JPS6248229B2 - - Google Patents

Info

Publication number
JPS6248229B2
JPS6248229B2 JP54097094A JP9709479A JPS6248229B2 JP S6248229 B2 JPS6248229 B2 JP S6248229B2 JP 54097094 A JP54097094 A JP 54097094A JP 9709479 A JP9709479 A JP 9709479A JP S6248229 B2 JPS6248229 B2 JP S6248229B2
Authority
JP
Japan
Prior art keywords
photoreceptor
image
photoconductive layer
color
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54097094A
Other languages
Japanese (ja)
Other versions
JPS5621138A (en
Inventor
Shuichi Tsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP9709479A priority Critical patent/JPS5621138A/en
Publication of JPS5621138A publication Critical patent/JPS5621138A/en
Publication of JPS6248229B2 publication Critical patent/JPS6248229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 この発明は、2色複写方法、とくに、白地に、
赤・黒2色の画像を有する2色原稿の2色複写方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a two-color copying method, particularly a method for copying a white background.
The present invention relates to a two-color copying method for a two-color original having two-color images, red and black.

導電性基体上に第1の光導電層を設け、この第
1の光導電層上に、直接、あるいは中間層を介し
て第2の光導電層をさらに設けてなる感光体を、
所定の極性に1次帯電し、この1次帯電と同時
に、あるいは1次帯電後に、第2の光導電層のみ
を導電体化する光で感光体を均一照射し、ついで
1次帯電と逆極性の2次帯電を施したのち、2色
原稿の画像に対応する画像露光を行つて、白地部
対応部位における感光体表面電位を略0とし、各
色画像に対応する静電潜像部分を相互に逆極性の
感光体表面電位分布により形成し、この静電潜像
を、互いに逆極性に帯電され、相互に異なる色に
着色された2種のトナーで可視化する、2色複写
方法が提案されている。2色複写のうちで、最も
一般的且つ実用的なものは、白地に黒・赤2色の
画像を有する2色原稿を複写して、各色画像を対
応する色で再現するというものである。そこで、
このような、一般的且つ実用的な2色複写の場合
に即して、上記2色複写方法を簡単に説明する。
A photoreceptor comprising a first photoconductive layer provided on a conductive substrate, and a second photoconductive layer further provided on the first photoconductive layer either directly or via an intermediate layer,
The photoreceptor is firstly charged to a predetermined polarity, and at the same time or after the primary charging, the photoreceptor is uniformly irradiated with light that turns only the second photoconductive layer into a conductor, and then the polarity is opposite to that of the primary charging. After performing secondary charging, image exposure corresponding to the image of the two-color original is performed, and the surface potential of the photoreceptor at the portion corresponding to the white background portion is set to approximately 0, and the electrostatic latent image portions corresponding to each color image are mutually charged. A two-color copying method has been proposed in which an electrostatic latent image is formed by a photoreceptor surface potential distribution of opposite polarity and visualized using two types of toner that are charged with opposite polarities and colored in different colors. There is. The most common and practical method of two-color copying is to copy a two-color original having black and red images on a white background, and reproduce each color image in its corresponding color. Therefore,
The above-mentioned two-color copying method will be briefly explained based on such a general and practical two-color copying case.

第1図において、符号1は感光体を示している
が、感光体1は、導電性基体10上に、第1の光
導電層11、中間層12、第2の光導電層13
を、この順序に積層してなつている。光導電層1
3は赤色光に対し光感度を有するようにその材質
を選択され、一方、光導電層11は、感光体1に
赤色光を照射しても導電体化しないようになつて
いる。中間層12は、ある方が望ましいが、原理
的に必要という訳のものでもない。
In FIG. 1, reference numeral 1 indicates a photoreceptor, and the photoreceptor 1 has a first photoconductive layer 11, an intermediate layer 12, a second photoconductive layer 13 on a conductive substrate 10.
are stacked in this order. Photoconductive layer 1
The material of photoreceptor 3 is selected so that it has photosensitivity to red light, while photoconductive layer 11 is designed not to become a conductor even when photoreceptor 1 is irradiated with red light. Although it is desirable to have the intermediate layer 12, it is not necessary in principle.

光導電層11の材料としては、Seや、SeTe、
As2Se3等、セレン合金が用いられるのが一般的
であり、光導電層13の材料としては、チアピリ
リウム塩とポリカーボネイト樹脂からなる共晶錯
体を含有するものが用いられるのが一般的であ
る。中間層12は、フエノール樹脂、ニトロセル
ロース、ウレタン樹脂といつた樹脂類で形成され
る。このような材料で構成した感光体1に正極性
の1次帯電を施し、同時に、感光体1を赤色光で
均一照射して、中間層12の上部に正電荷を均一
に分布させる。赤色光による感光体1の均一照射
は、1次帯電と同時でなく、1次帯電後に行つて
も良い。
Materials for the photoconductive layer 11 include Se, SeTe,
Generally, a selenium alloy such as As 2 Se 3 is used, and as a material for the photoconductive layer 13, a material containing a eutectic complex consisting of a thiapyrylium salt and a polycarbonate resin is generally used. . The intermediate layer 12 is made of resins such as phenolic resin, nitrocellulose, and urethane resin. The photoreceptor 1 made of such a material is primarily charged with positive polarity, and at the same time, the photoreceptor 1 is uniformly irradiated with red light to uniformly distribute positive charges over the intermediate layer 12. The uniform irradiation of the photoreceptor 1 with red light may be performed after the primary charging, rather than at the same time as the primary charging.

次に、今度は暗中で、1次帯電と逆極性の2次
帯電、即ち負極性の帯電を行つて感光体1の表面
に負電荷を均一に分布させる。この2次帯電は、
絶対値において、1次帯電より少目に行なわれる
が、感光体1の表面電位は、1次帯電後の正極性
から負極性へと反転する。
Next, in the dark, secondary charging with a polarity opposite to the primary charging, that is, negative charging is performed to uniformly distribute negative charges on the surface of the photoreceptor 1. This secondary charge is
Although the absolute value is smaller than the primary charging, the surface potential of the photoreceptor 1 is reversed from the positive polarity after the primary charging to the negative polarity.

この状態の感光体に2色原稿の光像による画像
露光を行なうと、原稿の白地部、赤色画像部に対
応する感光体部位は、それぞれ、白色光、赤色光
で露光され、黒色画像に対応する部位は未露光で
ある。すると白色光で照射された部分では、光導
電層11,13ともに導電体化するから、1次、
2次帯電により感光体に与えられた電荷は、この
部分では消失し、感光体の白地部対応部位におけ
る表面電位は0となる。一方、赤色光で照射され
た部位では、光導電層13の上面の負電荷が、下
面の正電荷の一部と相殺し、結局、赤色画像対応
部位における感光体表面電位は、再び正極性へ反
転する。原稿の黒色画像に対応する感光体部位は
露光されないから、この部分では、感光体表面電
位は、負極性のままである。かくして、赤色画
像・黒色画像にそれぞれ対応する静電潜像部分
が、正極性および負極性の感光体表面電位分布に
より、それぞれ形成される。第2図に、このよう
な静電潜像が形成されるまでの、感光体表面電位
の変遷をモデル的に示す。
When the photoconductor in this state is subjected to image exposure using the light image of the two-color original, the photoconductor parts corresponding to the white background and red image areas of the document are exposed to white light and red light, respectively, and correspond to the black image. The exposed areas are unexposed. Then, in the part irradiated with white light, both the photoconductive layers 11 and 13 become conductive, so that the primary,
The charge applied to the photoreceptor by secondary charging disappears in this portion, and the surface potential of the portion of the photoreceptor corresponding to the white background portion becomes zero. On the other hand, in the area irradiated with red light, the negative charges on the top surface of the photoconductive layer 13 cancel out some of the positive charges on the bottom surface, and eventually the photoreceptor surface potential in the area corresponding to the red image becomes positive again. Invert. Since the portion of the photoreceptor corresponding to the black image of the original is not exposed, the surface potential of the photoreceptor remains negative in this portion. In this way, electrostatic latent image portions corresponding to the red image and the black image are respectively formed by the positive and negative photoreceptor surface potential distributions. FIG. 2 shows a model of changes in the photoreceptor surface potential until such an electrostatic latent image is formed.

次いで、再び第1図にもどつて、このようにし
て形成された静電潜像のうち黒色画像に対応する
静電潜像部分を、正帯電した黒色トナーTBLによ
り可視化し、赤色画像に対応する静電潜像部分を
負帯電した赤色トナーTRにより可視化すること
により感光体1の表面上に、2色原稿に対応する
2色可視像が得られるので、あとは、この2色可
視像を適当な記録シート上へ転写・定着して複写
に供すれば良いのである。
Next, returning to FIG. 1 again, the portion of the electrostatic latent image formed in this manner that corresponds to the black image is visualized using positively charged black toner T BL , and the portion of the electrostatic latent image corresponding to the red image is visualized using positively charged black toner T BL. By visualizing the electrostatic latent image portion with negatively charged red toner T R , a two-color visible image corresponding to the two-color original is obtained on the surface of the photoreceptor 1. All that is required is to transfer and fix the visual image onto a suitable recording sheet for copying.

ところで、本発明者は、2色複写における複写
画像の像質向上を目的として研究をつづけてきた
が、前述の如き材料を用いて構成された感光体
(中間層がある場合もない場合もある。)に対し、
上記の如き、赤・黒2色複写プロセスを行なう場
合、1次帯電の際、又は1次帯電後に感光体に照
射された、赤色光の波長分布、照射量が、得られ
る赤・黒2色複写像の像質特に赤色画像の像質に
大きく影響することを見出した。
Incidentally, the present inventor has continued research with the aim of improving the image quality of copied images in two-color copying, and has discovered that photoreceptors (with or without an intermediate layer) constructed using the above-mentioned materials ),
When carrying out the red/black two-color copying process as described above, the wavelength distribution and irradiation amount of the red light irradiated onto the photoreceptor during or after the primary charging will depend on the resulting red/black two-color copying process. It has been found that the image quality of copied images, especially the image quality of red images, is greatly affected.

本発明の目的は、このような発見の結果を用い
て、上記2色複写プロセスによる2色複写の像質
を向上させるべく、上記2色複写方法を改良する
ことである。
An object of the present invention is to use the results of such discoveries to improve the two-color copying method described above in order to improve the image quality of two-color copies made by the two-color copying process.

以下、本発明を説明する。 The present invention will be explained below.

まず、1次帯電と同時もしくは、1次帯電後に
照射する赤色光の波長分布であるが、これは、
560nm以上の波長領域の赤色光を用いることに
より、画質、特にコントラストを良好に保ちうる
ことが分つた。これは、第1の光導電層の材料で
あるセレンもしくはセレン合金が、560nm以下
の波長領域の光に感度を有し、また、共晶錯体を
含む第2光導電層が560nm以下の光にたいし
て、透過率が大であるため560nm以下の波長領
域の光が、赤色光中に混じていると、1次帯電が
十分に行なわれなくなるためである。
First, the wavelength distribution of red light that is irradiated at the same time as primary charging or after primary charging is as follows.
It has been found that by using red light in the wavelength range of 560 nm or more, good image quality, especially contrast, can be maintained. This is because the selenium or selenium alloy that is the material of the first photoconductive layer is sensitive to light in the wavelength region of 560 nm or less, and the second photoconductive layer containing the eutectic complex is sensitive to light in the wavelength region of 560 nm or less. This is because the transmittance is high, so if light in the wavelength range of 560 nm or less is mixed with red light, primary charging will not be performed sufficiently.

次に、560nm以上の波長領域の赤色光による
均一照射の光量の影響であるが、この照射量を
種々に変化させ、画像露光後における赤色画像対
応静電潜像部分の表面電位と白地部対応部位の感
光体表面電位との電位差が、上記照射量とともに
どのように変化するかを示すと、第3図に示す如
くなる。すなわち、上記照射量が非常に小さい
と、赤色画像対応部位における感光体表面電位の
負極性から正極性への反転が生じず、この場合、
黒色画像対応の静電潜像部分と赤色画像対応の静
電潜像部分と同極性となつてしまう。照射量が大
きすぎる場合にも同様の結果となる。照射量の適
置域には、上限、下限が存在し、上記照射量が
150μW・sec/cm2乃至650μW・sec/cm2の範囲
にあるとき、 良好な画質の赤色画像が得られる。
Next, regarding the influence of the light amount of uniform irradiation with red light in the wavelength range of 560 nm or more, this irradiation amount was varied variously, and the surface potential of the electrostatic latent image portion corresponding to the red image after image exposure and the response to the white background portion were changed. FIG. 3 shows how the potential difference between the area and the surface potential of the photoreceptor changes with the above-mentioned irradiation amount. That is, if the above-mentioned irradiation amount is very small, the photoreceptor surface potential in the area corresponding to the red image will not be reversed from negative polarity to positive polarity, and in this case,
The electrostatic latent image portion corresponding to the black image will have the same polarity as the electrostatic latent image portion corresponding to the red image. A similar result will occur if the irradiation dose is too large. There are upper and lower limits to the appropriate range of irradiation, and the above irradiation
When the power is in the range of 150 μW·sec/cm 2 to 650 μW·sec/cm 2 , a red image with good image quality can be obtained.

以下に、具体的な実験例を記する。 Specific experimental examples are described below.

アルミニウム板を導電性基体として、このうえ
にセレンを35μm厚に蒸着し、さらにTeを6重
量パーセント含むSeTe合金を5μm厚に蒸着し
て第1の光導電層を形成し、この上に、群栄化学
社製ノボラツク型フエノール樹脂CP918のメチル
アルコール溶液を流延塗布し、1μm厚の中間層
を形成した。ついで、P−ジメチルアミノフエニ
ル2・6−ジフエニルチアピリリウムパークロレ
ート;0.6g、4・4′−ビス(ジエチルアミノ)−
2・2′−ジメチルトリフエニルメタン;12.0g、
ポリカーボネイト樹脂(帝人社製パンライトK−
1300);17.4g、メチレンジクライト;300mlの
組成の感光液を流延塗布して厚さ20μmの第2光
導電層を形成した。
A first photoconductive layer is formed by using an aluminum plate as a conductive substrate, on which selenium is deposited to a thickness of 35 μm, and a SeTe alloy containing 6% by weight of Te is deposited to a thickness of 5 μm. A methyl alcohol solution of novolac type phenolic resin CP918 manufactured by Eikagaku Co., Ltd. was cast and applied to form an intermediate layer with a thickness of 1 μm. Then, P-dimethylaminophenyl 2,6-diphenylthiapyrylium perchlorate; 0.6 g, 4,4'-bis(diethylamino)-
2,2'-dimethyltriphenylmethane; 12.0g,
Polycarbonate resin (Teijin Panlite K-
A second photoconductive layer having a thickness of 20 μm was formed by casting a photosensitive solution containing 17.4 g of 1300) and 300 ml of methylene dicrite.

このようにして作製された感光体に560nm以
上の波長領域の赤色光を、800μW/cm2の照射エ
ネルギーで均一照射しつつ、コロナ放電を0.5秒
間行つて、+1600Vまで1次帯電した。次いで、
負極性の2次帯電を暗中にて行ない、表面電位を
−600Vとした。
The thus produced photoreceptor was uniformly irradiated with red light in a wavelength range of 560 nm or more at an irradiation energy of 800 μW/cm 2 and corona discharge was performed for 0.5 seconds to primary charge it to +1600V. Then,
Negative secondary charging was performed in the dark to give a surface potential of -600V.

白地に黒・赤2色画像を有する原稿の光像で露
光を行つたところ、感光体表面電位は、白地部対
応部位で−20V、赤色画像対応部位で+350V、黒
色画像対応部位で−550Vとなり、現像等の処理
により、良好な赤・黒2色複写画像を得ることが
できた。
When exposure was performed using the light image of a document with black and red two-color images on a white background, the photoreceptor surface potential was -20V in the area corresponding to the white background, +350V in the area corresponding to the red image, and -550V in the area corresponding to the black image. By processing such as , development, etc., a good red/black two-color copy image could be obtained.

しかるに、上記実験を、赤色光照射を200μ
W/cm2のエネルギーとし、他の条件を同一にして
行つたところ、1次帯電後の感光体表面電位は、
1次帯電後+2000V、2次帯電後−800Vであり、
画像露光後の感光体表面電位は白地部対応部位で
−50V、赤色画像対応部位で+50V、黒色画像対
応部位で−750Vとなり、複写上では、赤色画像
は殆ど再現されなかつた。
However, in the above experiment, the red light irradiation was
When the energy was set to W/cm 2 and other conditions were kept the same, the surface potential of the photoreceptor after primary charging was:
+2000V after primary charging, -800V after secondary charging,
The surface potential of the photoreceptor after image exposure was -50 V in the area corresponding to the white background, +50 V in the area corresponding to the red image, and -750 V in the area corresponding to the black image, and the red image was hardly reproduced on the copy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明により改良しよ
うとする2色複写プロセスを説明するための図、
第3図は、本発明の原理を説明するための図であ
る。 1……感光体、10……導電性基体、11……
第1の光導電層、12……中間層、13……第2
の光導電層。
FIGS. 1 and 2 are diagrams for explaining the two-color copying process that is to be improved by the present invention,
FIG. 3 is a diagram for explaining the principle of the present invention. 1... Photoreceptor, 10... Conductive substrate, 11...
1st photoconductive layer, 12... intermediate layer, 13... second photoconductive layer
photoconductive layer.

Claims (1)

【特許請求の範囲】 1 導電性基体上に第1の光導電層を設け、この
第1の光導電層上に、直接もしくは中間層を介し
て第2の光導電層を設けてなる感光体を、所定の
極性に1次帯電し、この1次帯電と同時もしくは
1次帯電後に、上記第2の光導電層のみを導電体
化する光を均一照射し、ついで1次帯電と逆極性
の2次帯電を施したのち、2色原稿の画像に対応
する画像露光を行つて、白地対応部位における感
光体表面電位を略0とし、各色画像に対応する静
電潜像部分を、互いに逆極性の感光体表面電位分
布により形成し、この静電潜像を、互いに逆極性
に帯電され、相互に異なる色に着色された2種の
トナーにより可視化する複写方式において、 感光体の第1の光導電層を、セレン又はセレン
合金により構成し、第2の光導電層を、チアピリ
リウム塩とポリカーボネイト樹脂からなる共晶錯
体を含む層として形成し、 1次帯電の極性を正極性とし、 1次帯電と同時、もしくは1次帯電後に感光体
を均一照射する光を、560nm以上の波長領域の
赤色光とし、 この赤出光の照射量を150μW・sec/cm2乃至650 μW・sec/cm2の範囲の量とし、 白地に赤・黒2色の画像を有する2色原稿を2
色複写することを特徴とする、2色複写方法。
[Claims] 1. A photoreceptor comprising a first photoconductive layer provided on a conductive substrate, and a second photoconductive layer provided on the first photoconductive layer either directly or via an intermediate layer. is primarily charged to a predetermined polarity, and at the same time as or after the primary charging, is uniformly irradiated with light that turns only the second photoconductive layer into a conductor, and then is charged with a polarity opposite to that of the primary charging. After performing secondary charging, image exposure corresponding to the image of the two-color original is performed to bring the surface potential of the photoreceptor in the area corresponding to the white background to approximately 0, and the electrostatic latent image portions corresponding to each color image are made to have opposite polarity. In a copying method in which the electrostatic latent image is formed by the surface potential distribution of the photoreceptor and is visualized using two types of toner that are charged with opposite polarities and colored in mutually different colors, the first light of the photoreceptor is The conductive layer is made of selenium or a selenium alloy, the second photoconductive layer is formed as a layer containing a eutectic complex made of a thiapyrylium salt and a polycarbonate resin, and the polarity of the primary charge is positive; The light that uniformly irradiates the photoreceptor at the same time as or after the primary charging is red light in the wavelength range of 560 nm or more, and the irradiation amount of this red light is in the range of 150 μW・sec/cm 2 to 650 μW・sec/cm 2 2 color originals with red and black images on a white background.
A two-color copying method characterized by color copying.
JP9709479A 1979-07-30 1979-07-30 Two-color copying method Granted JPS5621138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9709479A JPS5621138A (en) 1979-07-30 1979-07-30 Two-color copying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9709479A JPS5621138A (en) 1979-07-30 1979-07-30 Two-color copying method

Publications (2)

Publication Number Publication Date
JPS5621138A JPS5621138A (en) 1981-02-27
JPS6248229B2 true JPS6248229B2 (en) 1987-10-13

Family

ID=14183042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9709479A Granted JPS5621138A (en) 1979-07-30 1979-07-30 Two-color copying method

Country Status (1)

Country Link
JP (1) JPS5621138A (en)

Also Published As

Publication number Publication date
JPS5621138A (en) 1981-02-27

Similar Documents

Publication Publication Date Title
US4071361A (en) Electrophotographic process and apparatus
US4335194A (en) Two color electrophotographic process and material
US3525612A (en) Electrophotographic reproduction process employing a light sensitive material and a photoconductive material
JPS6032192B2 (en) 3-color electrophotographic copying method
US4407917A (en) Information image synthesizing and copying method
US4524117A (en) Electrophotographic method for the formation of two-colored images
JPS6248229B2 (en)
JPS6245986B2 (en)
US3241959A (en) Sensitized electrophotographic composition
JPS5922224B2 (en) Two-color image formation method
JPS5938585B2 (en) electrophotography
JPS6023349B2 (en) Two-color electrophotographic copying method
JPS5922223B2 (en) Two-color image formation method
US3549359A (en) Color electrophotography employing dye transfer from a dye-containing photosensitive layer to an image receiving sheet
JP2674303B2 (en) Electrophotographic photoreceptor
JPS5855947A (en) Image recorder
JPS6262349B2 (en)
JPS6330625B2 (en)
JPS6337373B2 (en)
JPS6337378B2 (en)
JPS6354185B2 (en)
JPS6245987B2 (en)
JPS6250820B2 (en)
JPS6341872A (en) Image forming device
JPS6249623B2 (en)