JPS6246990A - Method and apparatus for producing single crystal by light-high frequency induction heating - Google Patents

Method and apparatus for producing single crystal by light-high frequency induction heating

Info

Publication number
JPS6246990A
JPS6246990A JP18799985A JP18799985A JPS6246990A JP S6246990 A JPS6246990 A JP S6246990A JP 18799985 A JP18799985 A JP 18799985A JP 18799985 A JP18799985 A JP 18799985A JP S6246990 A JPS6246990 A JP S6246990A
Authority
JP
Japan
Prior art keywords
heated
raw material
heating
single crystal
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18799985A
Other languages
Japanese (ja)
Other versions
JPH0566350B2 (en
Inventor
Hiroshi Nishimura
博 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Nichiden Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiden Machinery Ltd filed Critical Nichiden Machinery Ltd
Priority to JP18799985A priority Critical patent/JPS6246990A/en
Publication of JPS6246990A publication Critical patent/JPS6246990A/en
Publication of JPH0566350B2 publication Critical patent/JPH0566350B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To grow a single crystal having a large diameter and high quality by further subjecting the part to be heated between a raw material bar and crystal bar melted by optical heating with IR lamps to high-frequency induction heating so that even a high melting insulating material such as oxide is melted by heating. CONSTITUTION:The IR rays irradiated from the IR lamps 15, 16 disposed at the 1st and 2nd focuses F1, F2 of rotating ellipsoidal mirrors 13, 14 are reflected by the mirrors 13, 14 and are condensed to the part 17 to be heated disposed at the focus F0, by which said part is optically heated. The bottom end of the raw material bar 19 and the top end of the crystal bar 21 are brought into smooth contact with each other while both ends are heated and melted by the radiation energy of such optical heating, by which a melt zone, i.e., the part 17 to be heated is formed between the raw material bar 19 and the crystal bar 21. The part 17 is further subjected to the high-frequency induction heating by a high-frequency coil 22 to form the melt zone of a large capacity. The bar 19 and the bar 21 are lowered in a vertical direction while the bars are kept rotated in this state, by which the large-diameter single crystal is grown.

Description

【発明の詳細な説明】 庄】」31旧1庄が 本発明は光−高周波誘導加熱単結晶製造方法及び装置に
関し、詳しくは光集中加熱及び高周波誘導加熱を補完応
用して、酸化物磁性材料や酸化物誘電材料等の高融点の
電気絶縁性物質を単結晶育成させる゛方法及び装置に関
するものである。
[Detailed Description of the Invention] The present invention relates to a method and apparatus for manufacturing a single crystal by optical/high-frequency induction heating, and more specifically, the present invention relates to a method and apparatus for producing a single crystal by optical/high-frequency induction heating, and more specifically, by complementary application of concentrated optical heating and high-frequency induction heating, the production of oxide magnetic materials. The present invention relates to a method and apparatus for growing single crystals of electrically insulating materials with high melting points, such as dielectric materials and oxide dielectric materials.

む正− 例えば、高融点酸化物等の電気絶縁性物質の単結晶製造
には、加熱源としてハロゲンランプ等の赤外線ランプを
利用した、光集中加熱によるフローティングゾーン方式
の単結晶製造装置が使用されている。
For example, in the production of single crystals of electrically insulating materials such as high-melting point oxides, floating zone type single crystal production equipment using concentrated light heating, which uses infrared lamps such as halogen lamps as the heating source, is used. ing.

上記赤外線ランプによる光巣中加熱単結晶製造装置は、
回f、i:楕円面鏡の一方の焦点に熱源としてハロゲン
ランプ等の樺外線ランプを配置し、他方の焦点に原料棒
や結晶棒の被加熱物を配置して、上記赤外線ランプから
照射された赤舊線を回転楕円面鏡で反射させて被加熱物
に集光させ集中加熱する装置で、この装置には、前記回
転楕円面鏡が1つの小楕円型のもの、或いは夫々半体に
略等しい2つの回転楕円面鏡を、各々一方の焦点が一致
するように対向結合配置させた双楕円型のものが一般的
である。
The above-mentioned infrared beam heating single crystal production device uses
Times f and i: A birch external ray lamp such as a halogen lamp is placed as a heat source at one focal point of the ellipsoidal mirror, and an object to be heated such as a raw material rod or crystal rod is placed at the other focal point, and the object is irradiated by the infrared lamp. This is a device for concentrating heating by reflecting the red ellipsoid on a spheroidal mirror and concentrating it on the object to be heated.In this device, the spheroidal mirror is one small ellipse, or each half is A bielliptic type mirror is generally used, in which two substantially equal spheroidal mirrors are arranged facing each other so that the focal points of each mirror coincide with each other.

例えば、双楕円型の光集中加熱単結晶製造装置の具体例
を、第5図及び第6図を参照しながら説明する。同図に
おいて、(1)(2)は対称形の2つの回転楕円面鏡で
、各々の一方の焦点Fo、Foが一致するように、対向
結合配置させている。(3)(4)は上記各回転楕円面
鏡(1)(2)の他方の各第1、第2の焦点F1、F2
に固定配置された2つの熱源、例えばハロゲンランプ等
の赤外線ランプである。(5)は各回転楕円面鏡(1)
(2)の一致した焦点Foに配置された被加熱部で、上
方から鉛直下方に延びる原料棒(6)と、下方から鉛直
上方に延びる結晶棒(7)とを突き合わせた部分、即ち
単結晶成長が行われる溶融帯域(フローティングゾーン
)である、(8)は上記原料棒(6)と結晶棒(7)と
を包囲する透明な石英管で、該石英管(8)内は、結晶
成長に対して好適な雰囲気ガスを充満させている。
For example, a specific example of a bielliptic optically concentrated heating single crystal manufacturing apparatus will be described with reference to FIGS. 5 and 6. In the figure, (1) and (2) are two symmetrical spheroidal mirrors, which are arranged to face each other so that the focal points Fo and Fo of each mirror coincide. (3) and (4) are the respective first and second focal points F1 and F2 of the other spheroidal mirrors (1) and (2).
two heat sources, for example infrared lamps, such as halogen lamps, fixedly arranged on the lamp. (5) is each spheroidal mirror (1)
In the heated part placed at the coincident focal point Fo in (2), the part where the raw material rod (6) extending vertically downward from above and the crystal rod (7) extending vertically upward from below meet, that is, the single crystal (8) is a transparent quartz tube that surrounds the raw material rod (6) and the crystal rod (7), which is a molten zone (floating zone) where crystal growth takes place; It is filled with a suitable atmosphere gas.

上記装置を用いた光集中加熱による眼結晶育成では、各
回転楕円面鏡(1)(2)の各第1、第2の焦点F、 
、F、、に配置された赤外線ランプ(3)(4)から照
射される赤外線を、回転楕円面鏡(1)(2)にて反射
させ、焦点F。
In eye crystal growth by concentrated light heating using the above device, each of the first and second focal points F of each spheroidal mirror (1) and (2),
The infrared rays emitted from the infrared lamps (3) and (4) placed at ,F, , are reflected by the spheroidal mirrors (1) and (2), and the infrared rays are reflected at the focal point F.

に配置された被加熱部(5)に葉先させ集中加熱する。The tip of the leaf is heated centrally in the heated part (5) located at the top of the leaf.

この赤外線照射による輻射エネルギーによって該被加熱
部(5)を溶融させ、原料棒(6)及び結晶棒(7)を
回転させ十分な攪拌や均熱輻射を行わせながら、鉛直方
向に下降させることにより単結晶育成が行われる。
The heated part (5) is melted by the radiant energy of this infrared irradiation, and the raw material rod (6) and crystal rod (7) are rotated to perform sufficient stirring and soaking radiation while lowering in the vertical direction. Single crystal growth is performed by

ところで、結晶材料を熔融させるには、高周波誘導加熱
原理を利用し、高周波コイルにて加熱する方法がある。
By the way, in order to melt a crystal material, there is a method of heating with a high frequency coil using the principle of high frequency induction heating.

この方法は、材料が絶縁物、即ち電気抵抗が高い場合に
は、金属、黒鉛、硅化モリブデン等で、溶融させるため
の坩堝を形成しておき、その坩堝を高周波誘導加熱して
、中の材料を溶融したり、同様な金属、黒鉛、珪化モリ
ブデン環部のサセプタを準備して、材料を入れた坩堝を
囲み、サセプタを高周波誘導加熱する方法である。そこ
で、その概念を第9図を参照しながら説明すると、好適
な雰囲気ガス内にて、上方から鉛直下方に延びる結晶棒
(10)と、下方に位置し高周波加熱コイル(11’)
に囲填されている坩堝(26)内で溶融している原料(
9″)とを接触させた状態から、結晶棒(10)を、回
転させながら鉛直方向に引上げ上昇させることにより、
単結晶育成を行うもので、いわゆるチョクラルスキー法
と呼ばれている。
In this method, when the material is an insulator, that is, has a high electrical resistance, a crucible is formed using metal, graphite, molybdenum silicide, etc., and the crucible is heated by high-frequency induction to melt the material inside. In this method, a susceptor made of a similar metal, graphite, or molybdenum silicide ring is prepared, the crucible containing the material is surrounded, and the susceptor is heated by high-frequency induction. Therefore, the concept will be explained with reference to FIG. 9. In a suitable atmospheric gas, a crystal rod (10) extending vertically downward from above and a high frequency heating coil (11' located below)
The raw material (
9''), by pulling up the crystal rod (10) in the vertical direction while rotating it,
This method grows single crystals and is called the Czochralski method.

また、結晶材料は、導電体つまり電気抵抗が小さいもの
が好適である。もし電気抵抗が大である場合には、予備
加熱したり、金属を添加して組成を改善し電気抵抗を小
さくして、直接高周波加熱している。
Further, the crystal material is preferably a conductor, that is, one with low electrical resistance. If the electrical resistance is high, the composition is improved by preheating or adding metal to reduce the electrical resistance, and then directly high-frequency heating is performed.

一方上記チックラルスキー法以外の方法としては、坩堝
を用いないフローティング・ゾーン法があり、この場合
にも高周波誘導加熱が利用されている。すなわち、シリ
コン単結晶育成例を、第7図或いは第8図を参照しなが
ら説明する。まず好適な雰囲気ガス内で上方から鉛直下
方に延びる原料棒(9)と下方から鉛直上方に延びる結
晶棒(10)を対向配置し、上記原料棒(9)と結晶棒
(10)間の周囲に高周波コイルを配置する。ところで
シリコンの原料棒(9)は高温状態になるまで電気絶縁
物であるから、直接高周波誘導加熱することができない
。そこで、予め上記原料棒(9)の下方近傍に、黒鉛等
の導電性物質からなる補助加熱a (12)を配置し、
上記高周波コイル(11)で導電性の補助加熱R(12
)を高周波誘導加熱しておき、加熱された補助加熱源(
12)の輻射エネルギーによって原料棒(9)の下端部
を間接的に加熱又は熔融させる。高温状態になればシリ
コン−は電気抵抗が低下し、電気導電性を有するため、
上記原料棒(9)は高周波誘導加熱することが可能とな
る。そこで上述のように原料棒(9)の下端が熔融する
と、第8図に示すように補助加熱源(12)を除去して
、原料棒(9)と結晶棒(10)とを突き合わせ、高周
波コイル(11)による高周波誘導加熱で溶融帯域(フ
ローティングゾーン)が形成され、原料棒(9)と結晶
棒(10)とを回転させながら鉛直方向に下降させるこ
とにより単結晶育成が行われる。
On the other hand, as a method other than the above-mentioned Chickralski method, there is a floating zone method that does not use a crucible, and high-frequency induction heating is also used in this case. That is, an example of silicon single crystal growth will be explained with reference to FIG. 7 or FIG. 8. First, a raw material rod (9) extending vertically downward from above and a crystal rod (10) extending vertically upward from below are arranged facing each other in a suitable atmospheric gas, and the surrounding area between the raw material rod (9) and crystal rod (10) is A high frequency coil is placed in the By the way, since the silicon raw material rod (9) is an electrical insulator until it reaches a high temperature, it cannot be directly heated by high frequency induction. Therefore, an auxiliary heating a (12) made of a conductive material such as graphite is placed in advance near the bottom of the raw material rod (9),
Conductive auxiliary heating R (12) using the high frequency coil (11)
) is heated by high-frequency induction, and the heated auxiliary heating source (
The lower end of the raw material rod (9) is indirectly heated or melted by the radiant energy of 12). When exposed to high temperatures, silicon's electrical resistance decreases and it becomes electrically conductive.
The raw material rod (9) can be heated by high frequency induction. Therefore, when the lower end of the raw material rod (9) melts as described above, the auxiliary heating source (12) is removed, the raw material rod (9) and the crystal rod (10) are butted together, and the high frequency A melting zone (floating zone) is formed by high-frequency induction heating by a coil (11), and single crystal growth is performed by lowering the raw material rod (9) and crystal rod (10) in the vertical direction while rotating them.

日 (′シよ゛と る是題立 ところで前記赤外線ランプ(3)(4)を利用した光加
熱による単結晶育成では、現時点で、2000℃前後の
融点の電気絶縁性物質で口径が0.5インチ程度の小口
径単結晶育成が限度であり、近年益々要望されている大
口径単結晶育成が困難であった。一方高周波コイルを利
用した高周波誘導加熱によるチョクラルスキ一方式0s
rr晶育成では、シリコンの場合には6〜8インチの大
口径単結晶が育成されており、また、電気絶縁物である
酸化物の場合には、3〜4インチの大口径単結晶が育成
されている。しかし、この場合は、坩堝(26)加熱に
よるため、坩堝(26)からの不純物が混入したり、坩
堝材の溶融温度以上の酸化物等の高融点物質の原料溶融
ができない欠点があった。
At present, single crystal growth by optical heating using the above-mentioned infrared lamps (3) and (4) uses electrically insulating materials with a melting point of around 2000°C and a diameter of 0.5°C. The growth of small-diameter single crystals of about 5 inches is the limit, and it has been difficult to grow large-diameter single crystals, which have been increasingly requested in recent years.On the other hand, the Czochralski one-way 0s method using high-frequency induction heating using a high-frequency coil has been difficult.
In rr crystal growth, a large diameter single crystal of 6 to 8 inches is grown in the case of silicon, and a large diameter single crystal of 3 to 4 inches is grown in the case of oxide, which is an electrical insulator. has been done. However, in this case, since the crucible (26) is heated, there are drawbacks that impurities from the crucible (26) are mixed in, and raw materials of high melting point substances such as oxides cannot be melted at a temperature higher than the melting temperature of the crucible material.

また高周波コイルを利用した高周波誘導加熱によるフロ
ーティング・ゾーン方式の単結晶育成では、シリコンの
場合には、3〜4インチの大口径単結晶が育成されてい
る。しかし、電気抵抗が大きい酸化物等の高融点物質は
電気絶縁物である為、直接高周波誘導加熱を行うのは困
難で、しかも高融点となると補助加熱源(12)は材質
及び蒸発等の高温時の物性等で制約を受けていた。
Furthermore, in the case of silicon, large-diameter single crystals of 3 to 4 inches are grown by floating zone type single crystal growth using high frequency induction heating using a high frequency coil. However, since high-melting-point substances such as oxides with high electrical resistance are electrical insulators, it is difficult to perform high-frequency induction heating directly, and when the melting point is high, the auxiliary heating source (12) is It was limited by the physical properties of time.

占 ”るための 本発明は上記問題点に鑑みて提案されたもので、この問
題点を解決するための第1の発明における技術的手段は
、原料棒及び結晶棒間の被加熱部を赤外線ランプにより
光加熱して溶融させ、上記光加熱で溶融した被加熱部を
高周波コイルにより高周波誘導加熱して単結晶成長させ
るようにした単結晶製造方法である。
The present invention has been proposed in view of the above problem, and the technical means in the first invention to solve this problem is to heat the heated part between the raw material rod and the crystal rod by infrared rays. This is a single crystal manufacturing method in which a lamp is used to optically heat the material to melt it, and a heated portion that has been melted by the optical heating is subjected to high frequency induction heating using a high frequency coil to grow a single crystal.

また第2の発明における技術的手段は、回転楕円面鏡と
、該回転楕円面鏡の一方の焦点に配置された赤外線ラン
プと、上記回転楕円面鏡の他方の焦点に配置された原料
棒及び結晶棒間の被加熱部を囲繞するように、回転楕円
面鏡の他方の焦点近傍に配置された高周波コイルとを含
む単結晶製造装置である。
Further, the technical means in the second invention includes a spheroidal mirror, an infrared lamp disposed at one focal point of the spheroidal mirror, a raw material rod and a raw material rod disposed at the other focal point of the spheroidal mirror. This single crystal manufacturing apparatus includes a high-frequency coil placed near the other focal point of the spheroidal mirror so as to surround the heated portion between the crystal rods.

作里 この発明によれば、電気絶縁性が大きな高融点酸化物等
であっても、原料棒及び結晶棒間の被加熱部を、まず光
加熱して溶融させながら接触させ、溶融帯域を形成させ
ることができる。
According to this invention, even if the material is a high melting point oxide with great electrical insulation, the heated portion between the raw material rod and the crystal rod is first brought into contact with each other while being heated with light to melt and form a molten zone. can be done.

そしてさらに、その溶融帯域を、そのままの状態で高周
波誘導加熱させることにより、溶融帯域容積を大きくす
ることができる。しかもこの発明では、光加熱、高周波
誘導加熱を、坩堝や補助加熱源なしで行え、溶融帯域の
汚染の心配もなく、大口径で高品質の単結晶が実現でき
る。
Furthermore, the volume of the melting zone can be increased by subjecting the melting zone to high-frequency induction heating in that state. Moreover, in this invention, optical heating and high-frequency induction heating can be performed without a crucible or an auxiliary heating source, and a large-diameter, high-quality single crystal can be produced without worrying about contamination of the melting zone.

皇墨皿 本発明を双楕円体光反射集中型の単結晶製造装置に通用
した一実施例を、第1図乃至第4図を参照しながら説明
する。第1図は本発明の一実施装置例を示す可断面図、
第2図は第1図のA−A線に沿う断面図である。同図に
おいて、(13)  (14)は対称形の2つの回転楕
円面鏡で、各々の一方の焦点Fo、Foが一致するよう
に対向結合させ′て加熱炉を構成する。尚、上記回転楕
円面鏡(13)  (14)の内面、即ち反射面は、赤
外線を高反射率で反射させるために金メツキ処理加工が
施されている。(15)  (16)は各回転楕円面鏡
(13)  (14)の他方の第1、第2の焦点F、、
F2に固定配置された、例えばハロゲンランプやキセノ
ンランプ等の赤外線ランプである。(17)は各回転楕
円面It (13)(14)の一致した焦点FOに配置
された被加熱部で、上方から鉛直下方に延びる上主軸(
18)の下端に固定した原料棒(19)と、下方から鉛
直上方に延びる下主軸(20)の上端に固定した結晶棒
(21)とを突き合わせた部分である。
An embodiment in which the present invention is applied to a biellipsoidal light reflection concentration type single crystal manufacturing apparatus will be described with reference to FIGS. 1 to 4. FIG. 1 is a cross-sectional view showing an example of an apparatus for implementing the present invention;
FIG. 2 is a sectional view taken along line A--A in FIG. 1. In the figure, (13) and (14) are two symmetrical spheroidal mirrors, which are coupled to face each other so that the focal points Fo, Fo of each mirror coincide, to form a heating furnace. The inner surfaces of the spheroidal mirrors (13) and (14), that is, the reflective surfaces, are gold-plated to reflect infrared rays with a high reflectance. (15) (16) are the other first and second focal points F of each spheroidal mirror (13) (14),
This is an infrared lamp, such as a halogen lamp or a xenon lamp, which is fixedly arranged at F2. (17) is a heated part placed at the coincident focal point FO of each spheroidal surface It (13) and (14), and the upper principal axis (
This is the part where the raw material rod (19) fixed to the lower end of 18) and the crystal rod (21) fixed to the upper end of the lower main shaft (20) extending vertically upward from below are butted together.

(22)は上記被加熱部(17)を囲繞するように回転
楕円面&1lll (13)  (14)の焦点FO近
傍に配置した高周波コイルである。(23)は原料棒(
19)と結晶棒(21)とが配置された空間(ml)と
、赤外線ランプ(15)  (i6)が配置された空間
(m2)とを区画して試料室(24)を形成する透明な
石英板で、この石英板(23)による区画で、上記試料
室(24)を結晶に対して好適な雰囲気ガスを充満させ
、一方、赤外線ランプ(15)  (16)を安全に点
灯させるために該赤外線ランプ(15)  (16)を
空冷する。
(22) is a high frequency coil placed near the focal point FO of the spheroidal surface &1llll (13) (14) so as to surround the heated portion (17). (23) is the raw material rod (
19) and the crystal rod (21), and a space (m2) where the infrared lamps (15) (i6) are arranged, forming a sample chamber (24). A quartz plate is used to fill the sample chamber (24) with an atmospheric gas suitable for crystals, and to safely light the infrared lamps (15) and (16) using the quartz plate (23). The infrared lamps (15) (16) are air cooled.

本発明による竿結晶育成では、回転楕円面鏡(13) 
 (14)の第1、第2の焦点F1.F2に配置された
赤外線ランプ(15)  (1G)から照射される赤外
線を、上記回転楕円面鏡(13)  (14)にて反射
させ、焦点FOに配置された被加熱部(17)に葉先さ
せて光加熱する。この赤外線照射による輻射エネルギー
により、原料棒(19)の下端及び結晶棒(21)の上
端を加熱溶融させながら、日清に接触させることにより
、原料棒(19)と結晶棒(21)間で溶融帯域(フロ
ーティング・ゾーン)、即ち被加熱部(17)を形成す
る。この被加熱部(17)が一旦f4vIAiすれば、
電気絶縁性物質でも、殊に酸化物系セラミックス等の原
料棒は比抵抗が低下し導電性を有することが知られてい
る。よって高周波誘導加熱が可能となる。そこで更に高
周波コイル(22)により上記被加熱部(17)を高周
波誘導加熱し、被加熱部(17)に吸収された高周波エ
ネルギーによって、より大容量の熔融帯域を形成し、原
料棒(19)と結晶棒(21)とを回転させながら鉛直
方向に下降させることにより大口径単結晶育成が行われ
る。
In the rod crystal growth according to the present invention, the spheroidal mirror (13)
(14) The first and second focal points F1. The infrared rays emitted from the infrared lamp (15) (1G) placed at F2 are reflected by the spheroidal mirror (13) (14), and the leaves are directed to the heated part (17) placed at the focal point FO. Lightly heat it first. The lower end of the raw material rod (19) and the upper end of the crystal rod (21) are heated and melted by the radiant energy from this infrared irradiation, and are brought into contact with Nissin, thereby forming a bond between the raw material rod (19) and the crystal rod (21). A melting zone (floating zone), that is, a heated portion (17) is formed. Once this heated part (17) undergoes f4vIAi,
It is known that even electrically insulating materials, especially raw material rods such as oxide ceramics, have low specific resistance and are electrically conductive. Therefore, high frequency induction heating becomes possible. Therefore, the heated part (17) is further subjected to high-frequency induction heating by a high-frequency coil (22), and the high-frequency energy absorbed by the heated part (17) forms a larger-volume melting zone, and the raw material rod (19) Large-diameter single crystal growth is performed by lowering the crystal rod (21) in the vertical direction while rotating the crystal rod (21).

上記被加熱部(17)に形成された溶融−!418:城
は、第3図に示すように、赤外線ランプ(15)(16
)により光加熱されると共に、高周波コイル(22)に
より高周波誘導加熱されており、詳しくは上記溶融帯域
の中央部(A1)では、主に高周波コイル(22)によ
り高周波誘導加熱されている所で、また溶融帯域の上部
(A2)は上記中央部(A1)からの熱伝導によって融
点直下の温度になっているため、溶融するまでのエネル
ギー差分を赤外線ランプ(15)  (16)による光
加熱で補充されて溶融している部分である。更に溶融帯
域の下部(A3)では、高周波誘導加熱によるエネルギ
ーに加えて、光加熱によるエネルギーが与えられること
になり、この光加熱によるエネルギー増加分だけ溶融帯
域が拡がり、大口径の単結晶育成が実現可能となる。こ
の大口径単結晶育成では、被加熱部<17)の熔融帯域
の周囲に高周波コイル(22)を配置しているため、該
高周波コイル(22)から発生するローレンツ力により
、上記熔融帯域が第3図破線矢印で示すようにその中心
部へと押え付けられるので、自車で垂れることなく図示
形状に保持されて大口径単結晶育成が容易に行われる。
Melt formed in the heated portion (17) -! 418: The castle is equipped with infrared lamps (15) (16) as shown in Figure 3.
), and is also subjected to high-frequency induction heating by a high-frequency coil (22). Specifically, in the central part (A1) of the melting zone, the high-frequency induction heating is mainly performed by the high-frequency coil (22). In addition, since the upper part of the melting zone (A2) is at a temperature just below the melting point due to heat conduction from the central part (A1), the energy difference until melting is heated by the infrared lamps (15) and (16). This is the part that is being replenished and melting. Furthermore, in the lower part of the melting zone (A3), in addition to the energy from high-frequency induction heating, energy from optical heating is given, and the melting zone expands by the increase in energy due to this optical heating, allowing for the growth of large-diameter single crystals. It becomes realizable. In this large-diameter single crystal growth, the high-frequency coil (22) is arranged around the molten zone of the heated part <17), so the Lorentz force generated from the high-frequency coil (22) causes the molten zone to become Since it is pressed to the center as shown by the broken line arrow in Figure 3, it is held in the shape shown without sagging by the own vehicle, making it easy to grow a large-diameter single crystal.

上記皇結晶育成開始時には、光加熱により先端が溶融し
た原料棒(19)と、結晶棒(21)とを突き合わセる
ごとにより溶融帯域を形成するが、この時、結晶棒(2
i)の温度か比較的低い場合、原料棒(19)の溶融し
た先端部と結晶棒(21)を結合するとその溶融した先
端部が凝固する)Rもあるので、これを防止する1段と
して、第4図に示すように結晶棒(21)に尖端剣状の
原料棒と同質のメルト材(25)を載置するようにして
もよい。即ち、上記メルト材(25)を設けておけば、
単結晶育成開始時、光加熱により原料棒(19)の先端
を溶融させると共に、結晶棒(21)上のメルト材(2
5)も熔融されて上記原料棒(19)と結晶棒(21)
の突き合わせによる溶融帯域の形成が容易となる。
At the start of the above-mentioned crystal growth, a molten zone is formed by butting the raw material rod (19) whose tip has been melted by light heating with the crystal rod (21), but at this time, the crystal rod (2
If the temperature in i) is relatively low, when the molten tip of the raw material rod (19) and the crystal rod (21) are combined, the molten tip will solidify), so as a step to prevent this, As shown in FIG. 4, a melt material (25) of the same quality as the sword-shaped raw material rod may be placed on the crystal rod (21). That is, if the melt material (25) is provided,
At the start of single crystal growth, the tip of the raw material rod (19) is melted by optical heating, and the melt material (2) on the crystal rod (21) is melted.
5) is also melted to form the raw material rod (19) and crystal rod (21).
It becomes easy to form a molten zone by butting the two.

また、前記高周波コイル(22)は回転楕円面tA(1
3)  (14)の焦点Fo近傍に配置されるが、実際
上、上記焦点Foに集光される赤外線照射により順次原
料棒を熔融させるため、高周波コイル(22)を上記焦
点Foの若干下方に配置することが望ましいと考えられ
る。また−上記高周波コイル(22)は、少量上下動可
能に配置するようにしてもよい。
Moreover, the high frequency coil (22) has a spheroidal surface tA(1
3) The high-frequency coil (22) is placed near the focal point Fo in (14), but in practice, the high-frequency coil (22) is placed slightly below the focal point Fo in order to sequentially melt the raw material rods by infrared irradiation focused on the focal point Fo. It is considered desirable to place Furthermore, the high-frequency coil (22) may be arranged so that it can move up and down by a small amount.

尚、上記実施例では、2つの回転楕円面鏡(13)  
(14)を組付けた双楕円型の加熱炉について説明した
が、本発明はこれに限定されることなく、単楕円型のも
のや3つ以上の回転楕円面鏡を組付けたものについても
通用可能であるのは勿論である。
In the above embodiment, two spheroidal mirrors (13)
(14) has been described, but the present invention is not limited to this, and the present invention can also be applied to a single ellipse or a furnace with three or more spheroidal mirrors assembled. Of course, it is applicable.

光ユ■M果 本発明を実施すれば、第1の光熱源による光加熱にて、
従来高周波誘導加熱では不可能であった、酸化物等の高
融点絶縁物質でも、加熱溶融可能となり、しかも坩堝な
しての溶融が行える。さらに、第2の熱源としての高周
波誘導加熱を行うので、光加熱だけでは得られない大口
径単結晶の育成が実現できる。このように光加熱と高周
波誘導加熱が持つ長所と短所とを相補完することができ
、従来実現困難であった高品質の単結晶製造が可能とな
る。
If the present invention is carried out, light heating by the first light heat source,
Even high-melting-point insulating materials such as oxides, which was previously impossible with high-frequency induction heating, can now be heated and melted, and can be melted without a crucible. Furthermore, since high-frequency induction heating is performed as a second heat source, it is possible to grow large-diameter single crystals that cannot be obtained by optical heating alone. In this way, the advantages and disadvantages of optical heating and high-frequency induction heating can be complemented, making it possible to manufacture high-quality single crystals, which was previously difficult to achieve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施装置例を示す縦断面図、第2図
は第1図のA−A線に沿う断面図、第3図は第1図装置
における被加熱部の溶融帯域を示す要部拡大正面図、第
4図はメルト材を使用した単結晶育成を説明するための
要部拡大正面図である。第5図は赤外線ランプによる光
加熱を利用した従来の単結晶製造装置を示す縦断面図、
第6図は第5図のB−B線に沿う断面図、第7図及び第
8図は高周波コイルによる高周波誘導加熱を利用したフ
ローティング・ゾーン方式の単結晶育成を説明するため
の要部拡大正面図、第9図は高周波コイルによる高周波
誘導加熱を利用したチョクラルスキ一方式の単結晶育成
を説明するための要部拡大正面図である。 (13)  (14)−・−回転楕円画境、(15) 
 (16)−赤外線ランプ、(17)−・被加熱部、(
19) −摩料棒、(21) −結晶棒、(22)−・
−高周波コイル、Fo、F、、F2.−像点。
FIG. 1 is a longitudinal sectional view showing an example of an apparatus for implementing the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. FIG. 4 is an enlarged front view of the main part for explaining single crystal growth using a melt material. FIG. 5 is a vertical cross-sectional view showing a conventional single crystal manufacturing apparatus using optical heating with an infrared lamp;
Figure 6 is a cross-sectional view taken along the line B-B in Figure 5, and Figures 7 and 8 are enlarged views of the main parts to explain floating zone method single crystal growth using high-frequency induction heating using a high-frequency coil. The front view and FIG. 9 are enlarged front views of main parts for explaining Czochralski one-type single crystal growth using high-frequency induction heating using a high-frequency coil. (13) (14) - - Rotary ellipse boundary, (15)
(16) - Infrared lamp, (17) - Heated part, (
19) -Abrasion rod, (21) -Crystal rod, (22)-・
-High frequency coil, Fo, F,, F2. - Image point.

Claims (2)

【特許請求の範囲】[Claims] (1)原料棒及び結晶棒間の被加熱部を赤外線ランプに
より光加熱して溶融させ、上記光加熱で溶融した被加熱
部を高周波コイルにより高周波誘導加熱して単結晶成長
させるようにしたことを特徴とする光−高周波誘導加熱
単結晶製造方法。
(1) The heated portion between the raw material rod and the crystal rod is optically heated and melted using an infrared lamp, and the heated portion that has been melted by the optical heating is subjected to high-frequency induction heating using a high-frequency coil to grow a single crystal. A method for producing a single crystal by optical/high frequency induction heating, characterized by:
(2)回転楕円面鏡と、該回転楕円面鏡の一方の焦点に
配置された赤外線ランプと、上記回転楕円面鏡の他方の
焦点に配置された原料棒及び結晶棒間の被加熱部を囲繞
するように、回転楕円面鏡の他方の焦点近傍に配置され
た高周波コイルとを含むことを特徴とする光−高周波誘
導加熱単結晶製造装置。
(2) A heated portion between a spheroidal mirror, an infrared lamp placed at one focal point of the spheroidal mirror, and a raw material rod and a crystal rod placed at the other focal point of the spheroidal mirror. 1. An optical-high-frequency induction heating single crystal production apparatus comprising: a high-frequency coil placed near the other focal point of the spheroidal mirror so as to surround the ellipsoidal mirror.
JP18799985A 1985-08-26 1985-08-26 Method and apparatus for producing single crystal by light-high frequency induction heating Granted JPS6246990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18799985A JPS6246990A (en) 1985-08-26 1985-08-26 Method and apparatus for producing single crystal by light-high frequency induction heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18799985A JPS6246990A (en) 1985-08-26 1985-08-26 Method and apparatus for producing single crystal by light-high frequency induction heating

Publications (2)

Publication Number Publication Date
JPS6246990A true JPS6246990A (en) 1987-02-28
JPH0566350B2 JPH0566350B2 (en) 1993-09-21

Family

ID=16215865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18799985A Granted JPS6246990A (en) 1985-08-26 1985-08-26 Method and apparatus for producing single crystal by light-high frequency induction heating

Country Status (1)

Country Link
JP (1) JPS6246990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926432B1 (en) * 2015-10-01 2016-05-25 伸 阿久津 Single crystal manufacturing apparatus and single crystal manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926432B1 (en) * 2015-10-01 2016-05-25 伸 阿久津 Single crystal manufacturing apparatus and single crystal manufacturing method

Also Published As

Publication number Publication date
JPH0566350B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
US4666681A (en) Apparatus for producing a monocrystal
JPS5997537A (en) Elongated body continuous manufacture and apparatus
TW200812095A (en) Method for the packaging of optical or optoelectronic components, and optical or optoelectronic package element producible according to the method
JP4738966B2 (en) Floating zone melting device
JP2937108B2 (en) Single crystal pulling method and single crystal pulling apparatus
JPS6246990A (en) Method and apparatus for producing single crystal by light-high frequency induction heating
JP2550344B2 (en) Infrared heating single crystal manufacturing equipment
JPS5835938B2 (en) Jiyungarasu no Koushiyu Hachiyousei
KR100297575B1 (en) Single crystal production method and drawing device
JPH11255593A (en) Auxiliary apparatus for melting raw material
JP3463712B2 (en) Silicon single crystal growth method
JPS63201087A (en) Device for producing single crystal by light and high-frequency induction heating
JPH11228293A (en) Growth of single crystal and growing apparatus
JP2558659B2 (en) Infrared heating single crystal manufacturing equipment
JPH04190088A (en) Plasma lamp image heating device
JP2982642B2 (en) Infrared heating single crystal manufacturing equipment
JP2009051679A (en) Device and method for growing single crystal
JPH07315979A (en) Infrared-heated single crystal producing device
JPH0388790A (en) Infrared-heated single crystal producing device
JPH02112227A (en) Manufacture of semiconductor crystal layer
US1541584A (en) Process of making vitreous silica
JPH0811716B2 (en) Infrared heating single crystal manufacturing method
JPS6032126Y2 (en) Single crystal manufacturing equipment
JPS61146786A (en) Device for manufacturing semiconductor single crystal
JPH0429638B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees