JPS6247565A - Tunnel excavating technique by anterior guidance control - Google Patents

Tunnel excavating technique by anterior guidance control

Info

Publication number
JPS6247565A
JPS6247565A JP60187658A JP18765885A JPS6247565A JP S6247565 A JPS6247565 A JP S6247565A JP 60187658 A JP60187658 A JP 60187658A JP 18765885 A JP18765885 A JP 18765885A JP S6247565 A JPS6247565 A JP S6247565A
Authority
JP
Japan
Prior art keywords
excavator
transmitter
tunnel
receiver
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60187658A
Other languages
Japanese (ja)
Other versions
JPH0820502B2 (en
Inventor
Kunimoto Kawamura
河村 邦基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP60187658A priority Critical patent/JPH0820502B2/en
Publication of JPS6247565A publication Critical patent/JPS6247565A/en
Publication of JPH0820502B2 publication Critical patent/JPH0820502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To attain tunnel construction running along a planning line by burying a transmitter at the prescribed position in front of digging direction of an excavator, and setting up the receiver synchronizing with the radio wave of specified frequency of the transmitter. CONSTITUTION:A shielding excavator 1 is installed at the tunnel excavating start point and the first transmitter H1 and second transmitter H2 are buried separately in the prescribed depth near the planning line L scheduled for the tunnel excavation. A receiver 2 synchronizing with the specified frequency to be transmitted from both transmitters H1, H2 is fitted to the excavator 1. The specified frequency transmitted from the transmitters H1, H2 is then received by the receiver 2. A surveying equipment, an arithmetic processing unit and a display unit are incorporated to the receiver 2 and the correcting direction and correcting distance of the excavator 1 and excavating geology are displayed correctly by these equipment. Now by performing the track correction of the excavator 1 according to the display thereof the tunnel accorded with the planning line L can be constructed correctly.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は、トンネル築造に利用して有利な前方誘導制御
による躍進工法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Industrial Application The present invention relates to a leap forward construction method using forward guidance control that is advantageous for use in tunnel construction.

(2)従来の技術 トンネルを築造する場合、先ず旧制場所の土質を事前調
査し、工事計画を立案した。
(2) Conventional technology When building a tunnel, the soil quality of the old system site was first investigated in advance and a construction plan was drawn up.

そして、作成したトンネル築造に従い、掘進機を翻削開
始地点に設置し、トンネル築造工事を進めるが、その掘
進機が計画通りに進んでいるかどうかを所定の間隔で測
量していた。
Then, according to the created tunnel construction, an excavator is installed at the starting point of the excavation, and the tunnel construction work is proceeded, but measurements are taken at predetermined intervals to check whether the excavator is proceeding as planned.

従来では、掘進機のずれ或いは位置を測量する方法は、
薦削開始用の発進場所に測量基点を設け、レーザー等の
光学測量器を設置し、躍進した掘進機の位置、距離等を
掘進機の後方から測定していた。そして、設計図からず
れていた場合には、計画線上に戻すため掘進機の掘削方
向を修正していた。
Conventionally, the method of measuring the displacement or position of an excavator is as follows:
A survey base was set up at the starting point for the start of the recommended excavation, and optical surveying instruments such as lasers were installed to measure the position, distance, etc. of the excavator as it advanced forward. If the excavation direction deviated from the blueprint, the excavation direction of the excavator was corrected to return it to the planned line.

又、自走機能を有する躍進機の推進方向に設置しである
移動可能な誘導装置を目標とし、躍進機の推進を誘導装
置の方向となるように掘進機の推進を制御するトンネル
築造工法があり、特に曲線施工の場合はその曲線の計画
線上の位置に誘導体を逐次移動していた。
In addition, a tunnel construction method that targets a movable guidance device that is installed in the direction of propulsion of a breakthrough machine that has a self-propelled function, and controls the propulsion of the tunnel tunneling machine so that the propulsion of the breakthrough machine is in the direction of the guidance device. Especially in the case of curved construction, the derivatives were sequentially moved to positions on the planned line of the curve.

(3)発明が解決しようとする問題点 掘進機の後方から掘進機の位置、進行方向等を測定する
従来のトンネル築造工法では児道中の位置出しが困難で
あり、事前測定であるためトンネルが蛇行し易かった。
(3) Problems to be solved by the invention With the conventional tunnel construction method, which measures the position, direction of travel, etc. of the excavator from behind the excavator, it is difficult to locate the tunnel in the middle of the tunnel. It was easy to meander.

そのため、光の直進性の光学測量装置を利用する測量法
では、施工線形が直線であると掘削済みのトンネル先端
部の掘削開始基点から見通すことができず、測量基点を
逐次移動し測量するため、その測量基点の移設に伴う設
置精度の不良が原因でトンネルの計画線からずれたトン
ネルを築造する事があった。
Therefore, in the surveying method that uses optical surveying equipment that allows light to travel in a straight line, if the construction alignment is a straight line, it is not possible to see from the excavation starting point at the tip of the excavated tunnel, and the surveying method is carried out by moving the surveying point one by one. Due to poor installation accuracy due to the relocation of the survey base, a tunnel was sometimes built that deviated from the planned tunnel line.

さらに掘削済みトンネル内に置いである作業機械が測量
の障害となるため、それらを移動してから測量しなけれ
ばならず、掘削中の測量が困難である。又、掘削後も測
量障害物移動作業等により閘進機の位置、方向等の測定
に時間を費やしていた。そのため、トンネルの計画線と
掘削中の掘進機とのずれを修正する作業が遅れ必要以上
にトンネルを蛇行させることになる。
Furthermore, working machines placed inside the excavated tunnel become obstacles to surveying, so they must be moved before surveying, making surveying difficult during excavation. Furthermore, even after excavation, time was wasted in measuring the position and direction of the locking machine due to tasks such as moving surveying obstacles. As a result, the work to correct the deviation between the planned tunnel line and the excavating machine is delayed, causing the tunnel to meander more than necessary.

又、誘導体を移動させる前方制御方式であると、特にト
ンネルの計画線が曲線の場合その曲線上に誘導体を設置
しなければならず、設置精度がトンネル築造の正確性を
左右していた。
In addition, with the forward control method of moving the guide, especially if the planned line of the tunnel is a curve, the guide must be installed on the curve, and the accuracy of installation affects the accuracy of tunnel construction.

ざらに、従来は掘削場所の土質を事前に所定間隔測量し
、工事を施工していたが、実際の工事においては違った
地質に出会う場合もあり、工事が遅れる原因でもあった
Generally, in the past, the soil quality at the excavation site was surveyed at predetermined intervals before construction began, but during actual construction work, sometimes different geology was encountered, which caused construction delays.

本発明はこれらの欠点を解決するため、光学測量装置を
使用せず、又前方誘導制御方式における誘導体を移動す
ることなく、トンネルの計画線とのずれ及び掘削場所の
地質を瞬時に表示し、それに対処できるトンネル旧道工
法を提供することを目的とするものである。
In order to solve these drawbacks, the present invention instantly displays the deviation from the tunnel plan line and the geology of the excavation site without using an optical surveying device or moving the guide in the forward guidance control method. The purpose of this project is to provide an old tunnel road construction method that can deal with this problem.

(4)問題点を解決するための手段 本発明はこの目的を達成するために、トンネル築造の計
画線の近辺で且つ掘進機の推進前方に発信機を所定位置
に埋設し、該発信機の特定周波数の電波に同期する受信
機を掘進機に設置し、該受信機はその特定周波数の電波
により、該発信機との角度、距離及び該受信機前方の地
質を測量する測量装置とその測量装置によるデータを演
算する演算処理装置とその演算処理装置でのデータを表
示する表示装置とその表示に従って掘進機を制御する制
御装置を備え、計画線に沿ったトンネルを築造するもの
である。
(4) Means for Solving the Problems In order to achieve this object, the present invention buries a transmitter at a predetermined position near the planned line of tunnel construction and in front of the propulsion of the excavator. A surveying device in which a receiver synchronized with radio waves of a specific frequency is installed in an excavator, and the receiver measures the angle and distance to the transmitter and the geology in front of the receiver using the radio waves of the specific frequency. It is equipped with an arithmetic processing device that calculates data from the device, a display device that displays the data from the arithmetic processing device, and a control device that controls the excavator according to the display, and builds a tunnel along a planned line.

(5)作 用 トンネルの計画線の近辺に誘導体である発信機を埋設し
、その発信機からの特定波数の電波を掘進機に取着の受
信機で受信する。その受信機に内蔵の測量装置、演算処
理装置、表示装置でこれから掘削する地質、及び掘進機
の修正方向と修正距離を正確にしかも瞬時に表示するこ
とができろ。そして、掘進機の軌道修正を行い、計画線
に沿ったトンネルを正確に築造することができる。
(5) Function A transmitter, which is a guide, is buried near the planned line of the tunnel, and radio waves of a specific frequency from the transmitter are received by a receiver attached to the excavator. The receiver's built-in surveying device, arithmetic processing device, and display device should be able to accurately and instantaneously display the geology to be excavated, as well as the direction and distance to which the excavator should be corrected. Then, the trajectory of the excavator can be corrected to accurately build a tunnel along the planned line.

(6)実施例 本発明の実施例を図面により説明する。(6) Examples Embodiments of the present invention will be described with reference to the drawings.

第1図aはトンネルを築造する機器の位置関係を正面か
ら見た状態を示すもので、先ずトンネル開削開始地点に
シールド掘進機(1)を設置し、トンネル掘削予定の計
画線(L)の近辺に第1 、f信機(Hl)及び第2発
信機(Hl)を所定の深さて別々に埋設する。
Figure 1a shows the positional relationship of tunnel construction equipment viewed from the front. First, the shield excavator (1) is installed at the starting point of tunnel excavation, and the planned line (L) for tunnel excavation is set up. A first transmitter, an f transmitter (Hl), and a second transmitter (Hl) are separately buried at a predetermined depth nearby.

その第1発信機(Hl)、第2発信機(1−42)から
発信される特定周波数に同期する受信機(2)をシール
ド掘進機に取着する。
A receiver (2) synchronized with specific frequencies transmitted from the first transmitter (Hl) and the second transmitter (1-42) is attached to the shield excavator.

第1図1)は、側面から見た場合の図であり、第1発信
機(Hl)、第2発1!閾(Hl)の位置を示している
Figure 1 (1) is a side view, showing the first transmitter (Hl), the second transmitter 1! The position of the threshold (Hl) is shown.

トンネル築造の工法を第2図a、bて示す線図説明する
と、先ず第2図aは計画線(L)と発信1(Hl)及び
第2発信機(Hl)との位置関係を平面的に表示したも
ので、第2図すは第2図aに対応する側面の説明線図で
ある。
To explain the tunnel construction method using diagrams shown in Figure 2 a and b, Figure 2 a shows the positional relationship between the planned line (L) and transmitter 1 (Hl) and transmitter 2 (Hl) in a plan view. FIG. 2 is an explanatory diagram of the side surface corresponding to FIG. 2a.

Mlは掘削開始点におけるシールド掘進1(+)の位置
を示す。A点及びB点は、計画線(L)の近辺に埋設し
た第1発信機(Hl)、及び第2発信礪(Hl)の固定
位置を示す。
Ml indicates the position of shield excavation 1 (+) at the excavation start point. Point A and point B indicate the fixed positions of the first transmitter (Hl) and the second transmitter (Hl) buried near the planned line (L).

ここで、計画線(L)と平行て且つA点を通過する第】
仮想線(LA)を想定し、又同様にB点を通過する第2
敗想線(LB)を想定する。そして、シールド見進機(
1)のMl点を基準にしたA点及びB点までの距離と方
向を第1発信機(f(I)、第2発信機(H2)からの
特定周波数の電波で夫々測定する。
Here, the line parallel to the planned line (L) and passing through point A]
Assuming an imaginary line (LA), a second line passing through point B in the same way
Assume a defeat line (LB). And the shield look machine (
1) Distances and directions to points A and B based on point Ml are measured using radio waves of specific frequencies from the first transmitter (f(I)) and the second transmitter (H2), respectively.

そのM1点におけるA点と計画線(L)との角度をα1
とするならば、計画線(L)と第11反想線(LA)と
の距離(、Jl)は J1=MIA 5目1αl て計算される。同様に、M1点におけるB点と計画線(
L)との角度をβ1とするならは、計画線(L)と第2
仮想線(L B)との距離(Kl)はKl =MI B
−sinβ1 て計算される。これらの距離は計画線(β5)と第1仮
想線(LA)及び第2仮想線(L[l)とが夫々平行で
あるため、シールl” lli進機(1)が計画線(L
)に沿って移動するならば常に一定である。
The angle between point A and the planned line (L) at point M1 is α1
Then, the distance (, Jl) between the planned line (L) and the 11th reflection line (LA) is calculated as J1=MIA 5th 1αl. Similarly, point B at point M1 and the design line (
If the angle with L) is β1, then the design line (L) and the second
The distance (Kl) from the virtual line (L B) is Kl = MI B
−sin β1 is calculated. Since the planned line (β5), the first imaginary line (LA), and the second imaginary line (L[l) are parallel to each other, the seal l"
), it is always constant.

第2図すにおいて計画線(L)と直角に交差する水平の
仮想線をX軸とし、計画線(L)及びX軸と夫々直角に
交差する垂直の仮想線をY軸とする。M1点におけるA
点とX軸との角度をQlとし、同様にB点とX軸との確
度をQlとするならば、シールド掘進機(1)が計画線
(L)に沿って移動する場合、β1及びQlは常に一定
の角度である。
In FIG. 2, the X-axis is a horizontal imaginary line that intersects the plot line (L) at a right angle, and the Y-axis is a vertical imaginary line that intersects the plot line (L) and the X-axis at right angles. A at M1 point
If the angle between the point and the X-axis is Ql, and the accuracy between point B and the X-axis is Ql, then when the shield tunneling machine (1) moves along the planned line (L), β1 and Ql is always a constant angle.

このM1点を基準にした、Jl及び1(1のX軸方向の
距離JIX及びKIX、Y軸方向の距離JIY及びKI
Yは夫々 、J IX” Jl・cosQl =MIA−sinα
1−cosθ1KIX=  にl ・cosQ  1 
  =MIB  −5in β l  ・cos   
Ql、11V= Jl−sinθI =MIA−sin
α1−sinθlK n=にト5inQ1 =MIB−
sin/3+−5in Qlて計算てきる。
Based on this M1 point, Jl and 1 (distances JIX and KIX in the X-axis direction of 1, distances JIY and KI in the Y-axis direction
Y is J IX” Jl・cosQl = MIA−sin α
1-cosθ1KIX= ni l ・cosQ 1
= MIB −5in β l ・cos
Ql, 11V = Jl-sin θI = MIA-sin
α1-sinθlK n=nito5inQ1 = MIB-
Calculate sin/3+-5in Ql.

こセて、シールl”[進1(1)が地中を掘削し、M2
点へ移動した場合を考える。
Now, seal l” [Shin 1 (1) excavates underground, M2
Consider the case of moving to a point.

その間2地点での計画線(L)とA点及びB点との角度
をα2及びβ2とし、同様にX軸とA点及びB点との角
度を02及びQlとし、ざらにM2点からのA点及びB
点までの距gftM2A及びト12Bを測定する。そし
て、M2点と第1仮想線(LA)との最短距離J2は J2=M2A−8団α2 てあり、同様にM2点と第2仮想線(I、B)との最短
距離に2は K 2 = M2B−sinβ2 である。
During that time, the angles between the planned line (L) and points A and B at two points are α2 and β2, and similarly the angles between the X axis and points A and B are 02 and Ql, and roughly speaking, the angles from point M2 are Point A and B
Measure the distance gftM2A and gft12B to the point. Then, the shortest distance J2 between point M2 and the first imaginary line (LA) is J2=M2A-8 group α2, and similarly, 2 is the shortest distance between point M2 and the second imaginary line (I, B). 2 = M2B-sin β2.

この、J 2及びに2のX軸方向の距離を夫々、J2X
及び■(2×とし、同様にY軸方向の距離を夫々J2Y
及びに2Yとすれば1 、J 2X= J2・cosQ2 =M2A−sinα
2・cosQ2K 2X= K2・cosQ 2  =
 M2B  −5in β 2 ・cos  Ql、J
 2Y= j2・sinθ2 = M2A−s+nα2
・sinθ2K 2V= K2・5inQ 2  = 
M2B  −5in β 2・5llI Qlて計算さ
れる。
The distance in the X-axis direction of J 2 and 2, respectively, is J2X
and ■ (2×, and similarly, the distance in the Y-axis direction is J2Y
and 2Y, then 1, J2X= J2・cosQ2 =M2A−sinα
2・cosQ2K 2X= K2・cosQ 2=
M2B -5in β 2 ・cos Ql, J
2Y=j2・sinθ2=M2A-s+nα2
・sinθ2K 2V= K2・5inQ 2 =
M2B −5in β 2·5llI Ql is calculated.

M2点とA点との測定噴による計算線(L )からのX
軸方向及びY軸方向のずれを△XA及び△YAとし、同
様にM2点とB点との測定値による計画線(L)からの
X軸方向及びY軸方向のずれを△XB及び△YBとする
と、 △XA=JIX −J2X =旧A−sin aINcos 02−M2A情in 
α2ecos θ2△YA=JIY −J2’l’ =MIA・sin  a 1sin  θ2−M2A@
sin  a 2・sin  e 2ΔXB=KIX 
 −K2X =MIトsinβIφcosQl −M2B11sin
β2−cosQ2△Y B=KIV  −K2Y =MIB−81n βl−5inQ2 −  M2[1
番sin  β2@5inQ2として計算される。
X from the calculated line (L) by the measurement jet between point M2 and point A
The deviations in the axial direction and Y-axis direction are △XA and △YA, and similarly, the deviations in the X-axis direction and Y-axis direction from the planned line (L) based on the measured values of point M2 and point B are △XB and △YB. Then, △XA = JIX - J2X = old A-sin aINcos 02-M2A information in
α2ecos θ2△YA=JIY −J2'l' = MIA・sin a 1sin θ2−M2A@
sin a 2・sin e 2ΔXB=KIX
−K2X = MItosinβIφcosQl −M2B11sin
β2-cosQ2ΔY B=KIV −K2Y = MIB-81n βl-5inQ2 − M2[1
It is calculated as number sin β2@5inQ2.

理論的には △XA=△XB、  △YA=△YB てあり、複数の発信機を必ずしも必要としない。In theory △XA=△XB, △YA=△YB , and does not necessarily require multiple transmitters.

しかし、現実は測量精度からくる誤差があるため、複数
のずれ量を平均した方か正確性高い計算結果ができる。
However, in reality, there are errors due to measurement accuracy, so more accurate calculation results can be obtained by averaging multiple deviation amounts.

よって、X軸方向の修正値をΔX、Y軸方向の修正値△
Yは ΔX=<ΔXA+△XB)1/2 ΔY=(△YA+△YB)1/2 て計算され、X軸を基準にしたM2点におけるシールド
掘進機(1)の113正角T(よ△Y janLf=− △X として計算される。この計算はマイクロコンピュタ−を
使用することにより迅速に処理できる。第3図、曲線の
トンネルを築造する場合を考える。
Therefore, the correction value in the X-axis direction is ΔX, and the correction value in the Y-axis direction is △
Y is calculated as ΔX = < ΔXA + △ It is calculated as Y janLf = - △X. This calculation can be quickly processed by using a microcomputer. Fig. 3 considers the case of building a curved tunnel.

計画した曲線の半径をR1半径中心なO1曲線開始点を
M2とするならば、 0点を基準としたm2からの任意の移動角Z3、Z4・
・・・・・・・・Znに対応する曲線上の点m 3 、
m 4・・・・・・・・・mnは計算で求めることがで
きる。このデータをマイクロコンピュータに記憶させて
おき、このm 3 、 m 4・・・・・・nl【1の
計算による位置と掘進機とのずれを修正すれは、曲線の
トンネルを築造することができる。
If the radius of the planned curve is R1, and the starting point of the O1 curve is M2, then the arbitrary movement angles Z3, Z4・
・・・・・・Point m 3 on the curve corresponding to Zn,
m 4 . . . mn can be obtained by calculation. By storing this data in a microcomputer and correcting the deviation between the position calculated in m 3 , m 4 . . . nl [1] and the excavator, it is possible to construct a curved tunnel. .

(7)効 果 本発明は、固定した発信機と掘進■に設置した受信機で
必要データを測量し、それをマイクロコンピュータ等で
演算処理させ、間違nを制御させる工法であるため、測
量基点の移設が不要で設置不良によるトンネル築造精度
の悪化がない。
(7) Effects The present invention is a construction method in which the necessary data is surveyed using a fixed transmitter and a receiver installed in the excavation, and the data is processed by a microcomputer etc. to control errors n. There is no need to relocate the base point, and there is no deterioration in tunnel construction accuracy due to poor installation.

さらに、測量障害となる機械の移動が不要でトンネルが
湾曲していても工事が可能である。
Furthermore, there is no need to move machinery, which can be a hindrance to surveying, and construction can be carried out even if the tunnel is curved.

又、誘導体を移設する前方誘導制御方式の従来工法に比
較して精度が良い。
In addition, the accuracy is better than the conventional construction method using the forward guidance control method in which the guide is relocated.

又、掘進機前方の地質が瞬時に表示されるため、その地
質に対する工事の対応が迅速に行なえる。
Furthermore, since the geology in front of the excavator is displayed instantly, construction work can be quickly carried out in response to the geology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはトンネル築造に使用する機器の位置を示す正
面図、第1図1)はその側面図、第2図aは発信機と受
信機の平面的な位置関係線図、第2図すはその側面の説
明線図、第3図は湾曲したトンネルを築造する説明線図
である。 (1)・・・・・・・・・ シールド掘進機(2)・・
・・・・・・・受信機 (L)・・・・・・・・・計画線 (Hl)・・・・・・・・・ 第1発信機(H2)・・
・・・・・・・ 第2発信機特許出願人  三井建設株
式会社 第1図O第1図b
Figure 1a is a front view showing the location of equipment used in tunnel construction, Figure 11) is a side view thereof, Figure 2a is a planar positional relationship diagram of the transmitter and receiver, Figure 2 3 is an explanatory diagram of the side view, and Figure 3 is an explanatory diagram of the construction of a curved tunnel. (1)...... Shield tunneling machine (2)...
......Receiver (L)...Planning line (Hl)...First transmitter (H2)...
...... Second transmitter patent applicant Mitsui Construction Co., Ltd. Figure 1 O Figure 1 b

Claims (1)

【特許請求の範囲】[Claims] トンネル築造の計画線の近辺で且つ掘進機の推進前方に
発信機を所定位置に埋設し、該発信機の特定周波数の電
波に同期する受信機を掘進機に設置し、該受信機はその
特定周波数の電波により、該発信機との角度、距離及び
該受信機前方の地質を測量する測量装置とその測量装置
によるデータを演算する演算処理装置とその演算処理装
置でのデータを表示する表示装置と、その表示に従って
掘進機を制御する制御装置を備え、計画線とのずれを修
正することを特徴とする前方誘導制御によるトンネル掘
進工法。
A transmitter is buried in a predetermined position near the planned line for tunnel construction and in front of the excavator, and a receiver that synchronizes with radio waves of a specific frequency from the transmitter is installed on the excavator. A surveying device that measures the angle and distance to the transmitter and the geology in front of the receiver using frequency radio waves, a processing device that calculates the data from the surveying device, and a display device that displays the data from the processing device. and a control device that controls the excavator according to the display, and corrects deviations from the planned line.
JP60187658A 1985-08-27 1985-08-27 Tunnel excavation method by guidance control Expired - Lifetime JPH0820502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60187658A JPH0820502B2 (en) 1985-08-27 1985-08-27 Tunnel excavation method by guidance control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60187658A JPH0820502B2 (en) 1985-08-27 1985-08-27 Tunnel excavation method by guidance control

Publications (2)

Publication Number Publication Date
JPS6247565A true JPS6247565A (en) 1987-03-02
JPH0820502B2 JPH0820502B2 (en) 1996-03-04

Family

ID=16209926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60187658A Expired - Lifetime JPH0820502B2 (en) 1985-08-27 1985-08-27 Tunnel excavation method by guidance control

Country Status (1)

Country Link
JP (1) JPH0820502B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179274A (en) * 1987-01-20 1988-07-23 Nippon Steel Corp Method for detecting underground position of tip of propulsion tube using radio wave
JPH02117039U (en) * 1989-03-08 1990-09-19
WO1991000531A1 (en) * 1989-06-30 1991-01-10 Kabushiki Kaisha Komatsu Seisakusho Position measuring device of underground excavator
US8840112B2 (en) 2012-11-16 2014-09-23 Brother Kogyo Kabushiki Kaisha Image reading apparatus
US8955844B2 (en) 2012-11-16 2015-02-17 Brother Kogyo Kabushiki Kaisha Image reading apparatus
US8967619B2 (en) 2012-11-16 2015-03-03 Brother Kogyo Kabushiki Kaisha Image reading apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123391B (en) * 2013-02-05 2014-10-29 中国矿业大学 Wireless navigation and positioning system and method for heading machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154291A (en) * 1983-02-21 1984-09-03 明星電気株式会社 Controller for progressive direction of excavator
JPS59165796A (en) * 1983-03-09 1984-09-19 明星電気株式会社 Drilling direction control system of drilling machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154291A (en) * 1983-02-21 1984-09-03 明星電気株式会社 Controller for progressive direction of excavator
JPS59165796A (en) * 1983-03-09 1984-09-19 明星電気株式会社 Drilling direction control system of drilling machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179274A (en) * 1987-01-20 1988-07-23 Nippon Steel Corp Method for detecting underground position of tip of propulsion tube using radio wave
JPH02117039U (en) * 1989-03-08 1990-09-19
WO1991000531A1 (en) * 1989-06-30 1991-01-10 Kabushiki Kaisha Komatsu Seisakusho Position measuring device of underground excavator
US8840112B2 (en) 2012-11-16 2014-09-23 Brother Kogyo Kabushiki Kaisha Image reading apparatus
US8955844B2 (en) 2012-11-16 2015-02-17 Brother Kogyo Kabushiki Kaisha Image reading apparatus
US8967619B2 (en) 2012-11-16 2015-03-03 Brother Kogyo Kabushiki Kaisha Image reading apparatus

Also Published As

Publication number Publication date
JPH0820502B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JPH03260281A (en) Position detector of underground excavator
CN101809407A (en) Location determining method
CN112412453A (en) Method and device for controlling an automated longwall face
JPS6247565A (en) Tunnel excavating technique by anterior guidance control
CN107702638A (en) Country rock excavation deformation overall process monitoring system and application method
JPH1123272A (en) Surveying instrument with reflecting prism
JP3666816B1 (en) Laser marking method and apparatus
CN109488312A (en) A kind of tunnelling adjustment in direction method
JPH0387612A (en) Position detector for underground excavator
JP2590014B2 (en) Survey method for cross section marking of tunnel
JP2757058B2 (en) Underground excavator relative position detector
JPS60230079A (en) Position detecting device of excavator
JPH03260282A (en) Position detector of underground excavator
JP2520754B2 (en) Position detection device for shield machine
JP2896163B2 (en) How to manage the position of the shoring in the tunnel
JP3439756B1 (en) Position measurement method of shield machine
JPH0372195A (en) Underground excavator
JP3553831B2 (en) Method and apparatus for detecting relative orientation of underground pipeline
JPH09242472A (en) Parallel shield tunnel work execution method
JPH03260283A (en) Position detector of underground excavator
JPH03257320A (en) Controlling/surveying apparatus of propelling for underground joining of underground excavator
JP2748151B2 (en) Excavation tip position detection method in underground drilling method
JPH1088969A (en) Pipeline measuring device
JPH0673755A (en) Automatic detector for position of excavation of backhoe
JPS62288297A (en) Method of detecting position of excavated hole