JPS6247263B2 - - Google Patents

Info

Publication number
JPS6247263B2
JPS6247263B2 JP53026998A JP2699878A JPS6247263B2 JP S6247263 B2 JPS6247263 B2 JP S6247263B2 JP 53026998 A JP53026998 A JP 53026998A JP 2699878 A JP2699878 A JP 2699878A JP S6247263 B2 JPS6247263 B2 JP S6247263B2
Authority
JP
Japan
Prior art keywords
output
antenna
sum
axis
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53026998A
Other languages
Japanese (ja)
Other versions
JPS54118791A (en
Inventor
Hideo Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2699878A priority Critical patent/JPS54118791A/en
Publication of JPS54118791A publication Critical patent/JPS54118791A/en
Publication of JPS6247263B2 publication Critical patent/JPS6247263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4409HF sub-systems particularly adapted therefor, e.g. circuits for signal combination

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はロケツト、人工衛星等の飛しよう体
を自動的に角度追尾する装置の中で、振幅比較モ
ノパルス方式を使用するレーダ装置に関するもの
である。 従来の装置の一例について図面によつて説明す
る。第1図は従来の振幅比較モノパルス方式の角
度追尾装置の回路構成を示すブロツク図、第2図
は上記第1図における輻射ホーン配列の正面図で
ある。第1図において全体を1で示す点線内はモ
ノパルスカプラ(給電部)、2,3,4および5
はそれぞれホーンA、ホーンB、ホーンC、およ
びホーンD、6,7,8および9はそれぞれ偏波
変換器A、偏波変換器B、偏波変換器C、および
偏波変換器D、10,11,12および13は何
れもマジツクT、14は無反射終端器、15は追
尾受信装置、16は空中線制御装置である。第2
図に示す2,3,4および5は第1図の同一符号
と同一のもので、それぞれホーンA、ホーンB、
ホーンC、及びホーンDを示しその空間的配列を
あらわしている。 第1図において、ホーンA,B,C、およびD
に入射する電磁波の電界は偏波変換器A,B,C
およびDで偏波面を変換されたのちそれぞれE
A,EB,EC及びEDなる電界となり、ハイブリツ
ド結合器である4つのマジツクT(符号、10,
11,12および13)よりなるモノパルスカプ
ラによつて目的の角度追尾信号Σ,△AZ,△EL
を得る。 こゝでΣ,△AZ及び△ELは次式のような信号
になつている。 これらの信号は後段の追尾受信装置15及び空
中線制御装置16により処理され、モノパルスカ
プラ1を含む空中線装置(図面には記載してない
が)を常に Σ=a(0以外のある値) でかつ△AZ=△EL=0 ………(iv) になる様に動作させる。 式(i)、(ii)、(iii)、(iv)から EA=ED≠0、EB=EC≠0 …(v) の条件を得る。ところで第2図の天地の線と左右
の線との交点からホーンA,B,C,Dの開口面
に垂直な線上に目標が存在している場合にはモノ
パルスレーダの原理からEA=EB=EC=EDとな
る。この場合は△AZ=△EL=0……(iv)となる
が、そのほかに
The present invention relates to a radar device that uses an amplitude comparison monopulse method among devices that automatically angle-track flying objects such as rockets and artificial satellites. An example of a conventional device will be explained with reference to the drawings. FIG. 1 is a block diagram showing the circuit configuration of a conventional amplitude comparison monopulse type angle tracking device, and FIG. 2 is a front view of the radiant horn arrangement shown in FIG. 1. In Figure 1, the dotted line indicated by 1 indicates the monopulse coupler (power supply section), 2, 3, 4, and 5.
are horn A, horn B, horn C, and horn D, respectively, and 6, 7, 8, and 9 are polarization converter A, polarization converter B, polarization converter C, and polarization converter D, respectively. , 11, 12 and 13 are all magic Ts, 14 is a non-reflection terminator, 15 is a tracking receiver, and 16 is an antenna controller. Second
2, 3, 4 and 5 shown in the figure are the same as the same reference numerals in FIG. 1, and are respectively horn A, horn B,
Horn C and horn D are shown to represent their spatial arrangement. In Figure 1, horns A, B, C, and D
The electric field of the electromagnetic wave incident on the polarization converters A, B, and C
After the plane of polarization is converted by E and D, respectively
The electric fields are A , E B , E C , and E D , and the four magic Ts (symbols: 10, 10,
11, 12 and 13), the target angle tracking signals Σ, △AZ, △EL are
get. Here, Σ, △AZ and △EL become signals as shown in the following equation. These signals are processed by the tracking receiving device 15 and the antenna control device 16 in the latter stage, and the antenna device including the monopulse coupler 1 (not shown in the drawing) is always set to Σ=a (some value other than 0) and Operate so that △AZ=△EL=0 ......(iv). From equations (i), (ii), (iii), and (iv), the following conditions are obtained: E A = ED ≠0, E B =E C ≠0...(v). By the way, if the target exists on a line perpendicular to the aperture planes of horns A, B, C, and D from the intersection of the vertical line and the left and right lines in Figure 2, E A = E according to the principle of monopulse radar. B = E C = E D. In this case, △AZ=△EL=0...(iv), but in addition

【式】となる。EFL については後節で説明するが、式(iv)の条件の他
にEFL=0の条件を得られれば、第2図から理解
できるようにアンテナの主ローブにより目標を捕
捉していることを意味する。然し、従来の方法で
は式(iv)の条件だけでアンテナを制御しているた
め、EFL≠0で△AZ=△EL=0となることがあ
る。アンテナの指向特性に副ローブが存在しなけ
れば、△AZ=△EL=0になれば自然にEFL=0
となるのであるが副ローブが目標を捕捉した場合
△AZ=△EL=0でEFL≠0の場合が発生する。 したがつて初期の捕捉時の条件によつては、 (EA=ED)≠(EB=EC) ……(vi) でも(iv)の△AZ=△EL=0を満足する場合は追尾
可能となる。式(vi)の条件はEFL≠0を意味する。
この場合の自動追尾引込み点は主ローブ以外にそ
の周囲に環状に分布する副ローブを必然的にもつ
アンテナ放射パターンの性質から真の角度より斜
の方向に外れた位置に4点以上ある。 併し乍ら自動追尾中は主ローブの真の角度に引
込んでいるのか、後者の副ローブの間違つた角度
に引込んでいるのか判別ができず、にせの角度に
引込んだ場合は大きな追尾誤差が発生し、本来の
目的を達成することができないという重大な欠点
を内蔵していた。 この発明は前述した様に角度自動追尾装置がに
せの角度に引込んでいる場合、角度が大きくずれ
たり、受信レベルが低かつたりして重大な問題を
提起しておりながらもなおかつこの状態が間違い
によるものであることを判別できなかつたもの
を、容易に判別できる手段を見出したもので、常
に正しく角度追尾ができる方法を提供するもので
ある。 以下第3図に示すこの発明の一実施例について
詳しく説明する。第3図は、この発明に係る振幅
比較モノパルス方式角度追尾装置の一実施例を示
す回路構成のブロツク図である。第3図におい
て、モノパルスカツプラ(1および2,3,…1
3)は第1図について説明したと同様な動作を
し、目的とするΣ(和信号)、△AZ(方位角誤差
信号)、△EL(仰角誤差信号)を得る。元来この
追尾用の3つの信号の外にFL(False Lockの
略)なる信号を得るが、従来の方式ではこれを使
用せずに無反射終端器へ導いて捨てゝいた。 この発明においては、このFLなる信号を利用
してにせ捕捉を検出するもので、以下にその動作
を説明する。FL端子に現われる信号電圧EFL
は、 で示される。EFLは目標物体が空中線の主ローブ
の中心に位置しておれば(つまり真の角度を正し
く捕捉しておれば) EA=EB=EC=EDとなりEFLは零となり、信
号は現れない。(正常追尾中に相当する。) 併し副ローブの指向性の正面に目標物体が来た
場合はにせの捕捉角度を捕捉することゝなる。第
4図はアンテナ放射パターンをアンテナ軸の正面
から見たパターン図である。第4図においてAZ
軸とEL軸の原点が主ローブの中心である。その
近傍の点線は主ローブのひろがりを示す。又原点
を中心とする半径の大きい方の点線は副ローブの
環を示す。第5図は第4図のアンテナ中心軸を含
むアンテナ放射パターンの断面図である。主ロー
ブ、副ローブ、X等はそれぞれ第4図の同一のも
のに対応する。第4図に示すX印の各位置に目標
物体がある場合、前述した従来例の場合のように
自動追尾の条件即ち Σ=a(0以外のある値) △AZ=△EL=0 を満足し、追尾可能となるが、このときは前述(vi)
式により であるが、
[Formula] becomes. E FL will be explained in a later section, but if we can obtain the condition E FL = 0 in addition to the condition in equation (iv), the target will be captured by the main lobe of the antenna, as can be understood from Figure 2. It means that. However, in the conventional method, since the antenna is controlled only under the condition of equation (iv), E FL ≠0 and ΔAZ=ΔEL=0. If there are no side lobes in the antenna's directional characteristics, if △AZ = △EL = 0, then E FL = 0 naturally.
However, when the secondary lobe captures the target, a case occurs where ΔAZ=ΔEL=0 and E FL ≠0. Therefore, depending on the conditions at the time of initial acquisition, (E A = E D ) ≠ (E B = E C ) ... (vi) But if (iv) △AZ = △EL = 0 is satisfied. can be tracked. The condition of formula (vi) means E FL ≠0.
In this case, there are four or more automatic tracking pull-in points at positions obliquely deviated from the true angle due to the nature of the antenna radiation pattern, which necessarily has sublobes annularly distributed around the main lobe in addition to the main lobe. However, during automatic tracking, it is not possible to determine whether the main lobe is retracting to the true angle or the latter secondary lobe is retracting to the wrong angle, and if it is retracting to a false angle, a large tracking error will occur. However, it had a serious drawback in that it was unable to achieve its original purpose. This invention is based on the fact that, as mentioned above, when the angle automatic tracking device is retracted to a false angle, the angle may deviate greatly or the reception level may be low, causing serious problems. The authors have discovered a means to easily distinguish between objects that could not be determined to be caused by the angle of the object, and provide a method that can always accurately track angles. An embodiment of the present invention shown in FIG. 3 will be described in detail below. FIG. 3 is a block diagram of a circuit configuration showing an embodiment of the amplitude comparison monopulse type angle tracking device according to the present invention. In Figure 3, monopulse couplers (1 and 2, 3,...1
3) performs the same operation as explained with reference to FIG. 1, and obtains the desired Σ (sum signal), ΔAZ (azimuth angle error signal), and ΔEL (elevation angle error signal). Originally, in addition to these three signals for tracking, a signal called FL (abbreviation for False Lock) was obtained, but in the conventional method, this signal was not used and was led to a non-reflection terminator and discarded. In the present invention, this signal called FL is used to detect false acquisition, and its operation will be explained below. Signal voltage E FL appearing at FL terminal
teeth, It is indicated by. If the target object is located at the center of the main lobe of the antenna (that is, if the true angle is captured correctly), then E A = E B = E C = E D , and E FL becomes zero , and the signal does not appear. (This corresponds to normal tracking.) However, if the target object comes in front of the directivity of the sublobe, it will be captured at a false capture angle. FIG. 4 is a pattern diagram of the antenna radiation pattern viewed from the front of the antenna axis. In Figure 4, AZ
The origin of the axis and EL axis is the center of the main lobe. The dotted line in the vicinity indicates the spread of the main lobe. Moreover, the dotted line with the larger radius centered on the origin indicates the ring of the sublobe. FIG. 5 is a cross-sectional view of the antenna radiation pattern including the central axis of the antenna shown in FIG. The main lobe, side lobe, X, etc. correspond to the same ones in FIG. 4, respectively. If there is a target object at each position marked by However, in this case, the above (vi)
By the formula In Although,

【式】 でありEA≠EB ∴EFL≠0 であるから、EFLには信号が現われる。 従つてEFLを第3図に示す追尾受信装置15内
でΣ(和信号)で規準化して復調し、EFLの大き
さをメータ表示等で知ることゝすれば、アンテナ
軸が目標の真の角度に向いているか、にせの角度
に向つているかは直ちに判定ができる。なお副ロ
ーブの環は第5図でもわかるように一つではなく
更に外側に第2、第3…の環が存在するがその影
響は上記と同性質である。 なお以上は4ホーン振幅比較モノパルス方式の
場合について説明したが、この発明はこれに限ら
ず5ホーン振幅比較モノパルス方式の場合に使用
しても同一の原理によつて利用することができ
る。 以上のようにこの発明に係るにせ捕捉検出装置
によれば、飛しよう体を角度追尾する際ににせの
角度を追尾した場合ただちに検出できるので再捕
捉等により常に正しい角度追尾が確保できるとい
う利点があり、正常追尾時にも装置運用者に常に
安心感を与えうるという効果もある。
[Equation] Since E A ≠E B ∴E FL ≠0, a signal appears at E FL . Therefore, if E FL is normalized and demodulated by Σ (sum signal) in the tracking receiver 15 shown in FIG . You can immediately determine whether you are facing a false angle or a false angle. As can be seen in FIG. 5, there is not only one sublobe ring, but there are second, third, etc. rings further outside, but their effects are the same as described above. Although the case of the four-horn amplitude comparison monopulse system has been described above, the present invention is not limited to this, and can be applied to a five-horn amplitude comparison monopulse system based on the same principle. As described above, the false acquisition detection device according to the present invention has the advantage that if a flying object is tracked at a false angle, it can be detected immediately, so correct angle tracking can always be ensured by reacquisition etc. This also has the effect of giving the device operator a sense of security at all times even during normal tracking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の振幅比較モノパルス方式角度追
尾装置の回路構成ブロツク図、第2図は第1図に
おけるホーン配列の正面図、第3図はこの発明に
係る振幅比較モノパルス方式角度追尾装置の一実
施例を示す回路構成ブロツク図、第4図はアンテ
ナ放射パターンを軸正面から見たパターン図、第
5図は上記アンテナ放射パターンの軸を含む断面
図である。 図面において、1はモノパルスカツプラ(給電
部)、2はホーンA、3はホーンB、4はホーン
C、5はホーンD、6は偏波変換器A、7は偏波
変換器B、8は偏波変換器C、9は偏波変換器
D、10,11,12,13はそれぞれマジツク
T、14は無反射終端器、15は追尾受信装置、
16は空中線制御装置である。なお各図中同一符
号は同一又は相当部分をあらわす。
FIG. 1 is a circuit configuration block diagram of a conventional amplitude comparison monopulse angle tracking device, FIG. 2 is a front view of the horn arrangement in FIG. 1, and FIG. 3 is an example of an amplitude comparison monopulse angle tracking device according to the present invention. A circuit configuration block diagram showing an embodiment, FIG. 4 is a pattern diagram of the antenna radiation pattern seen from the front of the axis, and FIG. 5 is a sectional view including the axis of the antenna radiation pattern. In the drawing, 1 is a monopulse coupler (power feeding part), 2 is a horn A, 3 is a horn B, 4 is a horn C, 5 is a horn D, 6 is a polarization converter A, 7 is a polarization converter B, 8 is a polarization converter C, 9 is a polarization converter D, 10, 11, 12, and 13 are magic Ts, 14 is a non-reflection terminator, 15 is a tracking receiver,
16 is an antenna control device. Note that the same reference numerals in each figure represent the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 目標を自動的にアンテナで角度追尾するため
に上記アンテナを垂直軸の廻りに駆動する旋回駆
動装置と水平軸の廻りに駆動する俯仰駆動装置と
を有する振幅比較モノパルスレーダ装置の上記ア
ンテナの軸方向から左上方に偏向したビームによ
つて捕捉した目標感度を第1の出力とし上記アン
テナ軸方向から右上方に偏向したビームによつて
捕捉した目標感度を第2の出力とし上記アンテナ
の軸方向から左下方に偏向したビームによつて捕
捉した目標感度を第3の出力とし上記アンテナの
軸方向から右下方に偏向したビームによつて捕捉
した目標感度を第4の出力とするとき、上記第1
の出力と上記第3の出力との和が上記第2の出力
と上記第4の出力との和に等しくなるように上記
アンテナの旋回駆動装置を制御する段階と、上記
第1の出力と上記第2の出力との和が上記第3の
出力と上記第4の出力との和に等しくなるように
上記アンテナの俯仰駆動装置を制御する段階と、
上記第1の出力と上記第4の出力との和と上記第
2の出力と上記第3の出力との和との差を当該ア
ンテナの副ローブによるにせ捕捉を示す信号とし
て検出する段階とを備えたことを特徴とする追尾
レーダにせ捕捉検出方法。
1. The axis of the antenna of an amplitude comparison monopulse radar device having a swing drive device that drives the antenna around a vertical axis and an elevation drive device that drives the antenna around a horizontal axis in order to automatically angle track a target with the antenna. The target sensitivity captured by the beam deflected upward to the left from the direction is the first output, and the target sensitivity captured by the beam deflected upward right from the antenna axis direction is the second output. When the target sensitivity captured by the beam deflected downward to the left from the axis is the third output, and the target sensitivity captured by the beam deflected downward to the right from the axial direction of the antenna is the fourth output, 1
controlling the swing drive device of the antenna so that the sum of the output of the output and the third output is equal to the sum of the second output and the fourth output; controlling the elevation drive device of the antenna so that the sum with the second output is equal to the sum of the third output and the fourth output;
detecting the difference between the sum of the first output and the fourth output and the sum of the second output and the third output as a signal indicating false acquisition by a side lobe of the antenna; A tracking radar false acquisition detection method characterized by:
JP2699878A 1978-03-08 1978-03-08 False catch detection method for tracking radar Granted JPS54118791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2699878A JPS54118791A (en) 1978-03-08 1978-03-08 False catch detection method for tracking radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2699878A JPS54118791A (en) 1978-03-08 1978-03-08 False catch detection method for tracking radar

Publications (2)

Publication Number Publication Date
JPS54118791A JPS54118791A (en) 1979-09-14
JPS6247263B2 true JPS6247263B2 (en) 1987-10-07

Family

ID=12208811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2699878A Granted JPS54118791A (en) 1978-03-08 1978-03-08 False catch detection method for tracking radar

Country Status (1)

Country Link
JP (1) JPS54118791A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144197A (en) * 1975-05-22 1976-12-10 Siemens Ag Albis Method of correcting reflecting effect of target tracing radar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144197A (en) * 1975-05-22 1976-12-10 Siemens Ag Albis Method of correcting reflecting effect of target tracing radar

Also Published As

Publication number Publication date
JPS54118791A (en) 1979-09-14

Similar Documents

Publication Publication Date Title
US4214244A (en) Null pattern technique for reduction of an undesirable interfering signal
US4136343A (en) Multiple source tracking system
US8896483B2 (en) Method of automatic target angle tracking by monopulse radar under conditions of interference distorting location characteristic
US20120007769A1 (en) Method of automatic target angle tracking by sum-and-difference monopulse radar and device therefore
JPS6238668B2 (en)
JPS62108175A (en) Radar equipment
EP0197944B1 (en) Antenna tracking system using sequential lobing
US3427621A (en) Antenna system for a secondary radar installation
JPS6243144B2 (en)
WO2000052491A9 (en) Off-axis indicator algorithm for monopulse radar
US4891648A (en) Aircraft radar arrangement
US4472719A (en) ECM Multiple-target retrodirective antenna
EP0660133B1 (en) False track discrimination in the sidelobe region of a monopulse antenna
US2597895A (en) Remote location and identification system
JPS6247263B2 (en)
US6377212B1 (en) Radar apparatus employing a sidelobe blanking system
US3836929A (en) Low angle radio direction finding
KR100240894B1 (en) Antenna of the beam-tilting and discrimination between self and others
US3943508A (en) Electronic roll compensation system for a radar antenna
EP0141886B1 (en) Monopulse detection systems
JPH026029B2 (en)
JPH0372950B2 (en)
JPH02163685A (en) Airway monitoring device
GB2303266A (en) Sidelobe supression radar
JP2757667B2 (en) Flying object guidance device