JPS6247618B2 - - Google Patents

Info

Publication number
JPS6247618B2
JPS6247618B2 JP15705782A JP15705782A JPS6247618B2 JP S6247618 B2 JPS6247618 B2 JP S6247618B2 JP 15705782 A JP15705782 A JP 15705782A JP 15705782 A JP15705782 A JP 15705782A JP S6247618 B2 JPS6247618 B2 JP S6247618B2
Authority
JP
Japan
Prior art keywords
soot
gas
amount
mold
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15705782A
Other languages
Japanese (ja)
Other versions
JPS5964137A (en
Inventor
Haruo Sakurai
Kosaku Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15705782A priority Critical patent/JPS5964137A/en
Publication of JPS5964137A publication Critical patent/JPS5964137A/en
Publication of JPS6247618B2 publication Critical patent/JPS6247618B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0665Accessories therefor for treating the casting surfaces, e.g. calibrating, cleaning, dressing, preheating
    • B22D11/0668Accessories therefor for treating the casting surfaces, e.g. calibrating, cleaning, dressing, preheating for dressing, coating or lubricating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一部外周面に金属ベルトを接動させ
て移動鋳型を形成する周面に鋳型用凹溝を設けた
回転輪の該凹溝内面にススを塗布する方法に関す
るもので、スス付着量の調整を容易にし、この自
動制御を可能にして、鋳塊温度を適切に管理でき
るようにしたものである。 一般に銅及び銅合金の荒引線の製造において
は、第1図に示すように周面に鋳型用凹溝2を設
けた回転輪1の一部外周面に金属ベルト3をプツ
シユロール4、ガイドロール5,5′及びテンシ
ヨンロール6により接動させて移動鋳型7を形成
し、該鋳型7の一端にポツト8を設け、ポツト8
からスパウト9を通して鋳型7内に溶湯を注湯
し、他端から凝固した鋳塊10を離脱して棒状鋳
塊を連続的に製造している。このような連続鋳造
において、鋳型内面に鋳塊が焼付くのを防止し、
かつ鋳塊の離脱を容易にするため、第1図に示す
ように回転輪1の金属ベルト3と接動しない部分
で凹溝2に向けて、ガス燃焼によりススを発生す
る可燃性ガスの噴射ノズル11を設け、ガスを噴
出させて周囲の空気で燃焼させ、火炎の不完全燃
焼により発生するススを凹溝2内面に付着させて
いる。 通常ノズルには第2図イに示すように回転輪1
の凹溝2内面に向けて単孔ノズル11aを設け、
アセチレンガスのような燃焼により多量のススを
発生するガスを噴出燃焼させて大きな火炎により
凹溝2内面にススを付着させているが、凹溝2内
面のスス付着量が不均一となり易い欠点がある。
これを改善するため、第2図ロに示すようにノズ
ル先端部12を回転輪1の凹溝2の断面形状と相
似の形状とし、凹溝2内面と相対する周辺13に
複数個のガス噴出孔14を設けた多孔ノズル11
bを用い、小さな火炎により凹溝2内面にススを
均一に付着させる方法が提案されている。 このようなノズルを用い、ガスを噴出燃焼させ
て付着するスス量を調整するためには、ノズル先
端と凹溝内面間の間隔を近ずけたり、遠ざけたり
しているが、ノズルのアームを動かすための遠隔
操作が困難なばかりか、ススの付着分布が変化す
る欠点があり、特に第2図ロに示す多孔ノズルを
用いる場合には、孔の位置が予じめ溶湯の凝固過
程の冷却に伴ない発生する熱応力により、鋳塊に
割れが発生しにくいようにセツトされているた
め、ノズルの位置を変化させることはススの最適
分布がずれて鋳塊に割れを発生する欠点があつ
た。 本発明はこれに鑑み種々研究の結果、ガス燃焼
によりススを発生する可燃性ガスに助燃性ガスを
添加することにより、ススの発生量を抑制し得る
ことを知見し、更に研究の結果、スス付着量の調
整又は自動制御の可能なスス塗布方法を開発した
もので、一部外周面に金属ベルトを接動させて移
動鋳型を形成する周面に鋳型用凹溝を設けた回転
輪の該凹溝内に向けて、ススを発生する可燃性ガ
スの噴射ノズルを設け、ガス燃焼により発生する
ススを凹溝内面に付着させる方法において、ノズ
ルのガス噴出孔直前にマニホールドを設けて可燃
性ガスに助燃性ガスを供給し、ガス燃焼を変化さ
せてススの付着量を調整することを特徴とするも
のである。 即ち本発明は第3図に示すように周面に鋳型用
凹溝2を設けた回転輪1の一部外周面に金属ベル
トを接動させて移動鋳型を形成し、該鋳型の一端
より溶湯を注湯し、他端より鋳塊10を離脱させ
る連続鋳造装置の回転輪1の金属ベルトと移動し
ない部分で凹溝2に向けてガス燃焼によりススを
発生する可燃性ガスの噴射ノズル11を設ける。
ノズル11のガス噴出孔直前にはマニホールド1
5を設け、マニホールド15にバルブ16aを通
して可燃性ガスと、バルブ16bを通して助燃性
ガスを供給し、ノズル11先端部での可燃焼性ガ
スの燃焼を促進させて発生するスス量を抑制する
ようにしたものである。尚図において17aは可
燃性ガスボンベ、17bは助燃性ガスボンベ、1
8a,18bは圧力計、19a,19bは流量計
を示す。 このようにしてノズル11のガス噴出孔直前に
設けたマニホールド15で可燃性ガスに助燃性ガ
ス、例えば空気を供給して混合することにより、
ノズル先端における可燃性ガスの燃焼は空気の混
合比に応じて燃焼が促進され、ススの発生量は減
少し、凹溝2内面へのスス付着量は減少すること
になる。従つてノズル11を最適位置に固定し、
空気の混合比を調整することによりスス付着量の
調整又は自動制御が容易になる。 以下本発明を実施例について詳細に説明する。 第3図に示す装置を用い、マニホールド(内容
積1000cm3)にアセチレンガスを0.5Kg/cm2の圧力
で単位時間当り1500Ncm3/min導入し、これに
種々の割合で空気を混合し、内径2mmの単孔ノズ
ルを通して10cm離した銅製塗布板に直角に向け、
噴出燃焼させて単位時間当りのスス付着量を測定
した。その結果を第4図に示す。 第4図から明らかなように空気混合比に比例し
てスス付着量は単調に減少し、2000Ncm3/minの
空気供給量では空気無供給の場合の約1/10となる
ことが判る。尚空気を過剰に、例えば3000Ncm3
min以上供給すると火炎の逆火現象が急増し、非
常に不安定となる。 次に第3図に示すようにマニホールドでアセチ
レンガスに空気を供給し、ノズルを通して回転輪
の凹溝内面に向けて噴出燃焼させ、凹溝内面にス
スを付着させて連続鋳造を行なつた。溶湯から鋳
型への伝熱抵抗は、スス付着量に関係し、付着量
の少ない程鋳型に熱が伝達されやすい傾向にあ
り、鋳型内の鋳塊は良く冷却される。そこで放射
温度計を用いて鋳塊温度を連続測定し、マニホー
ルド内の可燃性ガス圧と空気供給バルブの開度
(%)を変化させ、鋳塊の基準温度からのずれを
測定した。その結果を第5図に示す。尚図におい
てaは可燃性ガス圧0.5Kg/cm2、bは同0.3Kg/
cm2、cは同0.1Kg/cm2の場合を示す。 第5図から判るように、鋳塊温度を測定し、基
準温度からのずれに応じてバルブの開度を調整す
ることにより、容易に鋳塊温度を基準温度に保持
することができる。 また第5図に示す関係により鋳塊温度を測定し
てバルブの開度を自動制御し、鋳塊温度のバラツ
キを調べた。その結果を従来の手動によりノズル
のアームを調整した場合と比較し、第1表に示
す。
The present invention relates to a method of applying soot to the inner surface of the groove of a rotary wheel, which is provided with grooves for molds on the circumferential surface of which a moving mold is formed by moving a metal belt in contact with a part of the outer circumferential surface. This makes it easy to adjust the amount and enables automatic control to appropriately manage the temperature of the ingot. In general, in the production of rough drawing wire for copper and copper alloys, as shown in FIG. , 5' and a tension roll 6 to form a movable mold 7. A pot 8 is provided at one end of the mold 7.
Molten metal is poured into the mold 7 through the spout 9, and the solidified ingot 10 is removed from the other end to continuously produce rod-shaped ingots. In such continuous casting, preventing the ingot from seizing on the inner surface of the mold,
In addition, in order to facilitate the release of the ingot, a combustible gas that generates soot is injected toward the groove 2 at the part of the rotating wheel 1 that does not come into contact with the metal belt 3, as shown in Fig. 1. A nozzle 11 is provided to eject gas and burn it in the surrounding air, causing soot generated by incomplete combustion of the flame to adhere to the inner surface of the groove 2. Normally, the nozzle has a rotating ring 1 as shown in Figure 2 A.
A single hole nozzle 11a is provided toward the inner surface of the groove 2,
Gases such as acetylene gas that generate a large amount of soot are ejected and combusted to cause soot to adhere to the inner surface of the groove 2 using a large flame, but the disadvantage is that the amount of soot adhering to the inner surface of the groove 2 tends to be uneven. be.
In order to improve this, the nozzle tip 12 is made to have a similar cross-sectional shape to the groove 2 of the rotating wheel 1, as shown in FIG. Multi-hole nozzle 11 with holes 14
A method has been proposed in which soot is uniformly deposited on the inner surface of the groove 2 using a small flame. Using such a nozzle, the distance between the nozzle tip and the inner surface of the groove can be made closer or farther apart in order to eject and burn gas and adjust the amount of soot that adheres. Not only is remote control difficult, but the soot adhesion distribution also changes, especially when using the multi-hole nozzle shown in Figure 2 (b). The nozzle is set in such a way that it is difficult for the ingot to crack due to the thermal stress that occurs, so changing the nozzle position has the disadvantage of shifting the optimal soot distribution and causing cracks in the ingot. Ta. In view of this, as a result of various studies, the present invention has found that the amount of soot generated can be suppressed by adding a combustion auxiliary gas to the combustible gas that generates soot through gas combustion. We have developed a soot coating method that allows for adjustment or automatic control of the amount of soot deposited.This method uses a rotating ring with mold grooves on the peripheral surface of which a moving mold is formed by moving a metal belt on a part of the outer peripheral surface. In this method, an injection nozzle for injecting flammable gas that generates soot is installed into the groove, and the soot generated by gas combustion is attached to the inner surface of the groove. This method is characterized by supplying a combustion-assisting gas to the combustion chamber and changing the gas combustion to adjust the amount of soot deposited. That is, as shown in FIG. 3, the present invention forms a moving mold by moving a metal belt in contact with a part of the outer circumferential surface of a rotary ring 1 having a mold groove 2 on its circumferential surface, and pouring molten metal from one end of the mold. A combustible gas injection nozzle 11 that generates soot by gas combustion is directed toward a groove 2 at a part that does not move with the metal belt of a rotating wheel 1 of a continuous casting device that pours molten metal and removes an ingot 10 from the other end. establish.
Manifold 1 is located just before the gas ejection hole of nozzle 11.
5 is provided, and the combustible gas is supplied to the manifold 15 through the valve 16a, and the combustible gas is supplied through the valve 16b, so as to promote the combustion of the combustible gas at the tip of the nozzle 11 and suppress the amount of soot generated. This is what I did. In the figure, 17a is a flammable gas cylinder, 17b is a combustible gas cylinder, 1
8a and 18b are pressure gauges, and 19a and 19b are flow meters. In this way, by supplying and mixing the combustible gas with the combustible gas, such as air, in the manifold 15 provided just before the gas ejection hole of the nozzle 11,
The combustion of the combustible gas at the nozzle tip is promoted according to the air mixture ratio, the amount of soot generated is reduced, and the amount of soot adhering to the inner surface of the groove 2 is reduced. Therefore, the nozzle 11 is fixed at the optimum position,
By adjusting the air mixture ratio, the amount of soot deposited can be easily adjusted or automatically controlled. The present invention will be described in detail below with reference to examples. Using the apparatus shown in Figure 3, acetylene gas was introduced into the manifold (inner volume 1000 cm 3 ) at a pressure of 0.5 Kg/cm 2 at a rate of 1500 Ncm 3 /min per unit time, air was mixed in various proportions, and the inner diameter Pour through a 2 mm single-hole nozzle and point it at right angles to a copper coating plate 10 cm apart.
The amount of soot deposited per unit time was measured by jet combustion. The results are shown in FIG. As is clear from FIG. 4, the amount of soot deposited decreases monotonically in proportion to the air mixing ratio, and at an air supply rate of 2000 Ncm 3 /min, it becomes about 1/10 of the case without air supply. Please do not add too much air, for example 3000Ncm 3 /
If more than min is supplied, the flame flashback phenomenon will increase rapidly and become extremely unstable. Next, as shown in FIG. 3, air was supplied to the acetylene gas using a manifold, and the gas was ejected and burned through a nozzle toward the inner surface of the groove of the rotary ring, so that soot was deposited on the inner surface of the groove and continuous casting was performed. The heat transfer resistance from the molten metal to the mold is related to the amount of soot deposited; the smaller the amount of soot deposited, the more easily heat is transferred to the mold, and the ingot in the mold is cooled better. Therefore, the ingot temperature was continuously measured using a radiation thermometer, and the deviation from the standard temperature of the ingot was measured by varying the combustible gas pressure in the manifold and the opening degree (%) of the air supply valve. The results are shown in FIG. In the figure, a is the combustible gas pressure of 0.5Kg/cm 2 and b is the combustible gas pressure of 0.3Kg/cm 2 .
cm 2 and c indicate the case of 0.1Kg/cm 2 . As can be seen from FIG. 5, by measuring the ingot temperature and adjusting the opening degree of the valve according to the deviation from the reference temperature, the ingot temperature can be easily maintained at the reference temperature. In addition, the ingot temperature was measured according to the relationship shown in FIG. 5, the opening degree of the valve was automatically controlled, and the variation in the ingot temperature was investigated. The results are compared with the conventional manual adjustment of the nozzle arm and are shown in Table 1.

【表】 このように本発明方法によれば、従来方法に比
べて適切に鋳塊温度を制御することができるた
め、鋳塊温度が基準温度より高い場合に鋳塊に発
生するセンターシユリングケージのような欠陥も
なくなり、また鋳塊温度を±5℃以内に管理する
ことができるため、その後の工程における圧延条
件を安定化し、圧延加工後の性能上の品質のバラ
ツキを減少することができる等工業上顕著な効果
を奏するものである。
[Table] As described above, according to the method of the present invention, it is possible to control the ingot temperature more appropriately than the conventional method, so it is possible to control the center shrinkage cage that occurs in the ingot when the ingot temperature is higher than the standard temperature. Defects such as these are eliminated, and the ingot temperature can be controlled within ±5℃, making it possible to stabilize rolling conditions in subsequent processes and reduce variations in performance quality after rolling. It has remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の移動鋳型用凹溝内面のスス塗布
方法の一例を示す説明図、第2図イ,ロは従来の
スス付着用ノズルを示すもので、イはその一例を
示す説明図、ロは他の一例を示す説明図、第3図
は本発明方法の一実施例を示す説明図、第4図は
本発明における空気供給量とスス付着量の関係
図、第5図は本発明における空気供給用バルブの
開度と鋳塊温度との関係図である。 1……回転輪、2……凹溝、3……金属ベル
ト、10……鋳塊、11……ノズル、15……マ
ニホールド、16a,16b……バルブ、18
a,18b……圧力計、19a,19b……流量
計。
Fig. 1 is an explanatory diagram showing an example of a conventional method of applying soot to the inner surface of a concave groove for a movable mold, Fig. 2 A and B show a conventional soot adhesion nozzle; B is an explanatory diagram showing another example, FIG. 3 is an explanatory diagram showing an embodiment of the method of the present invention, FIG. 4 is a relation diagram between the air supply amount and the amount of soot deposited in the present invention, and FIG. 5 is an explanatory diagram showing an embodiment of the method of the present invention. FIG. 3 is a diagram showing the relationship between the opening degree of the air supply valve and the ingot temperature. 1... Rotating wheel, 2... Concave groove, 3... Metal belt, 10... Ingot, 11... Nozzle, 15... Manifold, 16a, 16b... Valve, 18
a, 18b...pressure gauge, 19a, 19b...flow meter.

Claims (1)

【特許請求の範囲】 1 一部外周面に金属ベルトを接動させて移動鋳
型を形成する周面に鋳型用凹溝を設けた回転輪の
該凹溝内に向けて、ススを発生する可燃性ガスの
噴射ノズルを設け、ガス燃焼により発生するスス
を凹溝内面に付着させる方法において、ノズルの
ガス噴出孔直前にマニホールドを設けて可燃性ガ
スに助燃性ガスを供給し、ガス燃焼を変化させて
ススの付着量を調整することを特徴とする移動鋳
型用凹溝内面のスス塗布方法。 2 可燃性ガスと助燃性ガスの混合比を変えてガ
ス燃焼を変化させることによりススの付着量を調
整する特許請求の範囲第1項記載のスス塗布方
法。 3 鋳型から離脱する鋳塊温度によりガスの混合
比を制御し、ススの付着量を調整して離脱する鋳
塊温度を一定に保持する特許請求の範囲第1項又
は第2項記載のスス塗布方法。
[Scope of Claims] 1. A rotating ring with a mold groove formed on its circumferential surface, on which a metal belt is moved in contact with a part of the outer circumferential surface of the rotating ring, and a combustible material that generates soot In this method, a nozzle for injecting flammable gas is installed and the soot generated by gas combustion is deposited on the inner surface of the concave groove.In this method, a manifold is installed just before the gas ejection hole of the nozzle to supply auxiliary gas to the flammable gas to change the gas combustion. A method for applying soot to the inner surface of a concave groove for a moving mold, characterized in that the amount of soot adhering is adjusted by adjusting the amount of soot attached. 2. The soot coating method according to claim 1, wherein the amount of soot deposited is adjusted by changing the mixing ratio of combustible gas and auxiliary gas to change gas combustion. 3. Soot coating according to claim 1 or 2, in which the gas mixture ratio is controlled depending on the temperature of the ingot that leaves the mold, and the amount of soot attached is adjusted to keep the temperature of the ingot that leaves the mold constant. Method.
JP15705782A 1982-09-09 1982-09-09 Coating method of soot on inside surface of hollow groove for moving casting mold Granted JPS5964137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15705782A JPS5964137A (en) 1982-09-09 1982-09-09 Coating method of soot on inside surface of hollow groove for moving casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15705782A JPS5964137A (en) 1982-09-09 1982-09-09 Coating method of soot on inside surface of hollow groove for moving casting mold

Publications (2)

Publication Number Publication Date
JPS5964137A JPS5964137A (en) 1984-04-12
JPS6247618B2 true JPS6247618B2 (en) 1987-10-08

Family

ID=15641263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15705782A Granted JPS5964137A (en) 1982-09-09 1982-09-09 Coating method of soot on inside surface of hollow groove for moving casting mold

Country Status (1)

Country Link
JP (1) JPS5964137A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178315A (en) * 1986-01-31 1987-08-05 Mitsubishi Cable Ind Ltd Vacuum injection molding method
US4830088A (en) * 1988-04-06 1989-05-16 Southwire Company Method and apparatus for controlling solidification of cast metal bar
DE4311773C2 (en) * 1993-04-08 2001-05-03 Linde Gas Ag Method and device for coating surfaces with soot by means of combustion
BR9502834A (en) * 1995-06-16 1997-09-23 Alcoa Aluminio Sa Method for casting a metal sheet Method for casting between equal cylinders of a sheet of aluminum alloy and laminated product

Also Published As

Publication number Publication date
JPS5964137A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
US5900052A (en) Belt coating material for belt type continuous casting and belt coating method
JPS6247618B2 (en)
CA2095085C (en) Cooling method and apparatus for continuous casting and its mold
CN110814312B (en) Production method of ultra-clean metal plate
JPS6035224B2 (en) Continuous metal casting method
JPS6133735A (en) Method and device for continuous casting of metal
US4205716A (en) Continuous casting process and apparatus for production of metallic hollow ingot
JP2017177142A (en) Method for manufacturing aluminum alloy material
JPH01202349A (en) Continuous casting method
KR19990022962A (en) High speed roll casting method and its products
JPS6114049A (en) Production of quickly cooled thin strip having uniform thickness
JPH05245594A (en) Twin roll type strip continuous casting method
JPS59209456A (en) Production of steel ingot
JPH0191948A (en) Method and apparatus for semi-continuously casting cast billet
JP2590487B2 (en) Continuous casting of thin plate
JPH0515404Y2 (en)
JPS5829178B2 (en) Metal ingot making method with less cracking
JPH0515401Y2 (en)
JP2021154340A (en) Wire rod manufacturing method and wire rod manufacturing device
RU2245216C1 (en) Method for making double-layer rolling rolls
JPH0866749A (en) Method for starting continuous casting
JPH08174174A (en) Method for coating releasing agent for casting metallic mold
JPH1133689A (en) Continuous casting method of steel
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPS61108454A (en) Cooling roll