JPS6247133B2 - - Google Patents

Info

Publication number
JPS6247133B2
JPS6247133B2 JP13894882A JP13894882A JPS6247133B2 JP S6247133 B2 JPS6247133 B2 JP S6247133B2 JP 13894882 A JP13894882 A JP 13894882A JP 13894882 A JP13894882 A JP 13894882A JP S6247133 B2 JPS6247133 B2 JP S6247133B2
Authority
JP
Japan
Prior art keywords
discharge
wire
workpiece
machining
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13894882A
Other languages
Japanese (ja)
Other versions
JPS5930621A (en
Inventor
Tetsuro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13894882A priority Critical patent/JPS5930621A/en
Priority to DE19833327470 priority patent/DE3327470A1/en
Priority to US06/519,642 priority patent/US4559432A/en
Priority to CH4203/83A priority patent/CH661229A5/en
Publication of JPS5930621A publication Critical patent/JPS5930621A/en
Publication of JPS6247133B2 publication Critical patent/JPS6247133B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は、ワイヤ電極を用いて被加工物の切削
を電気的に行う装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for electrically cutting a workpiece using a wire electrode.

電気的エネルギによつて被加工物を加工するこ
とは、従来広く行われており、周知の加工方法で
あるが、最近の技術として注目をあびている加工
法にワイヤ状の電極を用いて、あたかも「糸の
こ」のように被加工物を電気的エネルギで加工す
るいわゆるワイヤカツト放電加工法がある。
Machining workpieces using electrical energy has been widely used and is a well-known processing method, but a processing method that has been attracting attention as a recent technology uses wire-shaped electrodes to create a There is a so-called wire-cut electric discharge machining method in which a workpiece is machined using electrical energy like a ``string saw''.

第1図は、上記ワイヤカツト放電加工法を実施
する装置の動作原理を示す構成図である。1は被
加工物で、ワイヤ電極2との間に絶縁性の液3を
介して対向している。上記絶縁性の液3を以下加
工液と記述する。加工液は、タンク4からポンプ
5で、被加工物1とワイヤ電極2の間隙にノズル
6により噴射される。被加工物1とワイヤ電極2
との間の相対運動は、被加工物1を載せているテ
ーブル11の移動により行われる。テーブル11
は、X軸駆動モータ12とY軸駆動モータ13に
より駆動される。以上の構成により、被加工物1
と電極2の相対運動は前述のX、Y軸平面内に於
て2次元平面の運動となる。ワイヤ電極2は、ワ
イヤ供給リール7により供給され、下部ワイヤガ
イド8A被加工物1中を通過して上部ガイド8B
に達し、電気エネルギ給電部9を介して、ワイヤ
巻取り兼テンシヨンローラ10により巻取られ
る。電気エネルギを供給する加工電源15は、例
えば、本記載例のようなものであつて、直流電源
16、スイツチング素子17、電流制限抵抗19
及び前記スイツチング素子17を制御する制御回
路20によつて構成されている。14は、X、Y
軸の駆動モータ12,13の駆動及び制御を行う
制御装置であつて数値制御装置や倣い装置あるい
は、電算機を用いた制御装置が用いられている。
FIG. 1 is a block diagram showing the operating principle of an apparatus for carrying out the wire cut electrical discharge machining method. A workpiece 1 faces a wire electrode 2 with an insulating liquid 3 interposed therebetween. The above-mentioned insulating liquid 3 will be hereinafter referred to as a processing liquid. The machining liquid is injected from a tank 4 by a pump 5 into the gap between the workpiece 1 and the wire electrode 2 through a nozzle 6. Workpiece 1 and wire electrode 2
The relative movement between the two is performed by moving the table 11 on which the workpiece 1 is placed. table 11
is driven by an X-axis drive motor 12 and a Y-axis drive motor 13. With the above configuration, the workpiece 1
The relative movement between the electrode 2 and the electrode 2 becomes a two-dimensional plane movement within the aforementioned X and Y axis planes. The wire electrode 2 is supplied by a wire supply reel 7, passes through the workpiece 1 in the lower wire guide 8A, and passes through the workpiece 1 in the upper guide 8B.
The wire is wound up by the wire winding/tension roller 10 via the electric energy supply section 9. The processing power supply 15 that supplies electrical energy is, for example, as in the present example, and includes a DC power supply 16, a switching element 17, and a current limiting resistor 19.
and a control circuit 20 that controls the switching element 17. 14 is X, Y
The control device drives and controls the drive motors 12 and 13 of the shafts, and uses a numerical control device, a copying device, or a control device using a computer.

次に従来装置の動作について説明する。 Next, the operation of the conventional device will be explained.

正常な加工状態では、加工電源15からは高周
波パルス電圧が印加され、1つのパルスによる放
電爆発により被加工物1の一部を溶融飛散させ
る。この場合極間は高温のためガス化、及びイオ
ン化しているため次のパルス電圧を印加するまで
には一定の休止時間を必要とし、この休止時間が
短か過ぎると極間が充分に絶縁回復していない
為、再び同一場所に放電が集中しワイヤ電極2の
溶断を発生させる。
In a normal machining state, a high-frequency pulse voltage is applied from the machining power source 15, and a part of the workpiece 1 is melted and scattered by a discharge explosion caused by one pulse. In this case, the gap between the electrodes is gasified and ionized due to the high temperature, so a certain pause time is required before applying the next pulse voltage, and if this pause time is too short, the insulation between the electrodes will not recover sufficiently. Since this is not done, the discharge concentrates at the same location again, causing the wire electrode 2 to melt.

従つて通常の加工電源では被加工物の種類、板
厚等に依り加工電源15の休止時間等の電気条件
をワイヤ切れを生じさせない程度の充分余裕を持
つた条件で加工するのが普通である。従つて加工
速度は理論的限界値より相当低くならざるを得
ず、更にワイヤ電極2が均一でなく太さが変化す
る場合、もしくはワイヤの一部に突起やキズ等が
あり放電が集中した場合にはワイヤ電極2の溶断
は避けられない。
Therefore, with a normal machining power source, depending on the type of workpiece, plate thickness, etc., the electrical conditions such as the down time of the machining power source 15 are usually set to have enough margin to prevent wire breakage. . Therefore, the machining speed has to be considerably lower than the theoretical limit value, and furthermore, if the wire electrode 2 is not uniform and the thickness changes, or if there is a protrusion or scratch on a part of the wire and the discharge is concentrated. In this case, melting of the wire electrode 2 is unavoidable.

以上のように従来のワイヤカツト放電加工装置
では、ワイヤ電極2の断線を引き起さないように
するため、加工電源15の出力エネルギーを少く
する等、仮に放電の集中がワイヤ電極2の一点に
集中しても断線しないようにしていたため加工速
度が著しく低いという欠点があつた。
As described above, in the conventional wire-cut electric discharge machining apparatus, in order to prevent the wire electrode 2 from breaking, the output energy of the machining power source 15 is reduced, etc., so that the electric discharge is temporarily concentrated at one point on the wire electrode 2. The drawback was that the machining speed was extremely low because the wires were not broken even when the wires were cut.

本発明は、上記の従来装置の欠点に鑑みてなさ
れたものであつて、放電点の集中の有無の判断
を、電気エネルギー給電部と、被加工物内におけ
る放電点の間のインダクタンス成分と、このイン
ダクタンスによつて定まる電流波形から解析判断
し集中放電の発生を検出して、ワイヤ断線のない
極めて信頼性の高いワイヤカツト放電加工装置を
提供することを目的としている。
The present invention has been made in view of the above-mentioned drawbacks of the conventional apparatus, and uses an inductance component between an electric energy feeding section and a discharge point in a workpiece to determine whether or not a discharge point is concentrated. The purpose of this invention is to analyze and judge the current waveform determined by this inductance, detect the occurrence of concentrated discharge, and provide an extremely reliable wire-cut electrical discharge machining device that does not cause wire breakage.

以下、本発明の原理図を第2図を用いて説明す
る。第2図においてCTは極間電流Iの検出のた
めのカレントトランスである。上記極間電流Iの
値は、放電点と、電流給電子9との間の距離で定
まるインダクタンスによつてその波形が異り、給
電子9と放電点との間の距離がおのおのL1,L2
とし、各インダクタンスがl1,l2とすれば極間電
流Iは以下のように表される。
Hereinafter, the principle diagram of the present invention will be explained using FIG. 2. In FIG. 2, CT is a current transformer for detecting the current I between electrodes. The value of the interelectrode current I has a different waveform depending on the inductance determined by the distance between the discharge point and the current feeder 9, and the distance between the feeder 9 and the discharge point is L 1 , L 2
Assuming that each inductance is l 1 and l 2 , the inter-electrode current I is expressed as follows.

I1=E/R(l−exp -t) I2=E/R(l−exp -t) 但し、Rは電流制限抵抗19の抵抗値、Eは直
流電源16の電圧である。よつてスイツチング素
子17がオンとなり電流Iが流れオフとなるまで
の時間をTとすればこのオフとなるまでのTの時
の電流値を測定することにより、l1とl2が逆に求
まり、更にL1,L2が判別できる。よつてもし放
電点が集中した時には、連続的に放電電流Iの時
間Tにおける電流値は、ほぼ等しくなる。30
は、上記原理に基ずいて放電集中の有無を検出す
る検出装置であつて、本装置30の説明を第3図
のタイムチヤートと第4図のブロツク図を用いて
行なう。
I 1 = E/R (l-e xp -t ) I 2 = E/R (l-e xp -t ) However, R is the resistance value of the current limiting resistor 19, and E is the voltage of the DC power supply 16. be. Therefore, if the time from which the switching element 17 is turned on and the current I flows until it is turned off is T, then by measuring the current value at T until the switching element 17 is turned off, l 1 and l 2 can be found inversely. , furthermore, L 1 and L 2 can be determined. Therefore, if the discharge points are concentrated, the current value of the discharge current I at time T becomes approximately equal continuously. 30
is a detection device for detecting the presence or absence of discharge concentration based on the above principle, and the device 30 will be explained using the time chart in FIG. 3 and the block diagram in FIG. 4.

第3図におけるIは極間電流波形を電流検出用
のCTを用いて観測したものである。またVCE
は、スイツチング素子17のオン、オフ状態を示
している。△Tというのは、スイツチング素子1
7が、オフになる時に制御回路20より出力され
る信号である。
I in FIG. 3 is a current waveform between electrodes observed using a CT for current detection. Further, V CE indicates the on/off state of the switching element 17. △T is switching element 1
7 is a signal output from the control circuit 20 when turned off.

第4図においては、第3図における電流信号S
Iを、△Tのタイミングにおいて、サンプリング
ホールド回路31によつてホールドし、このホー
ルドされた値をアナログ、デイジタル変換器32
によつてデイジタル値として一担ラツチ回路33
で一時記憶する。本ラツチ回路33は、前述の信
号△Tにより次段のラツチ回路34へ、この信号
をシフトするように構成されており、このため1
タイミング前の△Tにおける電流値SIと、次の
タイミングのSIは、ラツチ34の入、出力の値
から、読みとることができる。ここで、各信号を
I(t)、SI(t−1)とし、これを減算回路
もしくはデイジタルコンパレータ35によつて差
分検出を行い差分のある時、すなわち放電の集中
がない場合カウンタ36をリセツトし、差分のな
い時、すなわち放電集中がある時カウンタ36に
加算パルスを加えることによりカウンタ36の内
容が、所定の設定値nを越した時、連続的集中放
電がn個連続して発生したことを検知できるよう
になつている。実施例では、カウンタの計数パル
スに△Tそのものを用い、放電集中の場合リセツ
トがかからなくなるから、n個まで連続して放電
が集中すればカウンタ36の設定値nを越した
時、放電集中危険信号Sが出力される。またカウ
ンタ36にデイジタルアナログ変換器37を取り
つけて、このアナログ信号を、メータ38あるい
は、発光ダイオード等で表示することにより、放
電の集中状態を目視で確認できるようになつてい
る。
In FIG. 4, the current signal S in FIG.
I is held by the sampling hold circuit 31 at the timing △T, and this held value is transferred to the analog/digital converter 32.
One-way latch circuit 33 as a digital value by
Temporarily memorize it. This latch circuit 33 is configured to shift this signal to the next stage latch circuit 34 in response to the aforementioned signal ΔT.
The current value S I at ΔT before the timing and S I at the next timing can be read from the input and output values of the latch 34. Here, each signal is defined as S I (t) and S I (t-1), and a difference is detected by a subtraction circuit or a digital comparator 35. When there is a difference, that is, when there is no concentration of discharge, a counter 36 When there is no difference, that is, when there is concentrated discharge, when the content of the counter 36 exceeds a predetermined set value n by adding an addition pulse to the counter 36, n consecutive concentrated discharges occur. It is now possible to detect what has happened. In the embodiment, △T itself is used as the counting pulse of the counter, and in the case of concentrated discharge, the reset is not applied. Therefore, if discharges are concentrated up to n consecutively, when the set value n of the counter 36 is exceeded, the concentrated discharge is detected. Danger signal S is output. Further, by attaching a digital-to-analog converter 37 to the counter 36 and displaying this analog signal on a meter 38 or a light emitting diode, it is possible to visually check the state of concentration of discharge.

以上のようにして、一点に放電の集中があつた
ことをカウンタ36の値によつて判別制御し、連
続的に何個のパルスが集中放電したかを知ること
ができる。
As described above, it is possible to determine and control the concentration of discharge at one point using the value of the counter 36, and to know how many pulses have continuously generated concentrated discharge.

第5図は、放電点の変化によるインダクタンス
の変化を示す実験データで、ワイヤ電極径を0.2
φとし、給電子9から放電点までの距離をL1
(mm)、電源15と給電子9間の路離をL0(mm)
としたものである。なお、上記L0の区間は、同
軸ケーブル等のきわめてインダクタンスの低いも
のが使用でき、かつ、0.1μH〜0.15μH程度の
固定値として補正できる。
Figure 5 shows experimental data showing changes in inductance due to changes in discharge point.
Let φ be the distance from the feeder 9 to the discharge point L 1
(mm), the distance between the power supply 15 and the feeder 9 is L 0 (mm)
That is. It should be noted that for the above-mentioned section L 0 , an extremely low inductance cable such as a coaxial cable can be used, and it can be corrected as a fixed value of about 0.1 μH to 0.15 μH.

又、第6図は、インダクタンスの変化と電流の
変化を示す実験データで、このデータは、電流制
限抵抗19の抵抗値Rを0.5Ω、直流電源16の
電圧Eを200V、スイツチング素子17がオンと
なり電流Iが流れオフとなるまでの時間Tを0.4
μsecとした場合のものである。
Further, FIG. 6 shows experimental data showing changes in inductance and changes in current, and this data was obtained when the resistance value R of the current limiting resistor 19 was 0.5Ω, the voltage E of the DC power supply 16 was 200V, and the switching element 17 was turned on. Then, the time T until the current I flows and turns off is 0.4
This is when it is set to μsec.

なお、ワイヤ電極2の抵抗値は、実用されてい
るワイヤ電極2の径が0.2φ〜0.3φのもので、長
さ200mmで0.04Ω程度であるため、加工電源内の
抵抗0.5Ω〜50Ωに対し無視し得る。
Note that the resistance value of the wire electrode 2 is approximately 0.04Ω when the diameter of the wire electrode 2 used in practical use is 0.2φ to 0.3φ and the length is 200mm. However, it can be ignored.

なお上記実施例では極間における放電集中の連
続量をパラメータとしての回路構成としたが、単
位時間における異常放電(集中放電)の数を判別
のパラメータとすることは実現の上で何等困難で
ない。
In the above embodiment, the circuit configuration uses the continuous amount of discharge concentration between the electrodes as a parameter, but it is not difficult to realize that the number of abnormal discharges (concentrated discharges) in a unit time is used as a discrimination parameter.

以上延べたごとく、本発明によれば、ワイヤカ
ツト放電加工における放電の集中を適格に検知で
きるため、加工の操作上、加工の失敗や、ワイヤ
断線の前駆状態を把握できるという効果が得られ
る。
As described above, according to the present invention, the concentration of electric discharge in wire cut electric discharge machining can be properly detected, so that it is possible to grasp the precursor state of machining failure and wire breakage in terms of machining operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のワイヤカツト放電加工装置の
原理図、第2図は本発明の検出原理説明図、第3
図は電流波形と検出波形の関係を示す図、第4図
は放電集中検出のための検出ブロツク図、第5図
は放電点の変化によるインダクタンスの変化を示
す実験データ、第6図はインダクタンスの変化と
電流の変化を示す実験データである。 図中1は被加工物、2はワイヤ電極、9は給電
子、CTは電流検出器、30は放電集中検出回路
図である。なお図中同一符号は同一又は相当部分
を示す。
Fig. 1 is a principle diagram of a conventional wire-cut electric discharge machining device, Fig. 2 is an explanatory diagram of the detection principle of the present invention, and Fig. 3 is a diagram illustrating the detection principle of the present invention.
The figure shows the relationship between the current waveform and the detection waveform, Figure 4 is a detection block diagram for detecting discharge concentration, Figure 5 is experimental data showing changes in inductance due to changes in the discharge point, and Figure 6 is the diagram of the inductance. This is experimental data showing changes in current and current. In the figure, 1 is a workpiece, 2 is a wire electrode, 9 is a feeder, CT is a current detector, and 30 is a discharge concentration detection circuit diagram. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 ワイヤ電極と被加工物の加工間隙にパルス状
の電圧を印加し、上記パルスによつて放電加工を
行うワイヤカツト放電加工装置において、上記ワ
イヤ電極と被加工物との放電位置を上記ワイヤ電
極の放電点におけるインダクタンスの関数である
電流波形より検出すると共に、上記放電位置が一
点に集中しているか否かを判別し、それにもとず
く信号を出力する装置を備えたことを特徴とする
ワイヤカツト放電加工装置。
1. In a wire cut electric discharge machining device that applies a pulsed voltage to the machining gap between the wire electrode and the workpiece and performs electrical discharge machining using the pulse, the electric discharge position between the wire electrode and the workpiece is set to the position of the wire electrode and the workpiece. A wire cut discharge characterized by comprising a device that detects from a current waveform that is a function of inductance at a discharge point, determines whether the discharge position is concentrated at one point, and outputs a signal based on the determination. Processing equipment.
JP13894882A 1982-08-02 1982-08-10 Wire-cut electric discharge machining apparatus Granted JPS5930621A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13894882A JPS5930621A (en) 1982-08-10 1982-08-10 Wire-cut electric discharge machining apparatus
DE19833327470 DE3327470A1 (en) 1982-08-02 1983-07-29 ELECTRICAL DISCHARGE CUTTING DEVICE WITH WIRE ELECTRODE
US06/519,642 US4559432A (en) 1982-08-02 1983-08-02 Wire EDM for detecting discharge concentrations using inductance
CH4203/83A CH661229A5 (en) 1982-08-02 1983-08-02 SPARK EDM MACHINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13894882A JPS5930621A (en) 1982-08-10 1982-08-10 Wire-cut electric discharge machining apparatus

Publications (2)

Publication Number Publication Date
JPS5930621A JPS5930621A (en) 1984-02-18
JPS6247133B2 true JPS6247133B2 (en) 1987-10-06

Family

ID=15233893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13894882A Granted JPS5930621A (en) 1982-08-02 1982-08-10 Wire-cut electric discharge machining apparatus

Country Status (1)

Country Link
JP (1) JPS5930621A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145787U (en) * 1985-03-01 1986-09-08
JPH072289B2 (en) * 1985-06-26 1995-01-18 三菱電機株式会社 Wire electric discharge machine
JPS6215017A (en) * 1985-07-15 1987-01-23 Hitachi Seiko Ltd Wire-cut electric discharge machine

Also Published As

Publication number Publication date
JPS5930621A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
Kinoshita et al. Control of wire-EDM preventing electrode from breaking
US4798929A (en) Wire electric discharge machining apparatus
US4559432A (en) Wire EDM for detecting discharge concentrations using inductance
JPS6247133B2 (en)
JPS6344490B2 (en)
JPS61125734A (en) Wire cut electric discharge processing device
JPS61111841A (en) Wire-cut electric discharge machinine
JPS61111836A (en) Wire-cut electric discharge machinine
JPS61111818A (en) Spark erosion apparatus
JPS61111838A (en) Wire-cut electric discharge machinine
JPS61111842A (en) Wire-cut electric discharge machinine
JPS61109622A (en) Wire cut electric spark machine
JPS62287919A (en) Electric discharge machine
JPS61111843A (en) Electric discharge machinine
JPS61111811A (en) Spark erosion apparatus
JPS61111834A (en) Wire-cut electric discharge machinine
JPS61109618A (en) Wire out electric spark machine
JPS61111815A (en) Spark erosion apparatus
JPS61111839A (en) Wire-cut electric discharge machinine
JPS61111840A (en) Wire-cut electric discharge machinine
JPS62287917A (en) Electric discharge machinine
JPS61125736A (en) Wire cut electric discharge processing device
JPS61125730A (en) Electric discharge machine
JPS61111831A (en) Wire-cut electric discharge machinine
JPS61111812A (en) Spark erosion apparatus