JPS6247213B2 - - Google Patents

Info

Publication number
JPS6247213B2
JPS6247213B2 JP55036711A JP3671180A JPS6247213B2 JP S6247213 B2 JPS6247213 B2 JP S6247213B2 JP 55036711 A JP55036711 A JP 55036711A JP 3671180 A JP3671180 A JP 3671180A JP S6247213 B2 JPS6247213 B2 JP S6247213B2
Authority
JP
Japan
Prior art keywords
protein
chitosan
collagen
composition
gelatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55036711A
Other languages
Japanese (ja)
Other versions
JPS56131639A (en
Inventor
Junichi Kosugi
Tadaaki Kato
Motoyuki Funabashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP3671180A priority Critical patent/JPS56131639A/en
Priority to US06/242,419 priority patent/US4378017A/en
Priority to CA000373335A priority patent/CA1147507A/en
Priority to AU68521/81A priority patent/AU535551B2/en
Priority to EP81301212A priority patent/EP0038628B1/en
Priority to DE8181301212T priority patent/DE3171293D1/en
Publication of JPS56131639A publication Critical patent/JPS56131639A/en
Publication of JPS6247213B2 publication Critical patent/JPS6247213B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Meat And Fish (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は蛋白質−キトサン組成物に係る。更に
詳しくは、キトサンと水系溶媒に不溶性の繊維性
蛋白質及び該溶媒に可溶性の蛋白質からなる耐熱
性、耐吸湿性、機械的特性に優れ、且つ生体に対
して非吸収性である新規な組成物に係る。 代表的な蛋白質であるコラーゲンは、ホ乳類、
鳥類などの結合組織、骨、歯、ジン帯、ケン、真
皮、筋膜等に存在する硬タンパク質であり、可食
ケーシング材、外科用縫合糸、血管移植片或いは
人工皮膚等の形で広く用いられている。コラーゲ
ンは上記の如き応用分野で用いられている他の材
料に比べ優れているが、必ずしも満足すべきもの
と言い難い。 例えば、ハム、ソーセージ等のくん煙処理を必
要とする食品ケーシング材として、可食性であり
且つ水中での強伸度が大きいとの理由から、牛、
豚、羊等の食用動物の腸、即ち天然のコラーゲン
成形体が用いられている。しかしながら、該天然
のコラーゲン成形体は、生産量に制限を有し、ま
た煩雑な処理工程を経て製造されるためコストの
高いものである。しかも、該天然のコラーゲン成
形体は、形状、品質が不揃い故にハム、ソーセー
ジ等の製造において通常の高速肉詰め機に適用さ
れ難い。 上記欠点を解消するものとして、後述の如き方
法等によつて得られるコラーゲン繊維のチユーブ
状物、即ち人工のコラーゲンケーシングが提案さ
れている。しかしながら、該人工のコラーゲン繊
維は成膜性に劣る。また該人工のコラーゲンケー
シングは、機械的強度の問題から膜厚が厚く、こ
のため外観の見劣りや食感性を著しく損う欠点を
有する。更に、該人工のコラーゲンケーシングよ
りなるハム、ソーセージ等は加熱調理時に破損し
たり、また充填された肉とケーシング間で剥離す
る等の好ましくない現象を生起する。最近、該調
理時での問題を解消するものとして、人工のコラ
ーゲンケーシングを更に架橋化処理する方法も提
案されている。しかしながら、該架橋化コラーゲ
ンケーシングでは食感性の点で満足し難い。 一方、前述の外科用縫合糸、人工皮膚或いは止
血用材等の外科的医療材料としてのコラーゲン材
料は、強度的問題の他に生体での安定性(非吸収
性)の点で不満を残す。該コラーゲン材料の生体
での安定性を発現せしめる方法は種々検討されて
いる。例えば、コラーゲンを架橋化する方法があ
る。しかしながら、該方法によつて得られる成形
材は引張り強度及び伸度等の機械的性質が著しく
低下したものになる。また、下記の如き反応式で
表わされるコラーゲンとカルボキシル基或いはス
ルフエート基を有する高分子物質とのポリイオン
コンプレツクスの形成により解決する方法も試み
られている。 H3N−−COO+Y−COO又は Y−SO3→Y−COOH3N−−COO
又は Y−SO3H3N−−COO (式中、H3N−−COOはコラーゲンを、
Y−COO又はY−SO3は高分子物質を示
す。) 得られるポリイオンコンプレツクスは生体安定
性にすぐれ且つ抗血栓性を有する。しかしなが
ら、該ポリイオンコンプレツクスは水性媒体、例
えば塩化ナトリウム溶液の如き無機塩溶液に溶解
し、また機械的特性に劣る。従つて、該ポリイオ
ンコンプレツクスにさらに架橋化処理等の安定化
処理を施す必要がある。 本発明者等は、上記実情に鑑み、広範囲に及ぶ
用途に適する新しい複合材の開発について鋭意研
究していく過程において、キトサンと蛋白質とを
接触せしめてなる繊維性蛋白質−可溶性蛋白質−
キトサンの三成分よりなる組成物が極めて合目的
であることを知見し、本発明に到達したものであ
る。 即ち、上記知見に基づく本発明はキトサン/
[繊維性蛋白質+可溶性蛋白質]構成比0.01/
99.99〜99/1(重量比)で、且つ、繊維性蛋白
質/可溶性蛋白質構成比99/1〜60/40(重量
比)である蛋白質−キトサン組成物を提供するも
のである。 従来、コラーゲン繊維−可溶性コラーゲン或い
はコラーゲン繊維−ゼラチン等の蛋白質系組成物
が報告されている。しかしながら、該蛋白質系の
組成物は可溶性成分の結合が弱い為、熱水中での
強度低下が著しい。これに対し、本発明の組成物
は塩水溶液に溶解せず、また、機械的強度、特に
熱水中での強度低下がなく、しかも、生体に対す
る非吸収性、血液凝固性、耐菌性、成膜性及び肉
等の充填物との密着性に優れる。 本発明の組成物が上述の如き優れた機械的特
性、非吸収性及び血液凝固作用を有する等々の理
由については未だ明らかでないが、下記の如き反
応によりキトサンが蛋白質と強固なポリイオンコ
ンプレツクスを形成する、即ち、可溶性蛋白質と
繊維性蛋白質とをキトサンが式: H3N−−COO+Z−NH3 →H3N−−COOH3N−Z (式中、H3N−−COOは蛋白質を、H3N
−Zはキトサンを示す。) で示されるように、強固に結合させることに基因
するものと推察される。 本発明の組成物は種々の用途に適用可能であ
る。 該用途の1つとして可食ケーシング材を挙げる
ことができる。また、桐山等(A.N.INo.71)が報
告している様にキトサンは下記a〜dの如き生理
活性を有するので、 a 血漿コレステロールの正常化 b 血糖抑制 c 成長阻害物質の除去 d 大腸ガンの防止 本発明の組成物は、球状、繊維状物として食品
中に添加使用され得、食用材料として上記諸症状
に対し予防的または治療的効果を挙げることがで
きる。 更に、本発明の組成物は、キトサンの生体に対
する非吸収性と血液凝固作用を併有する故、フイ
ルム状、繊維状或いはその他三次元構造の形態で
医療及び外科的応用に供せられ得る。本発明の組
成物は、それ自体血栓性であるが、ヘパリン処理
することにより、抗血栓材料として用いられ得、
人工血管、人工皮膚、人工腎臓等の医療材料とし
て利用され得る。 又、本発明の組成物は、蛋白質吸着能に優れる
故、酵素、微生物等の微生物固定化基材或いは吸
着剤としても利用できる。 以下、本発明を詳述する。 本発明に係るキトサンは、溶解性及び作業性の
点から脱N−アセチル化度50〜100%、好ましく
は70〜100%、粘度20〜1000cpを有するものであ
る。該キトサンは、市販のものでも良く、又カ
ニ、エビ等の節足動物の甲殻から常法によつて分
離・精製して得られるキチンを高濃度のアルカリ
水溶液中で加熱処理することによつても入手し得
る。なお、上記粘度は0.5wt%溶液(溶媒:1wt
%酢酸水溶液)中20℃で測定されたものである。 本発明に係る蛋白質は、水系溶媒に不溶な繊維
性蛋白質及び該水系溶媒に可溶な蛋白質の2種類
(以下蛋白質成分と総称する)である。該蛋白質
成分は各種動物の生体から分離・精製或いは分
離・精製後の蛋白質を化学処理することにより入
手し得る。 なお、本発明で言う水系溶媒とは酸、アルカリ
の水溶液を意味する。酸としては塩酸等の無機酸
或いは酢酸、アジピン酸、プロピオン酸等の有機
酸の単独もしくは2種以上の混合物が例示でき
る。また、アルカリは水酸化ナトリウム、水酸化
カリウム等の通常のアルカリである。 繊維性蛋白質の代表例としてはコラーゲン繊維
を挙げることができる。 コラーゲン繊維は、脊椎動物及び無脊椎動物の
結合組織中の主要な蛋白質である繊維成分から化
学的および機械的処理により非コラーゲン性の組
織成分を分離したものである。該コラーゲンは、
例えば、以下の方法で製造され得る。即ち、脱毛
処理した牛皮、牛アキレス腱を肉挽機等で細断後
酸性或いはアルカリ性の媒体中で膨潤させ、次い
で擂潰機等で解繊し、水性分散液とし、更に必要
に応じ過分離する。 なお、上記製造における細断工程後、細断片を
前処理することは得られる複合材の強度の向上及
び均質化にとつて好ましい。該前処理としてはコ
ラーゲンのリジン残基中のアミノ基のホルムアル
デヒド、グルタールアルデヒド、ジアルデヒドス
ターチ、クリオキザール、燻液或いはエピハロヒ
ドリン等の試薬による架橋化、コハク酸無水物に
よるサクシニル化、無水有機酸によるアシル化或
いはメチル化剤を用いてコラーゲン中のアスパラ
ギン酸残基、グルタミン酸残基等の側鎖にあるカ
ルボン酸残基のエステル化等を例示できる。 また、該コラーゲン繊維としては、天然又は人
工のコラーゲンケーシングの屑等のケーシングと
して使用できない廃物を挙げることができる。 その他に、本発明に係る繊維性蛋白質として
は、蚕の糸中に存するフイブロイン、毛の成分で
あるケラチン、血液中のフイブリノーゲン等を例
示できる。本発明で用いる繊維性蛋白質は、繊維
径1〜3μ、繊維長0.1〜15mm、分子量5000〜
1000000好ましくは20000〜500000であるが、必ず
しもこれに限定されるものでない。 一方、水系溶媒に可溶な蛋白質としては、工業
的規模で食品工業界で用いられているゼラチン或
いは前記繊維性蛋白質を蛋白質分解酵素、酸或い
はアルカリで処理し、全部を可溶性としたもの等
が例示できる。又、上記の処理に際し、一部を可
溶化することにより、繊維性蛋白質及び可溶性蛋
白質成分の混合物として使用できる。 本発明の組成物は、前記したキトサンと蛋白質
成分を酸性領域中で接触せしめ、次いで、該接触
反応物を脱酸処理し、脱溶媒することにより得る
ことができる。 キトサンと蛋白質成分の構成比は目的とする用
途によりキトサン/蛋白質:0.01/99.99〜99/
1(重量比)の範囲で適宜選ぶことができる。蛋
白質成分における繊維性蛋白質と可溶性蛋白質の
割合は可溶性蛋白質/繊維性蛋白質:1/99〜
40/60(重量比)である。該蛋白質成分の構成比
が40/60以上では本発明の組成物より成る成形体
の吸水量が多くなり、該成形体の形状保持が困難
となり、また引張り強度等の低下を来す。可溶性
蛋白質としてゼラチンは最も好ましいものの1つ
であるが、この場合、繊維性蛋白質1重量部に対
して0.01〜0.4重量部好ましくは0.05〜0.3重量部
である。 可溶性蛋白質成分は組成物の柔軟性、熱変形温
度の低下、機械的強度の向上、更には、後述の如
きケーシング材における食感性の向上及びヒート
シール性等に寄与する。 なお、前述の繊維性蛋白質の一部可溶化物は蛋
白質成分として用いられる。本発明で言う酸性領
域とはキトサン−蛋白質成分の接触系内がPH1〜
6好ましくは3〜6であることを意味する。 前記脱酸処理とは、キトサン−蛋白質成分の接
触反応物の等電点以上にPHを調整することであ
る。従つて、該脱酸処理は、接触反応系内を水酸
化ナトリウム、水酸化カリウム等のアルカリで処
理し、PH7以上とする方法、アルカリ性の塩水溶
液で処理する方法、接触反応物中に過剰に存在す
る酸を蒸発除去する方法或いは電着法により電解
脱酸する方法を提示できる。 ゼラチンは不溶性コラーゲンを熱水等により変
質せしめ水系溶媒に可溶性としたものであり、そ
の処理法によつて等電点、ゼリー強度、灰分含有
量等が異なる。それ故、前述のゼラチン使用の蛋
白質形成形体を製造する際は、該ゼラチンの種類
のよりその製造条件を変える必要がある。例え
ば、後述の電着法による組成物の製造に際し、酸
処理により得られるゼラチンを用いる場合は調整
液のPHを7以下とし、陰極側に複合成形体を生成
せしめる工夫を必要とする。又、アルカリ処理し
て得られるゼラチンの場合は調整液のPHを7以上
とし陽極側に成形体を生成せしめなければならな
い。 これに対し、本発明では組成物の一構成成分で
あるキトサンの働きにより、上記の如き製造面で
の束縛なく成形体を製造し得る。 また、本発明の製法によれば、従来成形性にお
いて不満を残した蛋白質成分をキトサンと複合さ
せることでより成形性(成膜性など)を向上する
ことができ、尚かつ製造時の歩止りおよび製品の
安定性、画一性等の問題を解決し得る。又、コラ
ーゲンを前処理として架橋化処理した際の遊離の
アルデヒド基とも反応することになるので、安全
性の問題からも好ましいことである。 以下、本発明の組成物より成る成形体(以下、
本発明の成形体と称する)の製造例を述べる。 本発明の、フイルム状の成形体は、キトサン含
有酸性媒体と蛋白質成分含有媒体よりなる所定の
割合の混合液を脱泡処理後、該混合液をガラス板
上に流し込み、更に熱風乾燥機等で脱酸処理し、
脱溶媒する方法で製造し得る。キトサン含有酸性
媒体中のキトサン濃度は5wt%好ましくは1wt%
以下(溶媒:酢酸、塩酸等の稀薄水溶液)であ
り、該キトサン含有酸性媒体のPHは1〜6好まし
くは3〜6である。蛋白質成分含有媒体は、蛋白
質成分を塩酸等の酸性水溶液に分散し、PHを3〜
6好ましくは3〜4に調整したものである。蛋白
質成分含有媒体は、必ずしも酸性である必要はな
く、中性又はアルカリ性であつてもよい。しかし
ながら、この場合、キトサン含有酸性媒体と混合
分散した際、混合分散系は酸性領域にあることが
必要である。なお、後述の電着法においては、電
気伝導度、所要電力の関係から該蛋白質成分含有
媒体は酸性領域で用いる。 該蛋白質成分含有媒体中の蛋白質成分の含有量
は任意で良いが、粘度等の関係から通常5wt%以
下、好ましくは1wt%以下である。 本発明に係るフイルム状の成形体は繊維性蛋白
質を一構成成分とするにもかかわらず、強度面で
縦横の方向依存性のないことを特徴とする。該特
徴はキトサンが存在することによりはじめて発現
し得るものであり、この事実は全く驚くべきこと
と言える。また、球状の成形体は、前記混合液を
トルエン、キシレン等の疎水性の有機溶媒中に滴
下・分散させ、次いでアルコール−水系溶液で脱
酸処理する方法で製造できる。更に、前記混合液
をホール或いはスリツト状のノズルから高濃度の
塩又は水酸化アンモニウム等のアルカリ水溶液中
に押し出すことで繊維状、フイルム状或いは中空
状の形態として成形することもできる。可溶性蛋
白質及びキトサンを含有する繊維性蛋白質分散水
溶液を少なくとも1個の陰極及び少なくとも1個
の陽極を備えた電極槽に導入し、上記両電極間に
直流電圧を加え、所定電極面上に集積せしめてな
る本発明のチユーブ状成形体は、極めて薄い壁膜
であり、強度的にも優れる故に食感性の良い可食
ケーシング材として好適である。 尚、本発明の組成物を可食ケーシングとして用
いる場合、食感性、燻煙及び調理時の強度、熱変
性温度、ヒートシール性の観点からキトサン/蛋
白質成分の構成比が0.01/99.99〜60/40の範囲
が好ましい。蛋白質成分の構成比は可溶性蛋白
質/繊維性蛋白質:5/95〜40/60(重量比)で
ある。又、本発明の組成物を可食性食品添加剤と
して用いる場合はキトサン/蛋白質成分の構成
比:1/99〜99/1特にキトサン成分の多い方が
好ましい。なお、電着法による成形に用いるゼラ
チンは所要電力及び品質の点で、灰分含有量
0.5wt%以下好ましくは0.2wt%以下が用いられ
る。 本発明の組成物からなる別の成形体の製造方法
として、キトサン含有酸性媒体中に予めシート、
フイルム、チユーブ、繊維状等に成形した蛋白質
成形体を浸漬し、次いで脱酸処理し、脱溶媒する
方法も例示できる。この場合、得られる成形体は
表面部がキトサン成分故機械的性質の向上、耐熱
性、耐菌性等の極めてユニークな性質を示すもの
である。 上記方法等によつて得られる本発明の成形体
は、更に架橋化、コハク酸無水物によるサクシニ
ル化、無水有機酸によるアシル化或いはメチル化
剤を用いてのコラーゲン中のアスパラギン残基、
グルタミン残基の側鎖にあるカルボン残基のエス
テル化処理することにより、上記特性の他に高血
液凝固性、耐酸性の向上が発現される。 架橋化は例えば以下の方法によつて行うことが
できる。 まず本発明の成形体を、PH7.4のリン酸緩衝液
に架橋剤を溶解した水溶液中に浸漬する。該浸漬
は10〜50℃の温度下0.1〜1時間行う。反応終了
後、洗浄工程を経れば水に不溶な架橋化処理され
た成形体となる。 該架橋化処理により、キトサンの架橋化のみな
らず、キトサン−蛋白質成分の架橋化も生起し得
るので、より表面結合力が上昇する。架橋は、例
えば、キトサンおよびコラーゲンのアミノ基およ
び水酸基の同種又は異種官能基の間で生起する。
架橋剤としては、ホルムアルデヒド、グルタール
アルデヒド、ジアルデヒドスターチ、グリオキザ
ール、燻液或いはエピハロヒドリン及びエチレン
グリコール、グリセリン、ソルビトール等の多価
アルコール、糖類等があげられる。 本発明によれば、キトサン自体の蛋白質との結
合力(凝集力)を生かすことにより、大豆蛋白、
カゼイン等の可溶性蛋白質の利用も可能であり、
種々の用途で応用可能である。 以上、本発明は自然界に多量に存在するが、高
結晶性且つ化学的に安定故、その利用分野が限定
されていたキチンと蛋白質成分とを組合せること
で両者の欠点をおぎなつて余りある特性を有する
新規な組成物を提供するもので、その産業上の貢
献は大と言える。 以下、実施例をもつて本発明を説明する。 実施例 1 北米産ステアハイド塩蔵皮100Kgを15時間水
漬、水洗後、裏取機をもちいて、脂肪をけづり取
つた。次いで該裏取りされた皮を石灰浸漬処理し
た。石灰浸漬処理は、消石灰2%、Na2S0.5%
(C2H52NH20.5%を含む液450Kgに上記の皮90Kg
を入れ、25℃にて24時間ゆるやかに攪拌する方法
によつた。該処理後の皮は脱毛ロールにかけ脱毛
するとともに石灰浸漬処理によつて生じた分解物
を取り除いた。次いで該処理皮をスプリツテイン
グ機により分割し、ミイートスライサーにより幅
5mmに切り、更に肉挽機により長さ5cmの細片に
した。この細片80Kgを水800Kg中に分散させ、更
に酢酸3Kgを入れ、ゆるやかに12時間攪拌後の分
散液から該皮細片を分離し、遠心脱水機により脱
水し、イオン交換水で洗浄した。洗浄は洗浄水の
電気伝導度が20μ/cm以下になつた時点で終了
せしめた。この時点における皮中の灰分は0.1%
以下であつた。 この皮細片40Kgを0.015%濃度のグルタールア
ルデヒドを含み、塩酸によりPH3.0に調整した水
溶液400Kgに分散させ、20℃で12時間ゆるやかに
攪拌して架橋化処理した。 次いで該処理皮を金網で分離し、パルプリフア
イナーを用いて冷水113Kg中で繊維束を叨解し、
コラーゲン繊維の分散液とし、更に塩酸を加えて
PH3.0に調節した。この分散液は太さ1〜3μ、
長さ1〜10mmのコラーゲン繊維と更に細繊化した
コラーゲンの混合物となり、2.5%コラーゲンを
含む液128Kgとなつた。 一方、キトサン1KgをPH3の塩酸水溶液10Kgに
溶解後、PHを3.0に調整し、総重量20Kgのキトサ
ン溶液を得た。 他方、酸処理ゼラチン(宮城化学F−795)1
KgをPH3の塩酸水溶液10Kgに溶解後、PHを3.0に
調整し、総重量20Kgのゼラチン溶液を得た。 前記架橋コラーゲン分散液15Kgにイオン交換水
50Kgを加え、急速にに攪拌し、次いでこの分散液
にキトサン水溶液374g、ゼラチン水溶液374gを
加え、1時間攪拌混合し、コラーゲン/ゼラチ
ン/キトサンの重量比が100/5/5である混合
液を得た。 次に該混合液から電着装置を用いて製膜した。
該電着装置は、内径100m/mφ、高さ700m/m
のPVC製の穴明き円筒で支持された白金網を陽
極とし、その内部へ外径17.5m/mφ、長さ700
m/mのステンレス製管の陰極を有し、その極間
に内径56m/m、厚み1m/mPVC製隔膜ホル
ダーにプロピレン繊維製布をはつて極間仕切つ
たものであつた。 陽極槽内はPH3.0の塩酸水溶液を槽下部より流
入し、槽上部よりオーバーフローし、陽極液ホル
ダーへ落ち、再び槽下からポンプにより循環せし
めておいた。膜原料物は陰極槽下部より導入し、
上部よりオーバーフローせしめ、該混合液貯蔵槽
へ戻る様にしておいた。陽極槽のオーバーフロー
部は陰極槽のオーバーフロー面より50mm低くし、
隔膜から塩酸水溶液が陰極槽へ流入しない様にし
ておいた。温度は10℃以下に保つた。 該電着装置に前記キトサン−コラーゲン−ゼラ
チン混合液を入れ、循環させ、電極間へ直流電圧
300Vをかけた。正に帯電しているコラーゲン−
キトサン−ゼラチンは電気泳動により陰極へ移動
し、水の電解によつて生じたOH-により中和さ
れ、等電点のPHに近づき、水和水を放出し、凝集
し、陰極面上に膜を形成した。膜引き上げ速度は
10m/minとした。 引き上げられた膜は7%グリセリン水溶液へ浸
した後空気で水柱300m/mの圧力を保ちながら
75℃の熱風で2分間乾燥し、本発明の成形体(試
料A)を得た。 尚、比較の為、キトサンを添加しないゼラチン
−コラーゲン分散液を用いて同様な方法で比較ゼ
ラチン−コラーゲン膜(比較試料A)を得た。 該成形体をJIS P−8113,JIS P−8116に準じ
て湿潤状態で引張り強度及び引裂強度を測定した
結果を第1表に示した。 これより明らかな様に引張り強度があがつてい
る。又、これらの成形体を40℃の温水に24時間浸
漬した後、上記方法にのつとり強度を調べた結果
を第2表に示した。この結果、本発明の成形体は
強度的にも優れていることが明らかとなつた。
The present invention relates to protein-chitosan compositions. More specifically, a novel composition comprising chitosan, a fibrous protein insoluble in an aqueous solvent, and a protein soluble in the solvent, which has excellent heat resistance, moisture absorption resistance, and mechanical properties, and is non-absorbable to living organisms. Pertains to. Collagen, a typical protein, is found in mammals,
It is a hard protein that exists in the connective tissue, bones, teeth, skin, dermis, fascia, etc. of birds, etc., and is widely used in the form of edible casing materials, surgical sutures, vascular grafts, artificial skin, etc. It is being Although collagen is superior to other materials used in the above applications, it is not always satisfactory. For example, beef, beef,
The intestines of food animals such as pigs and sheep, that is, natural collagen molded bodies, are used. However, the natural collagen molded body has a limited production amount and is manufactured through complicated processing steps, resulting in high cost. Moreover, the natural collagen molded bodies are not uniform in shape and quality, and therefore are difficult to be applied to ordinary high-speed meat stuffing machines in the production of hams, sausages, and the like. To overcome the above-mentioned drawbacks, a tube-shaped collagen fiber, ie, an artificial collagen casing, obtained by a method as described below has been proposed. However, the artificial collagen fibers have poor film-forming properties. In addition, the artificial collagen casing has a thick film thickness due to mechanical strength problems, and therefore has disadvantages such as poor appearance and significantly impaired texture. Furthermore, hams, sausages, etc. made of the artificial collagen casings are damaged during cooking, and undesirable phenomena such as separation between the filled meat and the casing occur. Recently, a method of further crosslinking the artificial collagen casing has been proposed to solve the problem during cooking. However, the crosslinked collagen casing is difficult to satisfy in terms of texture. On the other hand, collagen materials used as surgical medical materials such as surgical suture threads, artificial skin, and hemostatic materials described above are unsatisfactory not only in terms of strength but also in terms of stability (non-absorbability) in living bodies. Various methods have been studied to increase the stability of collagen materials in living organisms. For example, there is a method of crosslinking collagen. However, the molded material obtained by this method has significantly reduced mechanical properties such as tensile strength and elongation. In addition, a method of solving the problem by forming a polyion complex between collagen and a polymeric substance having a carboxyl group or a sulfate group has also been attempted, which is represented by the following reaction formula. H 3 N−−COO+Y−COO or Y−SO 3 →Y−COOH 3 N−−COO
or Y-SO 3 H 3 N--COO (wherein H 3 N--COO represents collagen,
Y-COO or Y-SO 3 represents a polymer substance. ) The resulting polyion complex has excellent biostability and antithrombotic properties. However, the polyionic complexes are soluble in aqueous media, such as inorganic salt solutions such as sodium chloride solutions, and have poor mechanical properties. Therefore, it is necessary to further perform stabilization treatment such as crosslinking treatment on the polyion complex. In view of the above-mentioned circumstances, the present inventors, in the process of conducting intensive research on the development of a new composite material suitable for a wide range of uses, discovered a fibrous protein - soluble protein - made by bringing chitosan and protein into contact with each other.
The present invention was achieved based on the discovery that a composition consisting of three components of chitosan is extremely suitable for the purpose. That is, the present invention based on the above knowledge is based on chitosan/
[Fibrous protein + soluble protein] Composition ratio 0.01/
The present invention provides a protein-chitosan composition having a weight ratio of 99.99 to 99/1 and a fibrous protein/soluble protein composition ratio of 99/1 to 60/40 (weight ratio). Conventionally, protein-based compositions such as collagen fiber-soluble collagen or collagen fiber-gelatin have been reported. However, since the protein-based composition has weak binding of soluble components, its strength decreases significantly in hot water. On the other hand, the composition of the present invention does not dissolve in salt aqueous solutions, does not lose its mechanical strength, especially in hot water, and has non-absorbability, blood coagulation properties, bacterial resistance, and Excellent film forming properties and adhesion to fillers such as meat. The reason why the composition of the present invention has the above-mentioned excellent mechanical properties, non-absorbability, and blood coagulation effect is not yet clear, but chitosan forms a strong polyion complex with protein through the following reaction. That is, soluble protein and fibrous protein are combined with chitosan using the formula: H 3 N−−COO+Z−NH 3 →H 3 N−−COOH 3 N−Z (where H 3 N−−COO represents protein, H3N
-Z indicates chitosan. ), it is presumed that this is due to the strong bonding. The composition of the present invention is applicable to various uses. One such use is as an edible casing material. In addition, as reported by Kiriyama et al. (ANI No. 71), chitosan has the following physiological activities a) Normalization of plasma cholesterol b Suppression of blood sugar c Removal of growth-inhibiting substances d Prevention of colorectal cancer The composition of the present invention can be added to foods in the form of spherical or fibrous materials, and can exert preventive or therapeutic effects on the above-mentioned symptoms as an edible material. Further, the composition of the present invention can be used in medical and surgical applications in the form of a film, fiber, or other three-dimensional structure, since chitosan has both non-absorbability to living bodies and blood coagulation effects. Although the composition of the present invention is thrombogenic in itself, it can be used as an antithrombotic material by treatment with heparin.
It can be used as medical materials such as artificial blood vessels, artificial skin, and artificial kidneys. Furthermore, since the composition of the present invention has excellent protein adsorption ability, it can also be used as a substrate for immobilizing microorganisms such as enzymes and microorganisms, or as an adsorbent. The present invention will be explained in detail below. The chitosan according to the present invention has a degree of de-N-acetylation of 50 to 100%, preferably 70 to 100%, and a viscosity of 20 to 1000 cp from the viewpoint of solubility and workability. The chitosan may be commercially available, or it may be obtained by heat-treating chitin obtained by separating and purifying it from the shells of arthropods such as crabs and shrimps by conventional methods in a highly concentrated alkaline aqueous solution. can also be obtained. In addition, the above viscosity is 0.5wt% solution (solvent: 1wt
% acetic acid aqueous solution) at 20°C. The proteins according to the present invention are of two types: fibrous proteins that are insoluble in aqueous solvents and proteins that are soluble in the aqueous solvents (hereinafter collectively referred to as protein components). The protein component can be obtained by separating and purifying the living body of various animals or by chemically treating the separated and purified protein. In addition, the aqueous solvent as used in the present invention means an aqueous solution of acid or alkali. Examples of acids include inorganic acids such as hydrochloric acid, and organic acids such as acetic acid, adipic acid, and propionic acid, either singly or in a mixture of two or more. Further, the alkali is a common alkali such as sodium hydroxide or potassium hydroxide. A typical example of fibrous protein is collagen fiber. Collagen fibers are obtained by separating non-collagenous tissue components from fiber components, which are the main proteins in the connective tissues of vertebrates and invertebrates, by chemical and mechanical treatments. The collagen is
For example, it can be manufactured by the following method. That is, depilated cow hide and beef Achilles tendon are shredded using a meat grinder or the like, then swollen in an acidic or alkaline medium, then defibrated using a grinder or the like to form an aqueous dispersion, and further subjected to over-separation if necessary. . In addition, after the shredding step in the above production, it is preferable to pre-treat the fragments in order to improve the strength and homogenize the resulting composite material. The pretreatment includes crosslinking of amino groups in lysine residues of collagen with reagents such as formaldehyde, glutaraldehyde, dialdehyde starch, cryoxal, liquid smoke, or epihalohydrin, succinylation with succinic anhydride, and organic acid anhydride. Examples include esterification of carboxylic acid residues in side chains such as aspartic acid residues and glutamic acid residues in collagen using an acylating or methylating agent. Furthermore, the collagen fibers include waste materials that cannot be used as casings, such as scraps of natural or artificial collagen casings. Other examples of the fibrous protein according to the present invention include fibroin present in silkworm silk, keratin, a component of hair, and fibrinogen in blood. The fibrous protein used in the present invention has a fiber diameter of 1 to 3μ, a fiber length of 0.1 to 15mm, and a molecular weight of 5000 to
1,000,000, preferably 20,000 to 500,000, but is not necessarily limited to this. On the other hand, proteins that are soluble in aqueous solvents include gelatin, which is used in the food industry on an industrial scale, or those that have been made completely soluble by treating the above-mentioned fibrous proteins with proteolytic enzymes, acids, or alkalis. I can give an example. Furthermore, by solubilizing a portion during the above treatment, it can be used as a mixture of fibrous protein and soluble protein components. The composition of the present invention can be obtained by bringing the chitosan described above into contact with a protein component in an acidic region, and then deacidifying the contact reaction product and removing the solvent. The composition ratio of chitosan and protein components is chitosan/protein: 0.01/99.99-99/depending on the intended use.
It can be appropriately selected within the range of 1 (weight ratio). The ratio of fibrous protein and soluble protein in the protein component is soluble protein/fibrous protein: 1/99 ~
The weight ratio is 40/60. When the composition ratio of the protein component is 40/60 or more, the amount of water absorbed by the molded product made from the composition of the present invention increases, making it difficult to maintain the shape of the molded product and causing a decrease in tensile strength and the like. Gelatin is one of the most preferred soluble proteins, and in this case, the amount is 0.01 to 0.4 parts by weight, preferably 0.05 to 0.3 parts by weight, per 1 part by weight of fibrous protein. The soluble protein component contributes to the flexibility of the composition, lowering the heat distortion temperature, improving mechanical strength, and further improving the texture and heat sealability of the casing material as described below. Note that the above-mentioned partially solubilized fibrous protein is used as a protein component. In the present invention, the acidic region refers to a chitosan-protein component contact system with a pH of 1 to 1.
6 preferably means 3 to 6. The deacidification treatment is to adjust the pH to a level higher than the isoelectric point of the chitosan-protein component contact reaction product. Therefore, the deacidification treatment can be carried out by treating the inside of the contact reaction system with an alkali such as sodium hydroxide or potassium hydroxide to raise the pH to 7 or higher, by treating it with an alkaline salt aqueous solution, or by treating the contact reaction system with an aqueous alkaline salt solution. A method of removing existing acid by evaporation or a method of electrolytic deoxidation by electrodeposition can be proposed. Gelatin is made by denaturing insoluble collagen with hot water or the like to make it soluble in aqueous solvents, and its isoelectric point, jelly strength, ash content, etc. vary depending on the treatment method. Therefore, when producing the above-mentioned protein-forming form using gelatin, it is necessary to change the production conditions depending on the type of gelatin. For example, when using gelatin obtained by acid treatment when producing a composition by the electrodeposition method described below, it is necessary to set the pH of the adjustment solution to 7 or less and to form a composite molded body on the cathode side. Further, in the case of gelatin obtained by alkaline treatment, the pH of the adjusting solution must be set to 7 or higher to form a molded body on the anode side. On the other hand, in the present invention, due to the action of chitosan, which is one of the constituent components of the composition, a molded article can be produced without the above-mentioned constraints in terms of production. In addition, according to the manufacturing method of the present invention, by combining the protein component, which has conventionally been unsatisfactory in moldability, with chitosan, it is possible to improve moldability (film formability, etc.), and at the same time, it is possible to improve the yield rate during manufacturing. and can solve problems such as product stability and uniformity. Furthermore, since it also reacts with free aldehyde groups obtained when collagen is crosslinked as a pretreatment, this is preferable from a safety standpoint. Hereinafter, a molded article (hereinafter referred to as
An example of manufacturing a molded article (referred to as a molded article of the present invention) will be described. The film-shaped molded article of the present invention is produced by defoaming a mixture of a chitosan-containing acidic medium and a protein component-containing medium at a predetermined ratio, pouring the mixture onto a glass plate, and then drying the mixture in a hot air dryer or the like. Deoxidized,
It can be produced by removing the solvent. Chitosan concentration in chitosan-containing acidic medium is 5wt% preferably 1wt%
The pH of the chitosan-containing acidic medium is 1 to 6, preferably 3 to 6. For the protein component-containing medium, the protein component is dispersed in an acidic aqueous solution such as hydrochloric acid, and the pH is adjusted to 3 to 3.
6, preferably adjusted to 3 to 4. The protein component-containing medium does not necessarily have to be acidic, and may be neutral or alkaline. However, in this case, when mixed and dispersed with the chitosan-containing acidic medium, the mixed dispersion system needs to be in an acidic region. In addition, in the electrodeposition method described below, the protein component-containing medium is used in an acidic region due to the relationship between electrical conductivity and required power. The content of the protein component in the protein component-containing medium may be arbitrary, but it is usually 5 wt% or less, preferably 1 wt% or less, in view of viscosity and the like. Although the film-like molded article according to the present invention contains fibrous protein as one of its constituent components, it is characterized by having no dependence in the longitudinal and lateral directions in terms of strength. This characteristic can only be expressed in the presence of chitosan, and this fact can be said to be completely surprising. Moreover, a spherical molded article can be produced by dropping and dispersing the mixed liquid in a hydrophobic organic solvent such as toluene or xylene, and then deoxidizing the mixture with an alcohol-water solution. Furthermore, the mixture can be extruded into a highly concentrated salt or alkaline aqueous solution such as ammonium hydroxide through a hole or slit nozzle to form a fibrous, film, or hollow shape. A fibrous protein dispersion aqueous solution containing soluble protein and chitosan is introduced into an electrode bath equipped with at least one cathode and at least one anode, and a DC voltage is applied between the two electrodes to cause the dispersion to accumulate on a predetermined electrode surface. The tube-shaped molded product of the present invention has an extremely thin wall and has excellent strength, so it is suitable as an edible casing material with good texture. In addition, when the composition of the present invention is used as an edible casing, the composition ratio of chitosan/protein component is 0.01/99.99-60/ from the viewpoint of texture, strength during smoking and cooking, heat denaturation temperature, and heat sealability. A range of 40 is preferred. The composition ratio of the protein component is soluble protein/fibrous protein: 5/95 to 40/60 (weight ratio). Further, when the composition of the present invention is used as an edible food additive, the composition ratio of chitosan/protein component is preferably 1/99 to 99/1, especially the one with a large amount of chitosan component. In addition, gelatin used for forming by electrodeposition method has a low ash content due to the power required and quality.
The amount used is 0.5wt% or less, preferably 0.2wt% or less. As another method for producing a molded body made of the composition of the present invention, a sheet is prepared in advance in an acidic medium containing chitosan,
Another example is a method in which a protein molded object formed into a film, tube, fiber, etc. is immersed, and then deacidified and solvent removed. In this case, the molded product obtained exhibits extremely unique properties such as improved mechanical properties, heat resistance, and antibacterial properties due to the chitosan component in the surface portion. The molded article of the present invention obtained by the above method etc. can be further crosslinked, succinylated with succinic anhydride, acylated with anhydrous organic acid, or asparagine residue in collagen using a methylating agent.
By esterifying the carboxyl residue in the side chain of the glutamine residue, in addition to the above properties, high blood coagulability and improved acid resistance are exhibited. Crosslinking can be carried out, for example, by the following method. First, the molded article of the present invention is immersed in an aqueous solution in which a crosslinking agent is dissolved in a phosphate buffer solution having a pH of 7.4. The immersion is carried out at a temperature of 10 to 50°C for 0.1 to 1 hour. After the reaction is completed, a washing step is performed to obtain a water-insoluble crosslinked molded product. The crosslinking treatment can cause not only chitosan crosslinking but also chitosan-protein component crosslinking, thereby further increasing the surface binding strength. Crosslinking occurs, for example, between the same or different functional groups of amino and hydroxyl groups of chitosan and collagen.
Examples of the crosslinking agent include formaldehyde, glutaraldehyde, dialdehyde starch, glyoxal, liquid smoke or epihalohydrin, polyhydric alcohols such as ethylene glycol, glycerin, and sorbitol, and sugars. According to the present invention, soybean protein,
It is also possible to use soluble proteins such as casein,
It can be applied for various purposes. As described above, the present invention more than makes up for the drawbacks of chitin and protein components, which exist in large quantities in nature but whose fields of application are limited due to their high crystallinity and chemical stability. It provides a novel composition with unique characteristics, and its contribution to industry can be said to be significant. The present invention will be explained below with reference to Examples. Example 1 100 kg of salted stearhide skin from North America was soaked in water for 15 hours, washed with water, and then the fat was scraped off using a lining machine. The lined hides were then lime soaked. Lime immersion treatment uses slaked lime 2%, Na 2 S 0.5%
Add 90 kg of the above skin to 450 kg of liquid containing 0.5% (C 2 H 5 ) 2 NH 2
was added and gently stirred at 25°C for 24 hours. After the treatment, the skin was depilated using a depilation roll and decomposed products produced by the lime immersion treatment were removed. The treated skin was then divided into pieces using a splitting machine, cut into 5 mm wide pieces using a meat slicer, and further cut into 5 cm long pieces using a meat grinder. 80 kg of these skin pieces were dispersed in 800 kg of water, and 3 kg of acetic acid was added thereto, and after gentle stirring for 12 hours, the skin pieces were separated from the dispersion, dehydrated using a centrifugal dehydrator, and washed with ion-exchanged water. The washing was terminated when the electrical conductivity of the washing water became 20 μ/cm or less. The ash content in the skin at this point is 0.1%
It was below. 40 kg of this skin strip was dispersed in 400 kg of an aqueous solution containing glutaraldehyde at a concentration of 0.015% and adjusted to pH 3.0 with hydrochloric acid, and was gently stirred at 20° C. for 12 hours to undergo crosslinking treatment. Next, the treated skin was separated using a wire mesh, and the fiber bundle was dissolved in 113 kg of cold water using a pulp refiner.
Make a dispersion of collagen fibers and add hydrochloric acid to it.
Adjusted to PH3.0. This dispersion has a thickness of 1 to 3μ,
A mixture of collagen fibers with a length of 1 to 10 mm and further finely divided collagen was obtained, resulting in 128 kg of liquid containing 2.5% collagen. On the other hand, 1 kg of chitosan was dissolved in 10 kg of an aqueous hydrochloric acid solution with a pH of 3, and the pH was adjusted to 3.0 to obtain a chitosan solution with a total weight of 20 kg. On the other hand, acid-treated gelatin (Miyagi Chemical F-795) 1
After dissolving Kg in 10 Kg of an aqueous hydrochloric acid solution with a pH of 3, the pH was adjusted to 3.0 to obtain a gelatin solution with a total weight of 20 Kg. Add ion-exchanged water to 15kg of the cross-linked collagen dispersion.
50 kg was added and stirred rapidly. Next, 374 g of a chitosan aqueous solution and 374 g of a gelatin aqueous solution were added to this dispersion, and the mixture was stirred and mixed for 1 hour to obtain a mixed solution with a weight ratio of collagen/gelatin/chitosan of 100/5/5. Obtained. Next, a film was formed from the mixed solution using an electrodeposition device.
The electrodeposition device has an inner diameter of 100m/mφ and a height of 700m/m.
A platinum wire mesh supported by a PVC cylinder with holes is used as an anode, and a wire with an outer diameter of 17.5 m/mφ and a length of 700 mm is inserted into the anode.
It had a stainless steel tube cathode measuring m/m in diameter, and a propylene fiber cloth was attached to a PVC diaphragm holder with an inner diameter of 56 m/m and a thickness of 1 m/m to partition the electrodes. Inside the anode tank, an aqueous hydrochloric acid solution with a pH of 3.0 was introduced from the bottom of the tank, overflowed from the top of the tank, fell into the anolyte holder, and was circulated again from the bottom of the tank by a pump. The membrane raw material is introduced from the bottom of the cathode tank,
The mixture was allowed to overflow from the top and returned to the mixed liquid storage tank. The overflow part of the anode tank should be 50mm lower than the overflow surface of the cathode tank.
The aqueous hydrochloric acid solution was prevented from flowing into the cathode tank from the diaphragm. The temperature was kept below 10℃. The chitosan-collagen-gelatin mixture was put into the electrodeposition device, circulated, and a DC voltage was applied between the electrodes.
I applied 300V. Positively charged collagen
Chitosan-gelatin moves to the cathode by electrophoresis, is neutralized by OH - generated by water electrolysis, approaches the isoelectric point PH, releases hydration water, aggregates, and forms a film on the cathode surface. was formed. The membrane pulling speed is
The speed was 10m/min. The pulled membrane was immersed in a 7% glycerin aqueous solution and then heated with air while maintaining a water column pressure of 300 m/m.
It was dried with hot air at 75° C. for 2 minutes to obtain a molded article (sample A) of the present invention. For comparison, a comparative gelatin-collagen film (comparative sample A) was obtained in the same manner using a gelatin-collagen dispersion to which chitosan was not added. Table 1 shows the results of measuring the tensile strength and tear strength of the molded product in a wet state according to JIS P-8113 and JIS P-8116. As is clear from this, the tensile strength has increased. Table 2 shows the results of immersing these molded bodies in hot water at 40° C. for 24 hours, and then examining their tensile strength using the above method. As a result, it became clear that the molded article of the present invention was also excellent in strength.

【表】【table】

【表】 実施例 2 実施例1におけるキトサン−コラーゲン−ゼラ
チン混合液の割合をコラーゲン100重量部に対し
てキトサン20部、ゼラチン5部にし、膜引き上げ
速度を25m/minとした以外は、同一条件下で成
膜し、連続的なフイルム状物である本発明の成形
体(試料B)を得た。 尚、比較の為に同様の膜引き上げ速度でコラー
ゲン−ゼラチン混合液(100重量部−5重量部)
についても行なつたが、連続的に引き上げる事は
出来なかつた。 本発明の成形体の機械的特性は、膜厚8μ、引
張り強度490Kg/cm2、引裂強度33g・cm/cm、伸
度33%であつた。 実施例 3 実施例1において、ゼラチンを酸処理ゼラチン
からアルカリ処理ゼラチン(宮城化学製F−
800)に変え、コラーゲン−ゼラチン−キトサン
混合液の割合をコラーゲン100重量部に対して、
ゼラチン20部、キトサン10部に膜引き上げ速度を
15m/minとした以外は、同一条件下で成膜し、
連続的なフイルム状物である本発明の成形体(試
料C)を得た。 尚、比較の為に同様の膜引き上げ速度でコラー
ゲン−ゼラチン混合液(100重量部−20重量部)
についても行なつたが、電極上に成膜せず、連続
的に引き上げる事は出来なかつた。 本発明の成形体の機械的特性は、膜厚9μ、引
張り強度440Kg/cm2、引裂強度30g・cm/cm、伸
度34%であつた。 実施例 4 実施例1で得た2.5%コラーゲン分散液10Kgと
5%ゼラチン水溶液1Kg、5%キトサン水溶液
1.5Kgを攪拌混合後これを真空脱泡処理した。こ
れを0.1N水酸化アンモニウム水溶液を入れた凝
固浴中に幅10cm、間隔0.3mmのスリツトより押し
出し、水洗後実施例1と同様の後処理を行い、フ
イルム状の本発明の成形体(試料D)を得た。 該フイルム状物は実施例1と同様に測定した結
果、膜厚30μ、引張り強度495Kg/cm2、引裂強度
73g・cm/cm、伸度31%であつた。 尚、キトサンを添加せずに同一条件で成形した
フイルム(比較試料B)は、膜厚30μ、引張り強
度320Kg/cm2、引裂強度65g・cm/cm、伸度28%
であつた。 以上の結果から本発明の成形体は強度的に秀れ
ていることが明らかになつた。 実施例 5 機械充填適性テスト 実施例2で得たチユーブ状の試料Bと実施例1
で得た比較試料Aをソーセージケーシングとして
使つた時の実用試験を行つた。 肉エマルジヨンはフランクフルトもしくはウイ
ンナータイプの混合物でその組成は下記の割合と
した。 豚の塩漬肉 1300g 豚の背脂肪 750g 卵 白 90g 氷 水 750g でん粉 120g グルタミン酸ソーダ 9g オールスパイス 12g 砂 糖 9g リン酸塩 6g コシヨー 6g エマルジヨンの製造は通常用いられる食肉用の
装置により次の工程で製造した。 1 豚肉の塩漬 豚肉を3cm角に切り、食塩を塗付し、良く混
合後15℃で12時間塩漬する。 2 豚脂身は肉挽機(2φの穴)で2回挽き、4
℃にて12時間冷却した。 3 塩漬豚肉も同様に肉挽機にて2回挽き、4℃
に冷却する。 4 挽肉1300gをサイレントカツターに入れ、水
400gを加え、低速で混和しながら卵白90gを
加えた。 5 次に肉挽機で挽き、4℃に冷却してある豚脂
身750gに水350gを入れ、混合しながらでん粉
120gを加えた。 6 最後に調味料としてグルタミン酸ソーダ9
g、コシヨー6g、オールスパイス12g、砂糖
9g及びリン酸塩6gを加え、高速で混和し
た。 このようにして得られた混合物を半自動スタツ
フアーワーカー760により二種類のケーシングに
詰めたときの充填テストの結果を第3表に示し
た。 第3表から明らかな様にキトサン添加物は苛酷
な充填テストにも耐えうる。尚、本発明のケーシ
ングは、ソーセージの結び目は細く、外観的にも
秀れたものであつた。
[Table] Example 2 Same conditions as in Example 1 except that the ratio of the chitosan-collagen-gelatin mixture was 20 parts chitosan and 5 parts gelatin per 100 parts by weight collagen, and the membrane pulling speed was 25 m/min. A film of the present invention (sample B) was obtained as a continuous film. For comparison, a collagen-gelatin mixture (100 parts by weight - 5 parts by weight) was prepared at the same membrane pulling speed.
I also tried this, but I couldn't raise it continuously. The mechanical properties of the molded article of the present invention were a film thickness of 8 μm, a tensile strength of 490 Kg/cm 2 , a tear strength of 33 g·cm/cm, and an elongation of 33%. Example 3 In Example 1, gelatin was changed from acid-treated gelatin to alkali-treated gelatin (Miyagi Chemical F-
800) and the ratio of collagen-gelatin-chitosan mixture to 100 parts by weight of collagen.
20 parts of gelatin and 10 parts of chitosan with membrane pulling speed
The film was formed under the same conditions except that the speed was 15 m/min.
A molded article of the present invention (sample C) which is a continuous film-like article was obtained. For comparison, a collagen-gelatin mixture (100 parts by weight - 20 parts by weight) was prepared at the same membrane pulling speed.
However, the film was not formed on the electrode and it was not possible to pull it up continuously. The mechanical properties of the molded article of the present invention were a film thickness of 9 μm, a tensile strength of 440 Kg/cm 2 , a tear strength of 30 g·cm/cm, and an elongation of 34%. Example 4 10 kg of 2.5% collagen dispersion obtained in Example 1, 1 kg of 5% gelatin aqueous solution, and 5% chitosan aqueous solution
After stirring and mixing 1.5 kg, this was subjected to vacuum defoaming treatment. This was extruded through slits with a width of 10 cm and an interval of 0.3 mm into a coagulation bath containing a 0.1N ammonium hydroxide aqueous solution, and after washing with water, the same post-treatment as in Example 1 was performed. ) was obtained. The film-like material was measured in the same manner as in Example 1 and found to have a film thickness of 30μ, a tensile strength of 495Kg/cm 2 , and a tear strength.
It had an elongation of 73 g·cm/cm and an elongation of 31%. In addition, the film (comparative sample B) molded under the same conditions without adding chitosan had a film thickness of 30μ, a tensile strength of 320Kg/cm 2 , a tear strength of 65gcm/cm, and an elongation of 28%.
It was hot. From the above results, it is clear that the molded article of the present invention has excellent strength. Example 5 Mechanical filling suitability test Tube-shaped sample B obtained in Example 2 and Example 1
A practical test was conducted using Comparative Sample A obtained in Example 1 as a sausage casing. The meat emulsion was a frankfurter or wiener type mixture whose composition was as follows. Salted pork 1300g Pork backfat 750g Egg white 90g Ice water 750g Starch 120g Sodium glutamate 9g Allspice 12g Sugar 9g Phosphate 6g Koshiyo 6g The emulsion is produced in the following process using commonly used meat equipment. Manufactured. 1 Salting pork Cut the pork into 3cm cubes, coat with salt, mix well, and salt at 15℃ for 12 hours. 2 Grind the pork fat twice in a meat grinder (2φ hole),
Cooled at ℃ for 12 hours. 3 Grind the salted pork twice in a meat grinder and bring it to 4℃.
Cool to 4 Put 1300g of ground meat into a silent cutter and add water.
Added 400g and added 90g of egg white while mixing at low speed. 5 Next, add 350g of water to 750g of pork fat that has been ground in a meat grinder and cooled to 4℃, and add starch while mixing.
Added 120g. 6 Finally, add sodium glutamate 9 as a seasoning.
g, 6 g of koshiyo, 12 g of allspice, 9 g of sugar, and 6 g of phosphate were added and mixed at high speed. Table 3 shows the results of a filling test when the mixture thus obtained was packed into two types of casings using a semi-automatic stuffer worker 760. As is clear from Table 3, the chitosan additive can withstand severe filling tests. The casing of the present invention had a thin sausage knot and was excellent in appearance.

【表】 実施例 6 実施例5で得られたソーセージ試料No.2,No.3
を燻煙処理した。 該処理は棒に8個の輪で鎖状につるし、燻煙室
に入れ、初め55〜60℃にコントロールし、30分間
乾燥後、75℃に上昇させ、木材チツプから発生さ
せた煙を導入し、更にスチームを導入して燻煙室
の湿度を一定にし、30分間処理した。 該処理が終了後スチームを導入し、燻煙室内の
温度を75〜80℃に50分間処理後、燻煙室より取り
出し、冷水を噴霧し、急冷却した。 該処理したソーセージを家庭の主婦が調理する
ことを想定し、調理時の破裂性のテストを行つ
た。 ・フライテスト 温度調節器付のフライ鍋に油(商品名 日清テ
ンプラ油)を入れて160℃に保ち、各サンプル10
個のソーセージを用意し、油温の低下を防止する
為一度に2個のソーセージを入れ、ケーシングが
30秒間に破裂する量を測定した。 ・フライパンテスト フライパンの表面の温度を均一に保つ為オイル
バスへフライパンの底部を浸し、オイル面下10mm
に位置する様に固定し、フライパンの表面が175
〜180℃になる様にオイルバスの温度をコントロ
ールした。フライパンに前述のテンプラ油を少量
入れて全面に塗布し、各サンプル10個のソーセー
ジを用意し、5個づつに分けて入れ、ゆつくり動
かし、2分間にケーシングが破裂する量を測定し
た。これを同一サンプルについて2回繰返した。 ・ボイルテスト 湯鍋(深さ50mm)を用意し、沸騰状態に保ち、
各サンプルについて10個のソーセージを用意し、
5個づつに分けて湯鍋に入れ、5分間ボイルした
時の破裂した量を測定した。これを同一サンプル
について2回繰返した。 これらの結果を第4表に示した。
[Table] Example 6 Sausage samples No. 2 and No. 3 obtained in Example 5
was smoked. In this process, the wood chips are hung in a chain with 8 rings on a stick, placed in a smoking chamber, initially controlled at 55-60℃, dried for 30 minutes, raised to 75℃, and smoke generated from wood chips is introduced. Then, steam was introduced to keep the humidity in the smoking room constant, and the process was continued for 30 minutes. After the treatment was completed, steam was introduced and the temperature in the smoking chamber was maintained at 75 to 80° C. for 50 minutes, after which the chamber was taken out and cooled down by spraying with cold water. Assuming that the processed sausage would be cooked by a housewife at home, a test for bursting property during cooking was conducted.・Fry test Pour oil (product name: Nissin Tempura Oil) into a frying pan with a temperature controller and keep it at 160℃, 10 samples for each.
Prepare 2 sausages, add 2 sausages at a time to prevent the oil temperature from dropping, and make sure the casing is
The amount that bursts in 30 seconds was measured.・Frying pan test To keep the temperature of the surface of the frying pan uniform, dip the bottom of the frying pan into an oil bath, 10mm below the oil surface.
Fix it so that the surface of the frying pan is 175
The temperature of the oil bath was controlled to be ~180℃. A small amount of the above-mentioned tempura oil was placed in a frying pan and spread over the entire surface, 10 sausages were prepared for each sample, and the sausages were placed in groups of 5 and gently moved, and the amount of casing bursting in 2 minutes was measured. This was repeated twice for the same sample.・Boil test Prepare a hot water pot (depth 50mm) and keep it boiling.
Prepare 10 sausages for each sample,
They were divided into 5 pieces and placed in a hot water pot and boiled for 5 minutes, and the amount that burst was measured. This was repeated twice for the same sample. These results are shown in Table 4.

【表】 第4表から明らかな様に実用的な理論テストに
おいても極めて優れていた。 尚、キトサン添加されたケーシングを用いたソ
ーセージはまろやかな旨味と甘さが口中にひろが
り、食感においては類のないものであつた。これ
はコラーゲン繊維のみのケーシングを用いたソー
セージには発現しない現象であつた。 30名のパネルによる官能テストによつて、天然
羊腸を用いたソーセージと比較して、なめらかな
食感で人工的な感じがほとんどないとの総合的な
評価がなされた。 実施例 7 実施例1において遠心脱水機により脱水した皮
細片50Kgを100の無水酢酸中に液温15℃で8時
間浸漬し、アセチル化反応させた。 該処理皮をイオン交換水の流水下で洗浄した。
尚、原料である牛皮の等電点がPH6.5であつた
が、該処理する事によりPH3.8に変化した。該処
理皮は実施例1と同様にコラーゲン繊維の分散液
とし、塩酸によりPH3.0に調節し、膨潤させ、2.5
%のコラーゲン分散液をつくつた。 これに実施例1と同様にキトサン、ゼラチン水
溶液を加えコラーゲン/ゼラチン/キトサンの重
量比が100/10/10になる様に調節し、実施例1
の電着装置を用いて成膜後後処理し、本発明の成
形体(試料E)を得た。 それを実施例1にもとづき機械的特性を調べた
ところ、膜厚9μ、引張り強度480Kg/cm2、引裂
強度34g・cm/cm、伸度33%であつた。 実施例 8 実施例1における架橋処理前の皮細片1Kgをと
り、0.2重量%のプロナーゼ(科研化学製)を含
むPH9のAtkins−Pantin緩衝液20に24時間浸
漬、ゆるやかに攪拌しつつ反応せしめた。 反応終了後、塊状物を遠心分離、水洗等の操作
を行ない、精製した。これを1N−塩酸水溶液で
PH3.5に調節し、総量100Kgの均一溶液を得た。
尚、この溶液の一部を取り、凍結乾燥し、可溶コ
ラーゲンの濃度を調べたところ、0.95%であつ
た。 実施例1における2.5%架橋処理コラーゲン分
散液、13.5Kgをとり、イオン交換水50Kgを加え、
急速に攪拌し、次いで、上記可溶コラーゲン溶液
3.95Kgを加え、30分間攪拌混合した。 更に実施例1におけるキトサン水溶液748g、
ゼラチン水溶液374gを加え、攪拌混合した。 この混合溶液はコラーゲン繊維:可溶コラーゲ
ン:ゼラチン:キトサンの比が90:10:10:20の
構成比となつている。 これを実施例1の電着装置を用いて成膜し、本
発明の成形体(試料F)を得た。それを実施例1
にもとづき機械特性を調べたところ膜厚9μ、引
張り強度500Kg/cm2、引裂強度35g・cm/cm、伸
度35%であつた。 実施例 9 キトサン20gを5%酢酸水溶液1に溶解して
均一溶液とし、これをA液とする。 実施例1における架橋処理した2.5%コラーゲ
ン分散液50gをとり、更に、実施例1のゼラチン
水溶液7.5gを加え、1N−塩酸水溶液でPH3.5に調
節し、総量1Kgとし、ホモジナイザーで10℃以下
に保ちながら更に細分化し、B液を得た。 該B液にA液を加え、ホモジナイザーで均一溶
液とした。 別に、一方にはデカリン2とポリオキシエチ
レンソルビート(商品名 ツイン#80)1gを入
れた攪拌機付き3のフラスコを準備した。 フラスコに該A−B混合液100c.c.を添加し、
1000rpmで攪拌分散させる。1時間分散後、それ
らの分散液を10のエタノール中に再分散させる
と不溶物が得られた。過、エタノール洗浄を繰
返し、有機溶媒を除いた後2%水酸化アンモニウ
ム水溶液1に再分散させ、中和後過水洗し、
凍結乾燥すると球状の本発明の成形体(試料G)
を得られた。尚、試料Gの大きさは直径0.1〜1.0
m/mであつた。 試料Gを1gをとり、生理食塩水に入れた後
過し、余分な食塩水を除去した。これを内径8
m/mφのガラス製のカラムに充填し、続いてヘ
パリン250単位添加したウサギ血液50mlを20ml/
minの速度で37℃15分間潅流した。循環を停止し
たのちすみやかに血液を除去し、生理食塩水で洗
浄した後その球状成形体を取り出し、該成形体表
面の血小板及び血球の付着程度を測定した結果、
血小板、血球とも明らかに付着が認められた。 実施例 10 実施例2のコラーゲン−ゼラチン−キトサン混
合溶液を200m/m×200m/mのプレートに厚さ
5m/mで流し込み1時間静置した後、0.1N−
水酸化アンモニウム水溶液に浸漬し、酸を中和後
イオン交換水で洗浄し、塩類を除去した。これを
0.5%のホルムアルデヒドを含む0.1モル第二リン
酸ナトリウム水溶液に30℃で1時間浸漬処理し、
次いで水洗した。 該処理成形体を凍結乾燥し、スポンジ状の本発
明の成形体(試料H)を得た。該成形体は生理食
塩水に対する吸収能は21g/g成形体であり、尚
かつ、血液に対する凝固性が強いので生理用品及
び緊急用止血帯として使用可能であることが判つ
た。 実施例 11 0.1モル第二リン酸ナトリウム水溶液500c.c.にグ
ルコースイソメラーゼ(長瀬産業製2000U/g)
1gを溶解し、実施例9におけるコラーゲン−ゼ
ラチン−キトサンの球状成形体(試料G)を30g
加え、5℃で2時間攪拌後、25%グルタールアル
デヒド水溶液2c.c.を更に加え、5時間処理した。
該処理後、PH7.0のリン酸緩衝液で洗浄し、該処
理成形体を2gのグルコースを含むPH7.0のリン
酸緩衝液500c.c.に加え、70℃で60分間処理した後
のグルコース、フラクトースの量を測定したとこ
ろ、それぞれ600mg,1400mgであり、固定化され
た酵素は70%であつた。 これらの結果から本発明の成形体が固定化酵素
及び菌体の担体として使用可能であることが判
る。 実施例 12 1%の酢酸水溶液1に5gのキトサンを添加
して均一溶液をつくつた。(この時の溶液粘度は
50cpsであつた。)この溶液に比較試料Aのコラ
ーゲン繊維−ゼラチンからなる成形体を20℃1分
間浸漬した後、余分な水溶液を除去し、湿潤状態
のままで0.1N−アンモニア水に浸漬した後水洗
して酢酸アンモニウム、アンモニアを除去し熱風
乾燥して、本発明の成形体(試料I)を得た。 この成形体の機械的強度は引張り強度400Kg/
cm2、引裂強度30g・cm/cm、伸度30%であつた。
尚、含浸量はコラーゲン繊維100重量部に対して
キトサン2重量部であつた。
[Table] As is clear from Table 4, it was extremely excellent in practical theory tests as well. In addition, the sausage using the casing to which chitosan was added had a mellow flavor and sweetness that spread throughout the mouth, and had an unparalleled texture. This phenomenon did not occur in sausages using a casing made only of collagen fibers. In a sensory test conducted by a panel of 30 people, the overall evaluation was that the sausage had a smoother texture and almost no artificial taste compared to sausages made from natural sheep intestines. Example 7 50 kg of skin pieces dehydrated using a centrifugal dehydrator in Example 1 were immersed in 100% acetic anhydride at a liquid temperature of 15° C. for 8 hours to cause an acetylation reaction. The treated skin was washed under running ion-exchanged water.
The isoelectric point of the raw material, cowhide, was PH6.5, but it changed to PH3.8 after this treatment. The treated skin was made into a dispersion of collagen fibers in the same manner as in Example 1, adjusted to pH 3.0 with hydrochloric acid, and swollen to 2.5
% collagen dispersion was prepared. Chitosan and gelatin aqueous solution were added to this in the same manner as in Example 1, and the weight ratio of collagen/gelatin/chitosan was adjusted to 100/10/10.
After film formation, post-treatment was performed using an electrodeposition apparatus of 1 to obtain a molded article of the present invention (sample E). When its mechanical properties were examined based on Example 1, the film thickness was 9μ, tensile strength was 480Kg/cm 2 , tear strength was 34g·cm/cm, and elongation was 33%. Example 8 1 kg of skin strips before the crosslinking treatment in Example 1 were taken and immersed in Atkins-Pantin buffer 20 of PH9 containing 0.2% by weight of pronase (manufactured by Kaken Chemical Co., Ltd.) for 24 hours, and reacted with gentle stirring. Ta. After the reaction was completed, the lumps were purified by centrifugation, washing with water, etc. This is mixed with 1N hydrochloric acid aqueous solution.
The pH was adjusted to 3.5 to obtain a homogeneous solution with a total amount of 100 kg.
A portion of this solution was taken and freeze-dried, and the concentration of soluble collagen was examined, and it was found to be 0.95%. Take 13.5 kg of the 2.5% crosslinked collagen dispersion in Example 1, add 50 kg of ion exchange water,
Stir rapidly, then add the above soluble collagen solution
3.95Kg was added and mixed with stirring for 30 minutes. Furthermore, 748 g of the chitosan aqueous solution in Example 1,
374 g of gelatin aqueous solution was added and mixed by stirring. This mixed solution has a composition ratio of collagen fibers: soluble collagen: gelatin: chitosan of 90:10:10:20. This was formed into a film using the electrodeposition apparatus of Example 1 to obtain a molded article (sample F) of the present invention. Example 1
When the mechanical properties were examined based on this, the film thickness was 9 μm, tensile strength was 500 Kg/cm 2 , tear strength was 35 g·cm/cm, and elongation was 35%. Example 9 20 g of chitosan was dissolved in 5% acetic acid aqueous solution 1 to make a homogeneous solution, and this was designated as Solution A. Take 50 g of the crosslinked 2.5% collagen dispersion in Example 1, add 7.5 g of the gelatin aqueous solution in Example 1, adjust the pH to 3.5 with 1N hydrochloric acid aqueous solution, make a total amount of 1 kg, and heat with a homogenizer below 10°C. The mixture was further subdivided while maintaining the temperature to obtain Solution B. Solution A was added to solution B, and a homogenized solution was obtained using a homogenizer. Separately, a 3-sized flask equipped with a stirrer was prepared in which 2 g of decalin and 1 g of polyoxyethylene sorbito (trade name: Twin #80) were placed. Add 100 c.c. of the A-B mixture to the flask,
Stir and disperse at 1000 rpm. After dispersing for 1 hour, the dispersions were redispersed in 10 ml of ethanol to obtain insoluble matter. After repeating filtration and ethanol washing to remove the organic solvent, it was redispersed in 2% ammonium hydroxide aqueous solution 1, neutralized, and washed with ethanol.
Molded article of the present invention that becomes spherical when freeze-dried (Sample G)
I got it. In addition, the size of sample G is 0.1 to 1.0 in diameter.
It was m/m. 1 g of sample G was taken, poured into physiological saline, filtered, and excess saline was removed. This inner diameter is 8
Fill a m/mφ glass column, then add 20ml/50ml of rabbit blood to which 250 units of heparin has been added.
Perfusion was performed for 15 minutes at 37°C at a rate of min. After stopping the circulation, the blood was immediately removed, the spherical molded body was taken out after washing with physiological saline, and the degree of adhesion of platelets and blood cells on the surface of the molded body was measured.
Adhesion of both platelets and blood cells was clearly observed. Example 10 The collagen-gelatin-chitosan mixed solution of Example 2 was poured into a 200 m/m x 200 m/m plate with a thickness of 5 m/m, left to stand for 1 hour, and then 0.1N-
The sample was immersed in an aqueous ammonium hydroxide solution to neutralize the acid, and then washed with ion-exchanged water to remove salts. this
It was immersed in a 0.1 molar dibasic sodium phosphate aqueous solution containing 0.5% formaldehyde at 30°C for 1 hour.
Then, it was washed with water. The treated molded product was freeze-dried to obtain a sponge-like molded product of the present invention (Sample H). The molded product had an absorption capacity of 21 g/g for physiological saline and had strong coagulability against blood, so it was found that it could be used as a sanitary product and an emergency tourniquet. Example 11 Glucose isomerase (2000 U/g manufactured by Nagase Sangyo) in 500 c.c. of 0.1 molar dibasic sodium phosphate aqueous solution
1 g of the collagen-gelatin-chitosan spherical molded body (sample G) in Example 9.
After stirring at 5° C. for 2 hours, 2 c.c. of a 25% aqueous glutaraldehyde solution was further added and treated for 5 hours.
After the treatment, the treated molded body was washed with a phosphate buffer of PH 7.0, and the treated molded body was added to 500 c.c. of a phosphate buffer of PH 7.0 containing 2 g of glucose, and treated at 70°C for 60 minutes. When the amounts of glucose and fructose were measured, they were 600 mg and 1400 mg, respectively, and the immobilized enzyme was 70%. These results demonstrate that the molded article of the present invention can be used as a carrier for immobilized enzymes and bacterial cells. Example 12 5 g of chitosan was added to 1% aqueous acetic acid solution to form a homogeneous solution. (The solution viscosity at this time is
It was hot at 50cps. ) The collagen fiber-gelatin molded body of Comparative Sample A was immersed in this solution at 20°C for 1 minute, the excess aqueous solution was removed, and the body was immersed in 0.1N ammonia water while still wet, then washed with water and acetic acid. Ammonium and ammonia were removed and the product was dried with hot air to obtain a molded product of the present invention (Sample I). The mechanical strength of this compact is tensile strength 400Kg/
cm 2 , tear strength of 30 g·cm/cm, and elongation of 30%.
The amount of impregnation was 2 parts by weight of chitosan per 100 parts by weight of collagen fibers.

Claims (1)

【特許請求の範囲】 1 キトサン/[繊維性蛋白質+可溶性蛋白質]
構成比0.01/99.99〜99/1(重量比)で、且
つ、繊維性蛋白質/可溶性蛋白質構成比99/1〜
60/40(重量比)である蛋白質−キトサン組成
物。 2 繊維性蛋白質がコラーゲン繊維であることを
特徴とする特許請求の範囲第1項記載の組成物。 3 可溶性蛋白質がゼラチンもしくは可溶化コラ
ーゲン又はそれらの混合物であることを特徴とす
る特許請求の範囲第1項に記載の組成物。 4 キトサンが脱N−アセチル化度50〜100%の
キトサンであることを特徴とする特許請求の範囲
第1項に記載の組成物。 5 酸性領域中でキトサンと繊維性蛋白質及び可
溶性蛋白質とを接触せしめ、次いで、該接触反応
物を脱酸処理し、脱溶媒することからなる繊維性
蛋白質−可溶性蛋白質−キトサン組成物の製造
法。 6 繊維性蛋白質と可溶性蛋白質の割合が99:1
〜60:40(重量比)である蛋白質とキトサンを重
量比で99.99:0.01〜1:99の割合で接触せしめ
ることを特徴とする特許請求の範囲第5項に記載
の製造法。 7 繊維性蛋白質がコラーゲン繊維であることを
特徴とする特許請求の範囲第5項に記載の製造
法。 8 可溶性蛋白質がゼラチンもしくは可溶化コラ
ーゲン又はそれらの混合物であることを特徴とす
る特許請求の範囲第5項に記載の製造法。 9 キトサンが脱N−アセチル化度50〜100%の
キトサンであることを特徴とする特許請求の範囲
第5項に記載の製造法。 10 前記酸性領域のPHが1〜6である特許請求
の範囲第5項に記載の製造法。 11 キトサン含有酸性媒体と繊維性蛋白質含有
媒体及び可溶性蛋白質含有媒体とを混合分散する
ことにより前記接触を行うことを特徴とする特許
請求の範囲第5項に記載の製造法。 12 キトサン含有酸性媒体中に蛋白質成形体を
浸漬することにより前記接触を行うことを特徴と
する特許請求の範囲第5項に記載の製造法。
[Claims] 1. Chitosan/[fibrous protein + soluble protein]
Composition ratio of 0.01/99.99 to 99/1 (weight ratio), and fibrous protein/soluble protein composition ratio of 99/1 to
A protein-chitosan composition that is 60/40 (weight ratio). 2. The composition according to claim 1, wherein the fibrous protein is collagen fiber. 3. The composition according to claim 1, wherein the soluble protein is gelatin, solubilized collagen, or a mixture thereof. 4. The composition according to claim 1, wherein the chitosan has a degree of de-N-acetylation of 50 to 100%. 5. A method for producing a fibrous protein-soluble protein-chitosan composition, which comprises bringing chitosan into contact with a fibrous protein and a soluble protein in an acidic region, and then deacidifying and removing the solvent from the contact reaction product. 6 Ratio of fibrous protein and soluble protein is 99:1
6. The production method according to claim 5, wherein the protein and chitosan are brought into contact at a weight ratio of 99.99:0.01 to 1:99 (weight ratio). 7. The manufacturing method according to claim 5, wherein the fibrous protein is collagen fiber. 8. The production method according to claim 5, wherein the soluble protein is gelatin, solubilized collagen, or a mixture thereof. 9. The production method according to claim 5, wherein the chitosan has a degree of de-N-acetylation of 50 to 100%. 10. The manufacturing method according to claim 5, wherein the pH of the acidic region is 1 to 6. 11. The production method according to claim 5, wherein the contact is performed by mixing and dispersing the chitosan-containing acidic medium, the fibrous protein-containing medium, and the soluble protein-containing medium. 12. The production method according to claim 5, wherein the contact is performed by immersing the protein molded body in an acidic medium containing chitosan.
JP3671180A 1980-03-21 1980-03-21 Protein-chitosan composition Granted JPS56131639A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3671180A JPS56131639A (en) 1980-03-21 1980-03-21 Protein-chitosan composition
US06/242,419 US4378017A (en) 1980-03-21 1981-03-11 Composite material of de-N-acetylated chitin and fibrous collagen
CA000373335A CA1147507A (en) 1980-03-21 1981-03-18 Composite material of de-n-acetylated chitin and fibrous collagen
AU68521/81A AU535551B2 (en) 1980-03-21 1981-03-18 Composite material of de-n-acetylated chitin and fibrous collagen
EP81301212A EP0038628B1 (en) 1980-03-21 1981-03-20 Composite material of de-n-acetylated chitin and fibrous collagen, its production and use
DE8181301212T DE3171293D1 (en) 1980-03-21 1981-03-20 Composite material of de-n-acetylated chitin and fibrous collagen, its production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3671180A JPS56131639A (en) 1980-03-21 1980-03-21 Protein-chitosan composition

Publications (2)

Publication Number Publication Date
JPS56131639A JPS56131639A (en) 1981-10-15
JPS6247213B2 true JPS6247213B2 (en) 1987-10-07

Family

ID=12477342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3671180A Granted JPS56131639A (en) 1980-03-21 1980-03-21 Protein-chitosan composition

Country Status (1)

Country Link
JP (1) JPS56131639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001859A (en) * 2010-06-18 2012-01-05 Tokyo Institute Of Technology Collagen-chitosan conjugated fiber-like porous body and method for producing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707166B2 (en) * 1991-06-07 1998-01-28 雪印乳業 株式会社 Sponge gel and its manufacturing method
US5858350A (en) 1993-12-01 1999-01-12 Marine Polymer Technologies Methods and compositions for poly-β-1→4-N-acetylglucosamine cell therapy system
WO2004029096A2 (en) * 2002-09-26 2004-04-08 University Of Maryland Biotechnology Institute Polysaccharide-based polymers and methods of making the same
EP1732399B1 (en) * 2004-03-18 2011-01-12 The State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University Lysozyme-chitosan films
NZ599605A (en) 2007-02-19 2013-11-29 Marinepolymer Tech Inc Hemostatic compositions and therapeutic regimens
BR112012025844A2 (en) 2010-04-15 2017-07-18 Marine Polymer Tech Inc use of snag nanofibers
ES2712098T3 (en) 2011-04-15 2019-05-09 Marine Polymer Tech Inc Treatment of HSV infections with poly-N-acetylglucosamine nanofibers
CN109221816A (en) * 2018-10-12 2019-01-18 铜陵向日葵生态农业有限公司 A kind of mixed feed reducing the filefish death rate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001859A (en) * 2010-06-18 2012-01-05 Tokyo Institute Of Technology Collagen-chitosan conjugated fiber-like porous body and method for producing the same

Also Published As

Publication number Publication date
JPS56131639A (en) 1981-10-15

Similar Documents

Publication Publication Date Title
EP0038628B1 (en) Composite material of de-n-acetylated chitin and fibrous collagen, its production and use
US7022358B2 (en) Collagen membrane made from porcine skin
US9504262B2 (en) Collagen concentrate, use thereof and also process for production thereof
AU636544B1 (en) Water insoluble biocompatible hyaluronic acid polyion complex and method of making the same
WO1988002991A1 (en) Edible matter and method of producing the same
JPS6247214B2 (en)
CA2195694C (en) Method of preparing a food product encased in a glucomannan film
JPS6247213B2 (en)
US4388331A (en) Collagen sausage casing
EP0070940A1 (en) Collagen article and its production
JPS6146565B2 (en)
JP3007363B2 (en) Food material containing microbial cellulose complex
JP2561949B2 (en) Method for producing fish wing-like food
JP3197236B2 (en) Collagen blend
US3930035A (en) Edible collagen sausage casing and process for preparing same
US3694234A (en) Collagen food coating composition and method of preparation
JPS6227773B2 (en)
RU2059383C1 (en) Method for production of multifunctional collagen preparation
US4251567A (en) Process for producing a fibrous milk protein product
US3433864A (en) Methods of extruding collagen
WO2006051274A1 (en) Food product and method for its production
JPH05508304A (en) Process for preparing deboned, washed and refined fish meat, commonly referred to as surimi, and products obtained
JP3948623B2 (en) Gelatin-coated alginate fiber and method for producing the same
JP2654183B2 (en) Collagen composition, collagen composition molded article, and collagen composition coated product
JP3408870B2 (en) Collagen containing egg protein and method for producing the same