JPS59165796A - Drilling direction control system of drilling machine - Google Patents

Drilling direction control system of drilling machine

Info

Publication number
JPS59165796A
JPS59165796A JP3842183A JP3842183A JPS59165796A JP S59165796 A JPS59165796 A JP S59165796A JP 3842183 A JP3842183 A JP 3842183A JP 3842183 A JP3842183 A JP 3842183A JP S59165796 A JPS59165796 A JP S59165796A
Authority
JP
Japan
Prior art keywords
excavator
light
light receiving
excavation
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3842183A
Other languages
Japanese (ja)
Inventor
兼田 彰二
泉 哲次郎
茂 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP3842183A priority Critical patent/JPS59165796A/en
Publication of JPS59165796A publication Critical patent/JPS59165796A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は掘削機の掘削方向を設定方向に目動的に制御す
るだめの掘削方向制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an excavation direction control system for objectively controlling the excavation direction of an excavator in a set direction.

従来、例えばトンネル等の掘削工恵に於いて〜、掘削機
を設定した方向に進めるだめ、ノヤイロや傾斜計を用い
て掘削機の進行方向を検出し、検出データに基いて掘削
機の進行方向を補正する方式が採用されている。しかし
ながら、これ等従来の方式では掘削機の進行方向の上下
方向及び左右方向を同時に制御することがむずかしく、
また特にジャイロ全使用したものでは当該ジャイロのド
リフトによって掘削機の進行方向に誤差が生ずる欠点が
あった。
Conventionally, in excavation works such as tunnels, for example, if the excavator was not allowed to move in a set direction, the direction of the excavator's progress was detected using a rotary probe or inclinometer, and the direction of the excavator's progress was determined based on the detected data. A method of correcting this is adopted. However, with these conventional methods, it is difficult to simultaneously control the vertical and horizontal directions of the excavator's traveling direction.
In addition, in particular, in the case where all gyros are used, the drift of the gyro causes an error in the direction of movement of the excavator.

本発明は上記したような欠点をなくシ、掘削機の進行方
向を上下方向及び左右方向の双方で制御でき、しかも掘
削機の進行方向、すなわち設定方向に対する掘削方向の
誤差が少ない制御方式を提供するものである。
The present invention eliminates the above-mentioned drawbacks and provides a control method that can control the direction of movement of an excavator in both the vertical and horizontal directions, and that has less error in the direction of movement of the excavator, that is, the direction of excavation with respect to the set direction. It is something to do.

本発明に係る制御装置は、基準儀号放射部としての投光
部又は電波発信部、基準信号愛情′部としての受光部又
は電波受信部、受光部又は電波受信部からの信号を処理
し、それに基いて掘削機のカッター全指向制御する掘削
制御部からなる。
The control device according to the present invention processes signals from a light projector or a radio wave transmitter as a reference signal emitter, a light receiver or a radio wave receiver as a reference signal receiver, a light receiver or a radio wave receiver, It consists of an excavation control section that controls the excavator's cutter in all directions based on this.

上記投光部又は電波発信部は掘削機の設定進行コースの
基率点に設置され、受光部は掘削機に搭載され、掘削制
御部は適宜の場所に設置される。
The light projector or radio wave transmitter is installed at a base point of the set course of the excavator, the light receiver is mounted on the excavator, and the excavator controller is installed at an appropriate location.

上記基準点に置かれた投光部又は電波発信部からはビー
ム幅の狭い光(例えばレーザー元)又は′r41:波が
掘削方向として設定された方向に放射され、これを掘削
機に搭載された受光部又は′ル波受1g部で受信してこ
の受イ吾した信号の方向と受光部又は電波受信部の指向
方向(この指向方向は掘削様の進行方向と一致する。)
との偏移差に対応する誤差信号を掘削制御部に出力し、
掘削制御部では上記誤差信号が零となる方向、すなわち
受光部又は電波受信部の指向方向と基準信号の放射方向
との間の偏移差がなくなる方間に上記カッターの指向方
向を制御する。
A light with a narrow beam width (for example, a laser source) or a wave is emitted from the light projecting unit or radio wave transmitting unit placed at the reference point in the direction set as the excavation direction, and this is mounted on the excavator. The direction of the signal received by the light receiving section or the wave receiver 1g section and the pointing direction of the light receiving section or radio wave receiving section (this pointing direction coincides with the direction of movement of the excavator).
output an error signal corresponding to the deviation difference between the
The excavation control section controls the pointing direction of the cutter in a direction in which the error signal becomes zero, that is, in a direction in which there is no deviation difference between the pointing direction of the light receiving section or the radio wave receiving section and the radiation direction of the reference signal.

以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

尚、以下に説明する実施例では、基準信号として光線を
使用している。
Note that in the embodiment described below, a light beam is used as the reference signal.

図面はいずれも本発明の詳細な説明するものであシ、第
1図はブロック図、第2図は受光面の詳細寵、第3図(
A) 、 (B)及び第4図(A)〜(C)は受光面と
受光スポットとの関係を示す。
The drawings are all for explaining the present invention in detail; Fig. 1 is a block diagram, Fig. 2 is a detailed view of the light receiving surface, and Fig. 3 (
A), (B) and FIGS. 4(A) to (C) show the relationship between the light receiving surface and the light receiving spot.

第1図〜第4図(A)〜(C) K於いて、1は孫1削
機、2は投光部、3は受光部、4は掘削制御部、5は放
射光線でちシ、101は掘削機10カツター・201i
l″j:投光器、202は俊―信号発生器、203は変
調器、301は受光器、302.303は差動増幅器、
304,305は同期検波器、306゜307は直流増
幅器、308は受光素子、401は信号処理器、402
はカッター制御器、501は受光スポット、A、B、C
,Dは受光素子308の4分割された受光面である。
Figures 1 to 4 (A) to (C) In K, 1 is a milling machine, 2 is a light projecting part, 3 is a light receiving part, 4 is an excavation control part, 5 is a radiation beam, 101 is excavator 10 cutter 201i
l″j: light emitter, 202 is a signal generator, 203 is a modulator, 301 is a light receiver, 302.303 is a differential amplifier,
304 and 305 are synchronous detectors, 306 and 307 are DC amplifiers, 308 is a light receiving element, 401 is a signal processor, 402
is the cutter controller, 501 is the light receiving spot, A, B, C
, D are the light-receiving surfaces of the light-receiving element 308 divided into four parts.

掘削憔1は、進行方向先端にカッター101を備えてお
り、このカッター11は、その指向方向′Itili御
のために少くとも上下方向に凰動烙れる軸と左右方向に
駆動される軸とを具備している、。
The excavator 1 is equipped with a cutter 101 at the tip in the direction of movement, and this cutter 11 has at least a shaft that swings in the vertical direction and a shaft that is driven in the left-right direction to control its pointing direction. It is equipped.

投光部2は、放射光線5を設定方向に放射する投光器2
011放射光線5の変調信号を発生する変調信号発生器
202及び放射光線5を変調する変調器203で成り、
上記投光器201は、例えば発光累子としてレーザーダ
イオードを使用して構成式れる。
The light projector 2 is a light projector 2 that emits a radiation beam 5 in a set direction.
It consists of a modulation signal generator 202 that generates a modulation signal of the 011 radiation beam 5 and a modulator 203 that modulates the radiation beam 5,
The light projector 201 may be constructed using, for example, a laser diode as a light emitting element.

受光部2ば、放射光線を受光する受光器301゜受光器
301から出力される上下方向及び左右方向のそれぞれ
2つの信号(この信号については後で説明する。)の差
の信号を出力する2つの差動増幅器302,303、差
動増幅器302,303の出力信号を前記変調信号発生
器202からの変調信号の周波数に同期して検波し、上
下方向及び左右方向に対する誤差信号を出力する2つの
同期検波器304,305及び同期検波器3’04.3
05から出力される誤差信号を増幅する2つの直流増幅
器306.307で々る。
The light receiving section 2 includes a light receiver 301 that receives the radiation beam, and a light receiver 301 that outputs a signal representing the difference between two signals (these signals will be explained later) in the vertical and horizontal directions output from the light receiver 301. The two differential amplifiers 302 and 303 detect the output signals of the differential amplifiers 302 and 303 in synchronization with the frequency of the modulation signal from the modulation signal generator 202, and output error signals in the vertical and horizontal directions. Synchronous detectors 304, 305 and synchronous detector 3'04.3
Two DC amplifiers 306 and 307 amplify the error signal output from 05.

上記受光器301は例えば光学レンズを備えた望遠鏡で
なシ、その結像位置に例えば半導体の受光素子308(
第2図)を備えてなシ、前記投光器201からの放射光
線5の放射方向に向けて、かつその鏡軸方向が掘削機1
の進行方向と一致するようにして掘削機1に搭載される
。また、上記受光素子308は、第2図に示すように受
光面がA〜■)の4つに分割され、受光UfiiA、B
が上下に、受光面C,Dが左右にそれぞれ配置されてな
る。
The light receiver 301 is, for example, a telescope equipped with an optical lens, and at its imaging position there is a light receiving element 308 (for example, a semiconductor).
(Fig. 2), the mirror axis direction is directed toward the radiation direction of the radiation beam 5 from the floodlight 201, and the direction of the mirror axis is toward the excavator 1.
It is mounted on the excavator 1 so as to match the traveling direction of the excavator 1. Further, as shown in FIG.
are arranged on the top and bottom, and light receiving surfaces C and D are arranged on the left and right, respectively.

掘削制御部4は、受光部3からの誤差信七をカッター制
御用信号にする信号処理器401及び信号処理器40’
4からのカッター制御用信号をカッター101の軸駆動
用信号にするカッター制御器402でなる。この掘削制
御部4は、人為的操作を要する本発明とは直接関係しな
い部分を會んでおシ、従って掘削孔が人が入れない程小
径である場合等では地上の適宜の場所に設けられるが、
斑削孔が人が入れるに充分の大きさの径である場合等で
は、掘削機1又は掘削機1とともに移動する車軸等に搭
載されることもある。
The excavation control section 4 includes a signal processor 401 and a signal processor 40' that convert the error signal from the light receiving section 3 into a cutter control signal.
A cutter controller 402 converts a cutter control signal from 4 into a shaft drive signal for the cutter 101. This excavation control section 4 is installed in a part that is not directly related to the present invention, which requires manual operation, and therefore may be installed at an appropriate location on the ground in cases where the excavation hole is too small to allow a person to enter. ,
If the diameter of the irregularly cut hole is large enough for a person to enter, it may be mounted on the excavator 1 or an axle that moves together with the excavator 1.

放射光線5は、例えばレーザー光線のようにビーム幅の
狭い光線が用いられ、背光との識別のために投光器20
1からは変調して放射される。
The emitted light beam 5 is a light beam with a narrow beam width, such as a laser beam, for example, and a light beam 20 is used to distinguish it from a backlight.
1 is modulated and radiated.

次に動作を説明する。Next, the operation will be explained.

まず、投光部2を基準点に設置して放射光線5の方向が
掘削方向(掘削機1の設定進行方向)になるように投光
器201の指向方向を設定する。
First, the light projector 2 is installed at a reference point, and the pointing direction of the light projector 201 is set so that the direction of the emitted light beam 5 is in the excavation direction (the set traveling direction of the excavator 1).

次に掘削機1に搭載した受光器301の鏡軸方向が上記
放射光m5の放射方向と一致するように当該掘削機1を
配置し、当該掘削機1を起動する。
Next, the excavator 1 is arranged so that the mirror axis direction of the light receiver 301 mounted on the excavator 1 matches the radiation direction of the radiation light m5, and the excavator 1 is started.

掘削機lは上記放射光線5に沿って進行し、カッター1
01によってトンネル等の掘削1′ト業が進められる。
The excavator l advances along the radiation beam 5, and the cutter 1
01, the excavation of a tunnel or the like is proceeded.

投光器201から放射される放射光線5ば、他の光と区
別するために髪t4偏号覚生器202からの変調信号に
基いて変調器203で例えば輝度変調されている。この
放射光線5が受光器301に入射されると、第2図に示
すような4分割された受光素子308上に受光スポット
が結像され、各素子A、B、C,Dからは受光素に比例
しだ大きさの受光信号が出力される。
The radiation light 5 emitted from the light projector 201 is subjected to, for example, brightness modulation by a modulator 203 based on a modulation signal from the hair t4 polarization sense generator 202 in order to distinguish it from other light. When this radiation ray 5 enters the light receiver 301, a light receiving spot is formed on the light receiving element 308 which is divided into four parts as shown in FIG. A received light signal whose magnitude is proportional to is output.

上下方向に配された素子A、Bからの受光信号は差動増
幅器302に入力され、左右方向に配された素子C,D
からの受光信号は差動増幅器303に入力され、それぞ
れの受光信号の差の信号が当該差動増幅器302.30
3から出力される。との差動増幅器302.303から
出力された信号はそれぞれ同期検波器304 、3 ’
05で変調信号器202からの信号に基いて、すなわち
放射光線5の変調周波数に同期して同期検波され直流信
号となる。この直流信号は上記素子A、Bの受光器の差
及び上記素子C,Dの受光量の差に比例したレベルを有
しておシ、この直流信号が前記誤差信号である。
The light reception signals from the elements A and B arranged in the vertical direction are input to the differential amplifier 302, and the received light signals from the elements C and D arranged in the left and right direction are input to the differential amplifier 302.
The received light signals are input to the differential amplifier 303, and the difference signal between the respective received light signals is input to the differential amplifier 302.30.
Output from 3. The signals output from the differential amplifiers 302 and 303 are sent to the synchronous detectors 304 and 3', respectively.
At step 05, the signal is synchronously detected based on the signal from the modulation signal device 202, that is, in synchronization with the modulation frequency of the radiation beam 5, and becomes a DC signal. This DC signal has a level proportional to the difference between the light receivers of the elements A and B and the difference in the amount of light received by the elements C and D, and this DC signal is the error signal.

同期検波器304.305から出力された誤差信号はそ
れぞれINN流暢幅器306.307で増幅され、掘l
+51J制仙1部4に送出される。掘削制御部4では上
記誤差信号′(i−俗号処理器401でカッター制御用
信号に変え、更にカッター制御器402でカッター佃)
駆動用イ菩号にして掘削機1のカッター101に送出さ
れる。カッター101はこのカッター軸駆動用信号でそ
の上下方向制御軸及び左右方向制御軸が駆動され、上記
誤差信号が零となる方向、すなわちカッター101の変
化する指向方向に掘削が進んだ結果、受光素子308上
のスポットが当該受光素子308の中央にくるような方
向に上記上下方同制御軸及び左右方向制御軸が制徒1さ
れる。
The error signals output from the synchronous detectors 304 and 305 are each amplified by the INN fluency amplifiers 306 and 307, and
Sent to +51J Sensen 1st Division 4th. The excavation control unit 4 converts the above error signal '(i-synonym processor 401 into a cutter control signal, and a cutter controller 402 into a cutter control signal).
It is sent to the cutter 101 of the excavator 1 as a driving gear. The vertical and horizontal control axes of the cutter 101 are driven by this cutter shaft drive signal, and as a result of excavation progressing in the direction in which the error signal becomes zero, that is, in the direction in which the cutter 101 changes, the light receiving element The vertical and horizontal control axes and the left and right control axes are oriented in a direction such that the spot on the light receiving element 308 is located at the center of the light receiving element 308 .

掘削機1が例えば放射法5の方向から下方及び右方にず
れると第3図(A)に示すように受光スポット501は
受光素子308の中央より上方左方に偏る。この結果、
素子A及びCの受光量がそれぞれ〜二子B及びDの受光
量より多くなって前記動作により上下方向及び左右方向
の双方に対して誤差信号が零でなくなシ、ラック−10
1は上方及び左方に指向方向ヲ変える。この状態で掘削
が進行すると、それに伴って受光スポット501の位置
が下方及び右方に移動し、掘削方向(掘削機1の進行方
向)と放射光触合゛の方向とが一致すると、第3図(B
)に示すように受光スポラ)501の位置が受光素子3
08の中央にきて各素子A、B、C。
For example, when the excavator 1 shifts downward and to the right from the direction of the radiation method 5, the light receiving spot 501 shifts upward and to the left from the center of the light receiving element 308, as shown in FIG. 3(A). As a result,
The amount of light received by elements A and C becomes larger than the amount of light received by elements B and D, respectively, and as a result of the above operation, the error signal is no longer zero in both the vertical and horizontal directions, and rack-10
1 changes the pointing direction upward and to the left. As excavation progresses in this state, the position of the light receiving spot 501 moves downward and to the right, and when the excavation direction (the direction in which the excavator 1 moves) and the direction of the synchrotron radiation contact coincide with each other, the third Figure (B
), the position of the light receiving spora) 501 is the light receiving element 3.
At the center of 08, each element A, B, C.

Dの受光量が等しくなる(少くとも素子AとB及び素子
CとDの受光量がそれぞれ等しくなる。)0従って差動
増幅器3o2及び303がら出力される信号はなぐなシ
、これによって誤差信号は零となる。すなわち、掘削機
1はそのときのカッター1010指向方向を維持して放
射光線5の方向に進行する。
The amount of light received by D becomes equal (at least the amounts of light received by elements A and B and elements C and D become equal) 0 Therefore, the signals output from the differential amplifiers 3o2 and 303 are unchanged, and this causes an error signal. becomes zero. That is, the excavator 1 moves in the direction of the radiation beam 5 while maintaining the current direction of the cutter 1010.

ところで、投光器201と受光器3o1(掘削機1)と
の位置関係の初期設定は、投光器201からの放射光線
5の方向に受光器301の鏡軸が合致するように行なわ
れるが、放射光線5には掘削方向の精度を上げるだめに
ビーム幅の狭い光線、例えばレーザー光線が使用される
ために、当該初期設定を人為的に行うことは極めて困難
である。
By the way, the initial setting of the positional relationship between the light emitter 201 and the light receiver 3o1 (excavator 1) is performed so that the mirror axis of the light receiver 301 matches the direction of the radiated light 5 from the light emitter 201. In order to improve accuracy in the excavation direction, a light beam with a narrow beam width, for example, a laser beam, is used, so it is extremely difficult to perform the initial setting manually.

これを解決するため、本笑施例では次のようにしている
To solve this problem, this example does the following:

ずlわち、受光器301の光学Vンズ構成を例えばズー
ムレンズ構成とし、初期設定に際して受光器301内の
受光素子308に受光スポット501が投影されない状
態(第4図(4)の状態)が生じたときは受光素子30
8の全素子A−Dのいずれにも受う℃がないことによっ
て上記光学レンズを制(ii’ll して第4図(J3
)に示すように受光スポット50Jの大きさく面積)全
増大させるようにする。
That is, if the optical V-lens configuration of the light receiver 301 is, for example, a zoom lens structure, a state in which the light receiving spot 501 is not projected onto the light receiving element 308 in the light receiver 301 at the time of initial setting (the state shown in FIG. 4 (4)) is established. When this occurs, the light receiving element 30
The above optical lens is controlled (ii'll by the fact that none of the elements A-D of 8 is affected by
), the total area of the light receiving spot 50J is increased as shown in ().

これによって受光スポラ)501id受う゛(二素子3
08の素子A−Dのいずれかに投影烙汎て掘削機1は放
射光蒙5による制御下に入9、以βでtは前記動作で、
第4図(C)に示すように受光スポット5 Fl 1が
受光素子308の中央に来るように掘削機10カフター
101の相同方向が制御ぜれる。また、受光スポ、 ト
501を受光素子308の中央に来るようにする制御過
程で徐々に、又は受光スポット501が受光素子308
の中央に来たときにステップ状に当該受ツCスボッl−
501の大きさを本来の大きさに狭める制御がなされて
掘削の精度が保たれる。
As a result, the light receiving spora) 501id is received (two elements 3
When the projection heat is applied to any of the elements A to D of 08, the excavator 1 comes under the control of the synchrotron radiation element 59, where β and t are the above operations,
As shown in FIG. 4(C), the homogeneous direction of the excavator 10 cuffer 101 is controlled so that the light receiving spot 5 Fl 1 is located at the center of the light receiving element 308. Also, in the control process to bring the light receiving spot 501 to the center of the light receiving element 308, the light receiving spot 501 gradually moves to the center of the light receiving element 308.
When it reaches the center of the
Control is performed to narrow the size of 501 to the original size, thereby maintaining the accuracy of excavation.

以上の制御は、投光器201側で行うこともできる。す
なわち、受光器301の受光素子308に放射光線5の
受光スポット501が投影されていないことによって投
光器201からの放射光線5の放射ビーム幅全拡大する
ようにする。このようにすることで受光器301に於け
る受光スポット501の大きさが大きくなるので、上記
受光6301側での制御と同様に放射光線5の捕捉が容
易となる。この歩合も受光スポット501の捕捉後に当
該受光スポット501の大きさを狭めることは言うまで
もない。
The above control can also be performed on the projector 201 side. That is, since the light-receiving spot 501 of the radiation beam 5 is not projected onto the light-receiving element 308 of the light receiver 301, the radiation beam width of the radiation beam 5 from the light projector 201 is fully expanded. By doing so, the size of the light receiving spot 501 on the light receiver 301 becomes large, so that the capture of the emitted light beam 5 becomes easy, similar to the control on the light receiving side 6301 described above. Needless to say, this ratio also reduces the size of the light receiving spot 501 after the light receiving spot 501 is captured.

以上の動作は、掘削作業中に何らかの原因で掘削機1が
予定の進行コースから大巾に外れたときも有効である。
The above operation is also effective when the excavator 1 deviates from the planned course for some reason during excavation work.

すなわち、このような場合には放射光線5の受光スポラ
)501が受光素子308の受光面から外れるので、当
該受光スポット501を大きくする制御が行なわれ、放
射光線5の再捕捉匍」御が容易になる。
That is, in such a case, the light receiving spot 501 of the emitted light beam 5 is removed from the light receiving surface of the light receiving element 308, so control is performed to enlarge the light receiving spot 501, and the re-capturing of the emitted light beam 5 is easily controlled. become.

以上に述べた実施例では掘削機1の掘削方向に光赳・全
放射するようにしたが、投光器201に代えて電波発信
機才、受光器301に代えて旬、波受信様をそれぞれ肢
体することによシ上記光商!の代シに電波全使用するこ
とによっても本発明を笑施することかできる。この場合
、電波の放射ビーム幅を狭くするために、その周波数を
かfJ:、シ歯く設定する必要がある。
In the embodiment described above, the light is emitted completely in the excavation direction of the excavator 1, but the emitter 201 is replaced by a radio wave transmitter, and the light receiver 301 is replaced by a radio wave receiver. Especially the above-mentioned light commercial! The present invention can also be implemented by using all radio waves instead. In this case, in order to narrow the radiation beam width of the radio waves, it is necessary to set the frequency fJ: sharply.

この場合に於いては、前記4素子の受光系子に対応する
ものとして4本の受信アンテナが設i!tされ、誤差信
号は当該4本のアンテナで受信される電波の2本ずつの
強度差によって検出される。
In this case, four receiving antennas are installed to correspond to the four light receiving elements. t, and the error signal is detected based on the difference in strength between two radio waves received by the four antennas.

丑だ、この場合に於いても、前記元腺ヲ使用した場合と
同様に、電波受信機での受信相同角度又は11(阪発信
機からの放射電波のビーム幅全広狭に俊史制ソ41する
ことによって初期設定及び放射電波の再4jR捉が容易
となる。
In this case, as in the case of using the original source, the reception homology angle at the radio wave receiver or This facilitates initial settings and re-acquisition of 4JR radio waves.

以上、詳細に説明したように、本発明の方式によれは、
基準点から設定方向に放射される基準信号(光線又は電
波)を目動追尾して掘削方向が常時当該基準化−号の方
向に向くように掘削機の進行方向(カッターの相同方向
)を監視修正するように制御されるので、掘削作業が精
度よく行なえるという者しい効果が得られる。
As explained in detail above, according to the method of the present invention,
Visually tracks the reference signal (light beam or radio wave) emitted from the reference point in the set direction, and monitors the excavator's traveling direction (the homologous direction of the cutter) so that the excavation direction is always in the direction of the reference number. Since the excavation work is controlled in such a manner that the excavation work can be carried out with high accuracy, it is possible to obtain the remarkable effect that the excavation work can be carried out with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の詳細な説明するもので、第1図
はブロック図、第2図は受光面の詳細図、第3図(4)
、(B)、及び第4図(A)〜(C)は受光面と受光ス
ポットとの関係を示す。 1:掘削機     2:投光部 3:受光部     4:掘削制御部 5:放射光線    101:カッター201:投光器
   301:受光器 302.303 :差動増幅器 308:受光素子 ]°トイ′lの表示 ut+ 和1−g +r持rt’r lj+’t i+
 3242 / z゛1・f’lとの関イ〃  出 廓
1 人4代理人 fI  所  東5.・二部千代田区丸の内2丁目6番
243丸の内へ重洲ビル330氏名 (3667)谷山
刈r雄■下 :。 一餠+−二       □ S 抽・1 ・・内、・    別イi(のとj5リ 
         5補     正     書 本願明細書中下g6事項を補正いたします。 記 1、第5頁5行目に [カッター111とあるを 「カッター101」と訂正する。 2、第5頁14行目に [受光部2]とあるを 「蛍光部3」と訂正する。 484−
The drawings are all for explaining the present invention in detail, and Fig. 1 is a block diagram, Fig. 2 is a detailed view of the light receiving surface, and Fig. 3 (4).
, (B), and FIGS. 4(A) to (C) show the relationship between the light receiving surface and the light receiving spot. 1: Excavator 2: Light emitter 3: Light receiver 4: Excavation control unit 5: Radiation beam 101: Cutter 201: Light emitter 301: Light receiver 302.303: Differential amplifier 308: Light receiving element] °Toy'l display ut+ sum 1-g +r rt'r lj+'t i+
3242 / Connection with z゛1・f'l Departure 1 person 4 agents fI place East 5.・2nd Department Chiyoda-ku Marunouchi 2-6-243 Marunouchi To Shizusu Building 330 Name (3667) Kario Taniyama ■Bottom:. One + - two □ S lottery・1 ・・内、・ separate i (noto j5ri
5. Amendment We will amend item g6 below in the specification of the application. Note 1, page 5, line 5 [Cutter 111 is corrected to read "cutter 101". 2. In the 14th line of page 5, the text [light-receiving section 2] is corrected to "fluorescent section 3." 484-

Claims (1)

【特許請求の範囲】 1、基準点から設定掘削方向に基準信号を放射し、掘削
機で上記基準信号を受信して、その放射方向と掘削機の
進行方向との間の偏移差全検出して当該偏移差に対応す
る誤差信号を得、当該誤差信号が零となる方向に掘削機
のカッターの指向方向を制御するようにした掘削機の掘
削方向制御方式。 2、基準信号が光線である特許請求の範囲第1項に記載
の掘削機の掘削方向制御方式。 3 光線がレーザー光線である特許請求の範囲第2項に
記載の掘削機の掘削方向制御方式。 4 基準信号が電波である特許請求の範囲第1項に記載
の掘削機の掘削方向制御方式。 5 基準信号の受信幅を、当該基準信号が掘削機の受信
部で捕捉されていないときは広く、捕捉されたときには
狭くなるように制御するようにした特許請求の範囲第1
項〜第4項のいずれかに記載の掘削機の掘削方向制御方
式。 6、基準信号の放射幅を、当該基準信号が掘削機の受信
部で捕捉されていないときは広く、捕捉されたときには
狭くなるように制御するようにした特許請求の範囲第1
項〜第4゛項のいずれかに記載の掘削機の掘削方向制御
方式。
[Claims] 1. Emitting a reference signal from a reference point in a set excavation direction, receiving the reference signal at an excavator, and detecting all deviations between the radial direction and the direction of travel of the excavator. An excavation direction control method for an excavator, in which an error signal corresponding to the deviation difference is obtained, and the pointing direction of a cutter of the excavator is controlled in a direction in which the error signal becomes zero. 2. The excavation direction control method for an excavator according to claim 1, wherein the reference signal is a light beam. 3. The excavation direction control method for an excavator according to claim 2, wherein the light beam is a laser beam. 4. The excavation direction control method for an excavator according to claim 1, wherein the reference signal is a radio wave. 5. Claim 1 in which the reception width of the reference signal is controlled so that it is wide when the reference signal is not captured by the receiving section of the excavator and narrowed when it is captured.
An excavation direction control method for an excavator according to any one of items 1 to 4. 6. Claim 1, wherein the radiation width of the reference signal is controlled so that it is wide when the reference signal is not captured by the receiver of the excavator, and becomes narrow when it is captured.
An excavation direction control method for an excavator according to any one of items 1 to 4.
JP3842183A 1983-03-09 1983-03-09 Drilling direction control system of drilling machine Pending JPS59165796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3842183A JPS59165796A (en) 1983-03-09 1983-03-09 Drilling direction control system of drilling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3842183A JPS59165796A (en) 1983-03-09 1983-03-09 Drilling direction control system of drilling machine

Publications (1)

Publication Number Publication Date
JPS59165796A true JPS59165796A (en) 1984-09-19

Family

ID=12524848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3842183A Pending JPS59165796A (en) 1983-03-09 1983-03-09 Drilling direction control system of drilling machine

Country Status (1)

Country Link
JP (1) JPS59165796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247565A (en) * 1985-08-27 1987-03-02 Mitsui Constr Co Ltd Tunnel excavating technique by anterior guidance control
JP2013092456A (en) * 2011-10-26 2013-05-16 Topcon Corp Image measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531025A (en) * 1976-06-12 1978-01-07 Agfa Gevaert Ag Photograph treating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531025A (en) * 1976-06-12 1978-01-07 Agfa Gevaert Ag Photograph treating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247565A (en) * 1985-08-27 1987-03-02 Mitsui Constr Co Ltd Tunnel excavating technique by anterior guidance control
JPH0820502B2 (en) * 1985-08-27 1996-03-04 三井建設株式会社 Tunnel excavation method by guidance control
JP2013092456A (en) * 2011-10-26 2013-05-16 Topcon Corp Image measuring device

Similar Documents

Publication Publication Date Title
JP4309014B2 (en) Construction machine control system with laser reference plane
US5237384A (en) Laser positioner and marking method using the same
US5005652A (en) Method of producing a contoured work surface
JP2006003119A (en) Position measuring system
GB2157421A (en) Forwarded underground pipe system position determining apparatus
JP3333947B2 (en) Drilling position display system for tunnel face
JPS59165796A (en) Drilling direction control system of drilling machine
EP1239264B1 (en) System for setting the direction of a laser beam
JPS5947799B2 (en) Tunnel excavation machine position control device
JP3413580B2 (en) How to display the drilling position on the tunnel face
JP2906127B2 (en) Method of irradiating the face of the tunnel with laser light
EP1380812B1 (en) Laser irradiating system
JP4376401B2 (en) Laser reference surface forming apparatus and construction machine control system
JPH05156885A (en) Method and apparatus for controlling location of boring by rock drill
JP2002005660A (en) Remotely operated surveying system
JP2845647B2 (en) Automatic positioning of moving objects
JPS59154291A (en) Controller for progressive direction of excavator
JPH07103770B2 (en) Marking method for tunnel cross section
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JP3104046B2 (en) Optical space transmission apparatus and optical space transmission method
JP2000234929A (en) Interconnecting automatic position/attitude measuring system
JPH0226194B2 (en)
JPH0424394A (en) Laser beam radiating method to facing surface of tunnel and device therefore
JPS63281012A (en) Surveying device
JPH03257312A (en) Laser apparatus of underground excavator