磁用コンデ
ンサ、5:リアクトル、6:サイリスタ、8:周波数お
よび位相検出器、9:電力系統。
FIG. 1 is a graph showing all the relationships between the induction generator magnetic saturation curve, the capacitance of the excitation capacitor, and self-excitation, and FIG. 2 is a system diagram showing all the embodiments of the starting method of the present invention. In the mouth, 1: prime mover, 2: induction generator, 4: excitation capacitor, 5: reactor, 6: thyristor, 8: frequency and phase detector, 9: power system.

Claims (1)

【特許請求の範囲】[Claims] (1)固定子巻線に流れる電流の有効分を出力、無効分
を励磁に使用し運転される誘導発電機の前記固定子巻線
に自己励磁可能な容量のコンデンサを接続し、前記誘導
発電機を系統に強制並列させるにあたり、強制並列時の
突入電流を防止するため、前記コンデンサにて誘導発電
機に自己励磁を生ぜしめ、前記系統と誘導発電機出力と
の間で電圧、位相および周波数を可及的に一致させてか
ら、強制並列することを特徴とする誘導発電機の起動方
式。
(1) A capacitor with a self-excitable capacity is connected to the stator winding of an induction generator that is operated by outputting the active part of the current flowing through the stator winding and using the reactive part for excitation, and the induction generator When the machine is forcibly paralleled to the grid, in order to prevent inrush current during forced paralleling, the induction generator is self-excited by the capacitor, and the voltage, phase, and frequency are changed between the grid and the induction generator output. An induction generator starting method characterized by forcing parallelization after matching as much as possible.
JP60186239A 1985-08-23 1985-08-23 Starting system of induction generator Pending JPS6248299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186239A JPS6248299A (en) 1985-08-23 1985-08-23 Starting system of induction generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186239A JPS6248299A (en) 1985-08-23 1985-08-23 Starting system of induction generator

Publications (1)

Publication Number Publication Date
JPS6248299A true JPS6248299A (en) 1987-03-02

Family

ID=16184785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186239A Pending JPS6248299A (en) 1985-08-23 1985-08-23 Starting system of induction generator

Country Status (1)

Country Link
JP (1) JPS6248299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128160A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Offshore power generation facility and operation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128160A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Offshore power generation facility and operation method therefor

Similar Documents

Publication Publication Date Title
Jiao et al. Design and control of a two-phase brushless exciter for aircraft wound-rotor synchronous starter/generator in the starting mode
Ojo et al. PWM-VSI inverter-assisted stand-alone dual stator winding induction generator
Ammasaigounden et al. Wind-driven self-excited pole-changing induction generators
US7863868B2 (en) Generator with quadrature AC excitation
Gurumurthy et al. Optimal energy harvesting from a high‐speed brushless DC generator‐based flywheel energy storage system
EP2001121A2 (en) Engine start system with quadrature AC excitation
RU2315413C2 (en) Power matching system for turbine motor-generator (modifications) and methods for control of motor-generator
Misra et al. Mathematical modeling and control of standalone DFIG-DC system in rotor flux reference frame
US8432051B2 (en) Electric generator
Nonaka et al. A new variable-speed AC generator system using a brushless self-excited-type synchronous machine
Jiao et al. Research on excitation control methods for the two-phase brushless exciter of wound-rotor synchronous starter/generators in the starting mode
JPS6248299A (en) Starting system of induction generator
Chakraborty et al. A new series of brushless and permanent magnetless synchronous machines
CN210578329U (en) Device for optimizing transient performance of digital excitation generator
Koczara et al. Smart and decoupled power electronic generation system
Wekhande et al. A variable speed constant voltage controller for self-excited induction generator with minimum control requirements
JP2004048988A (en) Switched reluctance machine
Hosseini et al. Modelling of PSPP control system by using vector control principle and VSI
JP3259805B2 (en) Control device for synchronous motor
Robinson et al. A single phase self-excited induction generator with voltage and frequency regulation for use in a remote area power supply
Abdoune et al. Vector control of doubly-fed induction machine for stand-alone variable speed energy system
Kabache et al. Experimental investigation of self-excited induction generator for insulated wind turbine
Obe et al. Performance of Synchronous Reluctance Generators with Series and Shunt Stator Connections
JPS6034337B2 (en) energy storage system
JP2950605B2 (en) Voltage controller for variable speed pumped storage power generation system