JPS6246969A - Method of dewaxing ceramic formed body - Google Patents

Method of dewaxing ceramic formed body

Info

Publication number
JPS6246969A
JPS6246969A JP60184548A JP18454885A JPS6246969A JP S6246969 A JPS6246969 A JP S6246969A JP 60184548 A JP60184548 A JP 60184548A JP 18454885 A JP18454885 A JP 18454885A JP S6246969 A JPS6246969 A JP S6246969A
Authority
JP
Japan
Prior art keywords
degreasing
molded body
pressure
region
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60184548A
Other languages
Japanese (ja)
Inventor
重孝 和田
英之 正木
隆彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP60184548A priority Critical patent/JPS6246969A/en
Publication of JPS6246969A publication Critical patent/JPS6246969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機結合剤を含むセラミックス成形体の脱脂
方法に関するものである。本発明の脱脂方法は、比較的
形状の複雑なセラミックス焼結体を多量に必要とする自
動車産業などで利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for degreasing a ceramic molded body containing an organic binder. The degreasing method of the present invention can be used in the automobile industry, etc., which requires large quantities of ceramic sintered bodies with relatively complex shapes.

[従来の技術] セラミックス材料は、近年、自動車部品、耐熱材料、電
子材料など、その用途が急速に広まりつつあり、それに
伴い製品の形状も複雑化の傾向にある。そのため、セラ
ミックス材料を、複雑な形状の成形品に精度よく、かつ
能率的に成形する方法として、適当な有機物とセラミッ
クス材料との混合物を成形する射出成形法、あるいは押
出成形法などが採用されている。しかし上記−により成
形した成形体は成形後に前記有機物の除去、即ち脱脂を
行なわなければならない。
[Background Art] In recent years, the use of ceramic materials in automotive parts, heat-resistant materials, electronic materials, etc. is rapidly expanding, and the shapes of the products are also becoming more complex. Therefore, injection molding or extrusion molding methods, which mold a mixture of an appropriate organic substance and ceramic material, have been adopted as methods for accurately and efficiently molding ceramic materials into molded products with complex shapes. There is. However, the molded article molded according to the method described above must be removed after molding, that is, degreased.

従来係るセラミックス成形体の脱脂は、空気中、又は不
活性ガス雰囲気中、あるいは真空中などで、成形体を加
熱することによって行なっていた。
Conventionally, degreasing of ceramic molded bodies has been carried out by heating the molded bodies in air, in an inert gas atmosphere, or in vacuum.

[発明が解決しようとする問題点] −F記した従来の脱脂方法において、加熱によりまず有
機結合剤の粘度が低下づる。そして成形体の温度が一定
値以上になると、有機結合剤は分解を開始し、分解ガス
が発生ずる。従ってガスの圧力により成形体の体積が膨
張し、結合剤の粘度低下による形状保持性の低下とあい
まって、セラミックス成形体に亀裂が入ったり、脹れた
りプるなどの問題点が発生していた。
[Problems to be Solved by the Invention] In the conventional degreasing method described in -F, the viscosity of the organic binder first decreases due to heating. When the temperature of the molded body exceeds a certain value, the organic binder starts decomposing and decomposition gas is generated. Therefore, the volume of the molded body expands due to the pressure of the gas, which, combined with a decrease in shape retention due to the decrease in the viscosity of the binder, causes problems such as cracking, swelling, and swelling of the ceramic molded body. Ta.

上記問題点は、分解ガスの圧力を低くすることで解決で
きる。例えば成形体の昇温速度を1〜2”C/ Hrと
極めてゆっくり行なうことで解決できる。しかしながら
、この方法では脱脂に非常に長い時間がかかり、能率的
でないという不具合がある。例えば、直径4Qmm、高
さ30mmの円柱状のセラミックス成形体を、亀裂、脹
れなどの欠陥を発生させることなく脱脂するには、セラ
ミックス粉末の種類、粒径、バインダの種類にもよるが
、150時間以上、時には300〜400時間という長
時間を必要とする。
The above problems can be solved by lowering the pressure of the cracked gas. For example, this can be solved by raising the temperature of the molded body extremely slowly at 1 to 2"C/Hr. However, this method has the disadvantage that degreasing takes a very long time and is not efficient. In order to degrease a cylindrical ceramic molded body with a height of 30 mm without generating defects such as cracks and swelling, it takes more than 150 hours, depending on the type of ceramic powder, particle size, and type of binder. Sometimes it takes a long time of 300 to 400 hours.

また成形体を加圧雰囲気中で加熱する方法も行なわれて
いる。分解ガスの圧力と体積の関係は、気体の状態方程
式(PV−n RT)に近似され、例えば圧力が1気圧
から5気圧に上界すると、温度が同一であればガスの体
積は115となる。従って加圧雰囲気中で加熱すること
により分解ガスの体積を小さくすることができ、前記欠
陥が防止される。しかしながらこの方法では、第1図に
示すような結合剤の分解温度は圧力が高くなるにつれて
上昇するという現象のために、脱脂が完了するまで加圧
を続けると、かなりの高温が必要となり、装置が高価に
なったり、冷却に時間がかがったりするという不具合が
ある。さらに、結合剤は乾留状態となる場合もあり、脱
脂後の成形体内部に炭素となって残留し、焼成時に春色
したり、成形材料と反応して不要な化合物を生成する場
合があった。そのために、所定の電気的、磁気的特性が
得られなかったり、特に3i 3N4の高温での強度の
耐久性を劣化させるという不具合もあった。
A method of heating the molded body in a pressurized atmosphere is also used. The relationship between the pressure and volume of cracked gas is approximated by the gas equation of state (PV-n RT). For example, when the pressure increases from 1 atm to 5 atm, the volume of the gas becomes 115 if the temperature is the same. . Therefore, by heating in a pressurized atmosphere, the volume of the decomposed gas can be reduced, and the defects described above can be prevented. However, with this method, due to the phenomenon that the decomposition temperature of the binder increases as the pressure increases, as shown in Figure 1, if pressure is continued until degreasing is completed, a considerably high temperature is required, and the equipment However, there are problems in that it is expensive and takes a long time to cool down. Furthermore, the binder may be in a carbonized state, remaining in the form of carbon inside the molded body after degreasing, causing it to turn brown during firing or reacting with the molding material to produce unnecessary compounds. For this reason, there were problems in that predetermined electrical and magnetic properties could not be obtained, and that the strength and durability of 3i 3N4 at high temperatures in particular deteriorated.

本発明は上記問題点に鑑みてなされたものであり、上記
したような成形体の欠陥の発生を防止し、脱脂時間の比
較的短い脱脂方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a degreasing method that prevents the occurrence of defects in molded articles as described above and requires a relatively short degreasing time.

[問題点を解決するための手段] 本発明の脱脂方法は、セラミックス粉末より成る成形材
料と、有機物より成る結合剤との混合物を成形して得た
セラミックス成形体を加熱し、該成形体より該結合剤を
除去するセラミックス成形体の脱脂方法において、 該結合剤の実質的な分解開始から、脱脂Mが少なくとも
該結合剤仝吊の20〜30体積%の範囲にある臨界体積
%となるまでの第1領域では該成形体を)Jl圧雰囲気
下で加熱し、脱脂量が該臨界体積%を越えた第2領域で
は、該成形体を該第1領域の圧力より低い圧力雰囲気下
で加熱す“ることを特徴とづる。
[Means for Solving the Problems] The degreasing method of the present invention involves heating a ceramic molded body obtained by molding a mixture of a molding material made of ceramic powder and a binder made of an organic substance, and degreasing the molded body from the molded body. In the method for degreasing a ceramic molded body in which the binder is removed, from the start of substantial decomposition of the binder until the degreasing M reaches a critical volume % in the range of at least 20 to 30 volume % of the binder. In the first region, the molded body is heated under a pressure atmosphere of ) Jl, and in the second region where the amount of degreasing exceeds the critical volume %, the molded body is heated under a pressure atmosphere lower than the pressure in the first region. It is characterized by “doing.”

本発明の脱脂方法に用いられるセラミックス成形体の製
造は、セラミックス粉末と、樹脂を主体とするTiは結
合剤とを含む混合原料を、射出成形するものである。こ
のセラミックス成形体を¥J造するには、従来のセラミ
ックス成形体を製造する方法と同一の射出成形法をその
まま用いることができる。
The ceramic molded body used in the degreasing method of the present invention is manufactured by injection molding a mixed raw material containing ceramic powder and a Ti binder mainly composed of resin. To manufacture this ceramic molded body, the same injection molding method as the method for producing conventional ceramic molded bodies can be used as is.

セラミックス粉末は、例えば窒化珪素(S+3N4)、
窒化アルミニウム(AIN>、窒化硼素(BN>などの
窒化物、炭化珪素(S i C> 、炭化チタン(T 
+ C)などの炭化物、アルミナ(A、2Zo3>、ジ
ルコニア(Zr02 ) 、:]−ジェライト、チタン
酸バリウム(BaTi03)、酸化バリウム(Bad)
 、W化チタン(TiOz)、などの酸化物、又は珪酸
塩、硼化チタン(TiBz)、硼化ジルコニウム(Zr
Bz)などの硼化物、又はサイアロンなどの酸窒化物な
ど、従来と同様のものを用いることができる。
The ceramic powder is, for example, silicon nitride (S+3N4),
Nitrides such as aluminum nitride (AIN>, boron nitride (BN>), silicon carbide (S i C>, titanium carbide (T
+C) carbides, alumina (A, 2Zo3>, zirconia (Zr02), :]-gelite, barium titanate (BaTi03), barium oxide (Bad)
, titanium tungsten (TiOz), or silicates, titanium boride (TiBz), zirconium boride (Zr
The same materials as conventional ones, such as borides such as Bz) or oxynitrides such as Sialon, can be used.

有機結合剤としては、従来と同様にポリスチレン、アタ
クチックポリプロピレン、エチレン−酢酸ビニル共重合
体、ポリエチレン、ポリアセタール、アクリルなどの熱
可塑性樹脂を用いることができる。父上記樹脂と共に鉱
油、パラフィンなどの脂肪族化合物、ナフタリンなどの
芳香族化合物、ステアリン酸などの界面活性剤、その他
の添加剤を用いることもできる。
As the organic binder, thermoplastic resins such as polystyrene, atactic polypropylene, ethylene-vinyl acetate copolymer, polyethylene, polyacetal, and acrylic can be used as in the conventional case. In addition to the above resin, mineral oil, aliphatic compounds such as paraffin, aromatic compounds such as naphthalene, surfactants such as stearic acid, and other additives may also be used.

本発明者等は鋭意研究の結果、種々の圧力雰囲気下にお
ける昇温速度および有機結合剤の分解邑と成形体の障害
の関係を見出し、本発明を完成したものである。
As a result of intensive research, the present inventors have discovered the relationship between the rate of temperature rise under various pressure atmospheres, the decomposition of the organic binder, and the failure of the molded article, and have completed the present invention.

即ち本発明の最大の特徴は、有機結合剤の実質的な分解
開始から脱脂量が少なくとも有機結合剤全量の20〜3
0体積%の範囲にある臨界体積%となるまでの第1領域
の昇温を加圧雰囲気下で行ない、臨界体積%を越えた第
2(rI域の昇温を前記第1領域の圧力より低い圧力雰
囲気下で行なうようにしたところにある。
That is, the greatest feature of the present invention is that the degreasing amount is at least 20 to 3% of the total amount of the organic binder from the start of substantial decomposition of the organic binder.
The temperature in the first region is increased in a pressurized atmosphere until it reaches a critical volume % in the range of 0 volume %, and the temperature in the second (rI region) exceeding the critical volume % is increased from the pressure in the first region. The reason is that it is carried out under a low pressure atmosphere.

ここで臨界体積%とは、成形体中の有機結合剤が分解す
ることにより生ずる気孔が、互いに連通して、成形体内
部の分解ガスを成形体に異常を発生させることなく外部
へ逃がすことが可能となる最小の脱脂量を意味する。こ
の臨界体積%は有機結合剤の種類等により異なるが、一
般には有機結合剤全量の20〜30体積%の範囲にある
。例えば、本発明者等は各種の脱脂率の板状射出成形体
を空気の流路の一端に取り付け、各成形体を一定量の空
気が通過する時間を測定したところ、第2図に示すよう
に、脱脂率が約25%を越えると空気の通過時間が急激
に短くなることを見出した。
Here, the critical volume % means that the pores created by the decomposition of the organic binder in the molded object communicate with each other and allow the decomposed gas inside the molded object to escape to the outside without causing abnormalities in the molded object. It means the minimum amount of fat removed that is possible. This critical volume % varies depending on the type of organic binder, but is generally in the range of 20 to 30 volume % of the total amount of organic binder. For example, the inventors attached plate-shaped injection molded bodies with various degreasing rates to one end of an air flow path and measured the time it took for a certain amount of air to pass through each molded body, as shown in Figure 2. Furthermore, it was found that when the degreasing rate exceeds about 25%, the air passage time becomes rapidly shortened.

このことは、脱脂率が約25%までは結合剤が除去され
ることにより形成された空洞が連通していないが、脱脂
率が約25%を越えると連通孔が形成されたことを示し
ている。
This indicates that the cavities formed by the removal of the binder do not communicate until the degreasing rate is about 25%, but when the degreasing rate exceeds about 25%, communicating pores are formed. There is.

また有機結合剤に低分子量物質等を含む場合には、例え
ば室温から60〜120℃など、熱分解開始前の低い温
度でもその低分子量物質等が蒸散して重量が減少する場
合がある。本発明にいう実質的な分解とはこのような蒸
散等をも含むものである。
Further, when the organic binder contains a low molecular weight substance, the weight may decrease due to evaporation of the low molecular weight substance even at a low temperature, such as from room temperature to 60 to 120° C., before the start of thermal decomposition. The term "substantial decomposition" as used in the present invention includes such transpiration and the like.

以下特徴部分を説明ブーる。The features are explained below.

室温から有機結合剤の実質的な分解開始温度までの領域
では、有機結合剤の粘性は温度の上昇に伴い低下してい
くが、有機結合剤の蒸気圧は低く、実質的にはガス化し
ない。この理由から、この範囲の昇温速度を大きくして
も、有機結合剤の分解による障害はほとんど生じない。
In the region from room temperature to the actual decomposition temperature of the organic binder, the viscosity of the organic binder decreases as the temperature rises, but the vapor pressure of the organic binder is low and it does not substantially gasify. . For this reason, even if the heating rate is increased within this range, there will be little trouble due to decomposition of the organic binder.

また雰囲気の圧力の影響もない。従って成形体の温度分
布が不均一になって、熱歪で変形したり、亀裂を生じた
りしない程度、例えば5〜b 昇温することができる。また雰囲気の圧力は減圧、加圧
あるいは大気圧のいずれでもよい。
Also, there is no influence of atmospheric pressure. Therefore, the temperature distribution of the molded body becomes non-uniform, and the temperature can be increased to an extent that does not cause deformation or cracking due to thermal strain, for example, 5 to b. Further, the pressure of the atmosphere may be reduced pressure, increased pressure, or atmospheric pressure.

成形体の温度が有機結合剤の実質的な分解開始から、脱
脂量が少なくとも臨界体積%となるまでの第1領域にお
いては、有機結合剤の粘性は更に低下し、有機結合剤の
一部あるいは全部は熱分解を始め、成形体表面でガス化
し始める。ところがこの第1領域では、有機結合剤の粘
性が低下しているために成形体の強度が弱く、かつ成形
体内部で発生した分解ガスが外部へ逃げるための気孔通
路はほとんど連通していない。従って従来は少し早く昇
温すると変形したり、内部の高いガス圧によって亀裂や
脹れが発生していた。そこで本発明では、この第1領域
の昇温を加圧雰囲気下で行なうようにしたものである。
In the first region where the temperature of the molded body is from when the organic binder starts to substantially decompose until the amount of degreasing reaches at least a critical volume %, the viscosity of the organic binder further decreases, and part of the organic binder or All of them begin to thermally decompose and gasify on the surface of the compact. However, in this first region, the strength of the compact is weak because the viscosity of the organic binder is reduced, and the pore passages through which the decomposition gas generated inside the compact escapes to the outside are hardly connected. Therefore, in the past, if the temperature rose a little too quickly, it would deform, and cracks and bulges would occur due to the high internal gas pressure. Therefore, in the present invention, the temperature of this first region is increased under a pressurized atmosphere.

この加圧は2〜100気圧、望ましくは4〜100気圧
の圧力をかけることができる。2気圧より低いと加圧し
た効果が充分用われず、100気圧より高くなると安全
上の見地などから、加圧のための装置が大がかりとなり
、コスト而などに不具合が生ずる。なおこの第1領域の
圧力は一定としてもよいし、この領域を更に細かく分割
し、実質的な分解開始から脱脂量が所定体積%となる迄
の圧力を、該所定体積%から臨界体積%迄の圧力より大
きくする等、複数の段階に分けることもできる。
This pressurization can be applied at a pressure of 2 to 100 atmospheres, preferably 4 to 100 atmospheres. If it is lower than 2 atm, the effect of pressurization will not be fully utilized, and if it is higher than 100 atm, the equipment for pressurization will be large-scale from a safety standpoint, which will cause problems in terms of cost and other issues. Note that the pressure in this first region may be constant, or this region may be further divided into smaller parts, and the pressure from the actual start of decomposition until the amount of degreasing reaches a predetermined volume % can be adjusted from the predetermined volume % to the critical volume %. The pressure can be divided into multiple stages, such as increasing the pressure to a level greater than .

この第1領域の圧力を大きくしたことにより、この領域
の昇温速度は、例えば従来の2〜20倍とすることが可
能となり、脱脂の速度が署しく向上する。なおその昇温
速度は、成形体の形状、大きさ、厚みなどと成形材料の
種類、有機結合剤の種類などを考慮して決める必要があ
る。
By increasing the pressure in this first region, the temperature increase rate in this region can be increased, for example, 2 to 20 times the conventional rate, and the degreasing speed is significantly improved. The rate of temperature increase must be determined by taking into account the shape, size, thickness, etc. of the molded body, the type of molding material, the type of organic binder, etc.

脱脂量が少なくとも臨界体積%を越えた第2領域になる
と、有機結合剤が気化した後に生成した空洞は、その多
くが連通し、連通孔を形成する。
In the second region where the amount of degreasing exceeds at least the critical volume %, most of the cavities formed after the organic binder is vaporized communicate with each other to form communicating pores.

また成形体全体のうち、有機結合剤に対してセラミック
ス粉末の占める割合が多くなるので、有纏結合剤の粘性
が低乍していても成形体そのものは変形し難くなる。従
って熱分解したガスは、連通孔を通って容易に成形体表
面から拡散し、成形体内部に高いガス圧を発生させない
。このため雰囲気の圧力を低くしても、亀裂や脹れは発
生しない。
Furthermore, since the ceramic powder occupies a large proportion of the organic binder in the entire molded body, the molded body itself becomes difficult to deform even if the viscosity of the bound binder is low. Therefore, the thermally decomposed gas easily diffuses from the surface of the compact through the communication holes, and high gas pressure is not generated inside the compact. Therefore, even if the atmospheric pressure is lowered, cracks and swelling will not occur.

なお圧力は高いほうが昇温速度を一層速くすることがで
き、一層大量の脱脂を行なうことができる。
It should be noted that the higher the pressure, the faster the temperature increase rate can be, and a larger amount can be degreased.

しかしながら第1図に示すように、脱脂率が高くなるに
つれて高温が必要であり、結合剤の炭素化、装置の耐熱
性、およびエネルギー的な問題などが生ずる。そこで本
発明では、少なくとも臨界体積%を越えた第2領域では
、第1領域より低い圧力で脱脂を行なうようにしたもの
である。
However, as shown in FIG. 1, as the degreasing rate increases, high temperatures are required, causing problems such as carbonization of the binder, heat resistance of the equipment, and energy issues. Therefore, in the present invention, degreasing is performed at least in the second region exceeding the critical volume % at a lower pressure than in the first region.

この第2領域の圧力は第1領域の圧力より低い一定値と
してもよいし、次第に圧力を低下させてもよい。また減
圧とすることもできる。そして同時に背温停止あるいは
冷却などの手段を取り、圧力低下に伴なう分解温度の低
下に対処することが望ましい。これは脱脂を大気中で行
なう場合などには特に必要である。これにより結合剤の
急激な分解による発熱を防ぎ、結合剤の炭素化を防ぐこ
とができる。
The pressure in the second region may be a constant value lower than the pressure in the first region, or the pressure may be gradually reduced. It is also possible to reduce the pressure. At the same time, it is desirable to take measures such as back-heating termination or cooling to cope with the decrease in decomposition temperature caused by the decrease in pressure. This is especially necessary when degreasing is carried out in the atmosphere. This prevents heat generation due to rapid decomposition of the binder and prevents carbonization of the binder.

なお成形体が薄肉部と厚肉部とを有する複雑な構造体で
ある場合には、厚肉部の脱脂量が臨界体積%となりた時
点で第1領域と第2領域の区分をすることが必要である
。薄肉部は厚肉部より速く脱脂が進行し、薄肉部の脱脂
量が臨界体積となった時点を基準とすると、厚肉部では
脱脂量が臨界体積%となっていない場合もあり、成形体
に脹れ、クラッタなどの不具合が生ずるようになる。従
って成形体の厚みにかなりの差がある場合には、平均と
して脱脂量が30〜50体積%となった時点で第1領域
から第2領域へ移行することも好ましい。
In addition, when the molded body is a complex structure having a thin wall part and a thick wall part, it is possible to divide the first region and the second region at the time when the amount of degreasing of the thick wall part reaches a critical volume %. is necessary. Degreasing progresses faster in thin-walled areas than in thick-walled areas, and when the amount of degreased in thin-walled areas reaches the critical volume %, the amount of degreased in thick-walled areas may not reach the critical volume %, and the molded product Problems such as swelling and clutter begin to occur. Therefore, when there is a considerable difference in the thickness of the molded bodies, it is also preferable to shift from the first region to the second region when the amount of degreasing reaches 30 to 50% by volume on average.

脱脂時の雰囲気は、大気又は非酸化性雰囲気のいずれで
もよく、用いられている有機結合剤の種類などに鑑みて
選択することができる。そして成形体は、その形状に応
じ、容器内に支持台などを設けて収納して脱脂してもよ
いし、セラミックス粉末などの脱脂材中に埋設して脱脂
してもよい。
The atmosphere during degreasing may be air or a non-oxidizing atmosphere, and can be selected in consideration of the type of organic binder used and the like. Depending on its shape, the molded body may be degreased by being stored in a container with a support or the like provided, or it may be degreased by being embedded in a degreasing material such as ceramic powder.

本発明の脱脂方法で得られた、有機結合剤が除去された
成形体は、その侵焼成して焼成体とされる。この焼成は
成形体を構成するセラミックス粉末の焼成温度に加熱し
、セラミックス粉末どうしを一体的に焼結するものであ
る。なお窒化物、炭化物などのように、酸化性雰囲気下
で加熱すると酸化分解するセラミックスについては、窒
素ガスなどの非酸化性雰囲気下、時には真空中で焼成す
る必要がある。
The molded body obtained by the degreasing method of the present invention and from which the organic binder has been removed is eroded and fired to form a fired body. This firing is carried out by heating to the firing temperature of the ceramic powders constituting the molded body, and sintering the ceramic powders together. Note that ceramics such as nitrides and carbides that undergo oxidative decomposition when heated in an oxidizing atmosphere need to be fired in a non-oxidizing atmosphere such as nitrogen gas, sometimes in a vacuum.

[発明の作用及び効果コ 本発明は、有機結合剤とセラミックス粉末とからなる成
形体から、加熱によって有機結合剤を分解除去するに当
り、有機結合剤の臨界体積%が脱脂された時点で空洞が
連通づる事実の解明に基く。
[Operations and Effects of the Invention] The present invention provides that when the organic binder is decomposed and removed by heating from a molded body consisting of an organic binder and ceramic powder, cavities are formed when a critical volume % of the organic binder is degreased. It is based on the clarification of the facts that are connected.

そして、成形体に欠陥の生じやすい第1領域では、加圧
雰囲気下で脱脂を行なうことによって、脱脂時間の短縮
を図ることが可能となる。さらに成形体に欠陥が生じに
くい第2領域では、第19rI域より低い圧力雰囲気下
で脱脂することにより結合剤の炭素化を防ぎ、焼成後の
成形体の欠陥を防止す。
In the first region where defects are likely to occur in the molded body, degreasing is performed in a pressurized atmosphere, thereby making it possible to shorten the degreasing time. Further, in the second region where defects are less likely to occur in the compact, degreasing is performed under a pressure atmosphere lower than the 19th rI region to prevent carbonization of the binder and prevent defects in the compact after firing.

る。また第2領域では分解温度が低下するので聡熱山を
低く押えることができ、省エネルギーとなる。
Ru. Furthermore, since the decomposition temperature is lower in the second region, the Sonetsuzan can be kept low, resulting in energy savings.

[実施例]   ′ (第1実施例) 粒径0.6μの窒化珪素粉末84重置部と、ポリエチレ
ンワックス6重量部、アタックチックポリプロピレン6
重量部、パラフィンワックス2重量部、ジオクチシフタ
レ−82重患部とを160℃で加熱混練し、射出成形用
のベレッ1−とした侵、射出成形により有底円筒形状の
ディーゼルエンジン副室体を成型した。この成形体を2
0個とり、第1表にも示すように、窒素ガス雰囲気中、
20”C/Hrの条件にて、室温20℃〜4’OO℃の
第1領域の雰囲気の圧力を7気圧で、400℃〜500
℃の第2領域の雰囲気の圧力を7気圧から一定の割合で
大気圧まで降下せしめて、脱脂を行なった。成形体1個
あたりの総脱脂時間は24時1である。なおここで、2
0℃〜400℃の第1頭域を、7気圧の加圧下、20℃
/ト1rの昇温速度で昇温すると、有機結合剤の約25
体積%が脱脂されることが予め行なわれた予備実験によ
り明らかとなっている。
[Example] ' (First example) 84 overlapping parts of silicon nitride powder with a particle size of 0.6μ, 6 parts by weight of polyethylene wax, and 6 parts by weight of attack polypropylene
Parts by weight of paraffin wax, 2 parts by weight of paraffin wax, and Diocchisiftale-82 heavily affected parts were heated and kneaded at 160°C, and molded into a bellet for injection molding, and a diesel engine pre-chamber body in the shape of a cylinder with a bottom was molded by injection molding. . This molded body is 2
As shown in Table 1, in a nitrogen gas atmosphere,
Under the conditions of 20"C/Hr, the pressure of the atmosphere in the first region of room temperature 20°C to 4'OO°C was 7 atm, and the temperature was 400°C to 500°C.
Degreasing was performed by lowering the pressure of the atmosphere in the second region at a temperature of 7 atm to atmospheric pressure at a constant rate. The total degreasing time per molded body was 24:1. Here, 2
The first head area from 0℃ to 400℃ is heated to 20℃ under a pressure of 7 atmospheres.
When the temperature is increased at a rate of 1r/t, the organic binder
Preliminary experiments conducted in advance have shown that % by volume is degreased.

得られた20個の成形体の良品率は第2表にも示すよう
に、95%であり、その後1750℃にて2時間、常法
により焼成を行なって得られた焼成体の良品率は89%
と好ましいものであった。
As shown in Table 2, the yield rate of the 20 molded bodies obtained was 95%, and the yield rate of the fired bodies obtained by firing at 1750°C for 2 hours using a conventional method was as follows. 89%
It was favorable.

なお、良品率は脱脂後の成形体(脱脂体)および焼成体
の表面を目視ならびにX1m透過法にて判定した。また
焼成体の良品率は脱脂体の欠陥の認められなかったもの
を母数とした。
The yield rate was determined by visual inspection of the surfaces of the molded body (degreased body) and fired body after degreasing and by X1m transmission method. In addition, the non-defective rate of fired bodies was determined based on the degreased body in which no defects were observed.

(第2実施例〜第6実施例) 第1実施例で成型したものと同一の成形体をそれぞれ2
0個ずつ用い、第1表に示す条件にてそれぞれ脱脂を行
なった。そして脱脂体、および第1実施例と同様に焼成
して得られた焼成体の良品率を、第1実施例と同様にそ
れぞれ判定し、結果を第2表に示す。
(Second Example to Sixth Example) Two molded bodies, each of which was the same as that molded in the first example, were
Degreasing was performed under the conditions shown in Table 1 using 0 pieces each. Then, the non-defective product rates of the degreased body and the fired body obtained by firing in the same manner as in the first example were determined in the same manner as in the first example, and the results are shown in Table 2.

(第1比較例) 第1実施例に用いたものと同一の成形体を20個用い、
第1表にも示すように、7気圧一定とし、V温り0℃〜
500℃まで、昇温速度20℃/ト]rの条件にてそれ
ぞれ脱脂を行なった。そして脱脂体、および第1実施例
と同様に焼成して得られた焼成体の良品率を、第1実施
例と同様にそれぞれ判定し、結果を第2表に示す。
(First Comparative Example) Using 20 molded bodies identical to those used in the first example,
As shown in Table 1, the temperature is 7 atm constant and the V temperature is 0℃~
Degreasing was carried out up to 500° C. at a temperature increase rate of 20° C./t]r. Then, the non-defective product rates of the degreased body and the fired body obtained by firing in the same manner as in the first example were determined in the same manner as in the first example, and the results are shown in Table 2.

(第2比較例) 脱脂時の条件を、5気圧一定、昇温速度10℃/Hrと
したこと以外は第1比較例と同様に脱脂を行なった。そ
して脱脂体、および第1実施例と同様に焼成して得られ
た焼成体の良品率を、第1実施例と同様にそれぞれ判定
し、結果を第2表に示す。
(Second Comparative Example) Degreasing was carried out in the same manner as in the first comparative example, except that the degreasing conditions were a constant 5 atm and a temperature increase rate of 10° C./Hr. Then, the non-defective product rates of the degreased body and the fired body obtained by firing in the same manner as in the first example were determined in the same manner as in the first example, and the results are shown in Table 2.

(第3比較例) 脱脂時の条件を、大気圧一定、20℃〜500℃まで、
昇温速度3℃/ Hrとしたこと以外は第1比較例と同
様に脱脂を行なった。そして脱脂体、および第1実施例
と同様に焼成して得られた焼成体の良品率を、第1実施
例と同様にそれぞれ判定し、結果を第2表に示す。
(Third Comparative Example) The conditions during degreasing were constant atmospheric pressure, 20°C to 500°C.
Degreasing was carried out in the same manner as in the first comparative example except that the temperature increase rate was 3°C/hr. Then, the non-defective product rates of the degreased body and the fired body obtained by firing in the same manner as in the first example were determined in the same manner as in the first example, and the results are shown in Table 2.

第  1  表 (以下余白) 第2表 (試験例) 第1実施例、第6実施例および第2比較例の焼成体を用
い、それぞれ1000℃で1時間保持し、続いて空温で
15分保持するのを1サイクルとづる温度サイクル試験
を1000サイクル行ない、水中急冷による破壊温度差
にて機械的強度を判定した。結果を第2表に示すように
、第1実施例、第6実施例では水中急冷による破壊温度
差が380℃、360℃であるのに比し、第2比較例で
は280℃であった。
Table 1 (margin below) Table 2 (test examples) Using the fired bodies of the first example, the sixth example, and the second comparative example, each was held at 1000°C for 1 hour, and then at air temperature for 15 minutes. A temperature cycle test was conducted for 1000 cycles in which holding was considered as one cycle, and mechanical strength was determined based on the difference in fracture temperature due to quenching in water. As shown in Table 2, the difference in fracture temperature due to quenching in water was 380°C and 360°C in the first example and the sixth example, while it was 280°C in the second comparative example.

(評価) 第2表より明らかに、本発明の製造方法は脱脂時間は短
かくてよく、得られる脱脂体及び焼成体は良品率に優れ
ている。また機械的強度は、実施例の焼成体は異常が認
められなかったのに比較し、第2比較例の焼成体は良品
率は優れていたにもかかわらず、機械的強度が著しく低
下している。この理由は、比較例の焼成体では残留炭素
によりS+ C(炭化ケイ素)が生成し、SiCとSI
3N4との熱膨張の差による熱応力が温度試験サイクル
中に作用して、強度劣化が生じたものと推定される。
(Evaluation) It is clear from Table 2 that the manufacturing method of the present invention requires only a short degreasing time, and the obtained degreased bodies and fired bodies have an excellent yield rate. In addition, in terms of mechanical strength, no abnormality was observed in the fired product of the example, whereas the mechanical strength of the fired product of the second comparative example was significantly reduced, although the yield rate was excellent. There is. The reason for this is that in the fired body of the comparative example, S+C (silicon carbide) is generated due to residual carbon, and SiC and SI
It is presumed that thermal stress due to the difference in thermal expansion with 3N4 acted during the temperature test cycle, causing the strength deterioration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種圧力雰囲気下での温度と脱脂率の関係を示
すグラフである。第2図は成形体の脱脂率と、それぞれ
の脱脂率の成形体を空気が通過する時間との関係を示す
グラフである。 特許出願人   株式会社豊田中央研究所代理人   
 弁理士 大川 宏 第1図
FIG. 1 is a graph showing the relationship between temperature and degreasing rate under various pressure atmospheres. FIG. 2 is a graph showing the relationship between the degreasing rate of a molded article and the time for air to pass through the molded article having each degreasing rate. Patent applicant Toyota Central Research Institute Co., Ltd. Agent
Patent Attorney Hiroshi OkawaFigure 1

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックス粉末より成る成形材料と、有機物よ
り成る結合剤との混合物を成形して得たセラミックス成
形体を加熱し、該成形体より該結合剤を除去するセラミ
ックス成形体の脱脂方法において、 該結合剤の実質的な分解開始から、脱脂量が少なくとも
該結合剤全量の20〜30体積%の範囲にある臨界体積
%となるまでの第1領域では該成形体を加圧雰囲気下で
加熱し、脱脂量が該臨界体積%を越えた第2領域では、
該成形体を該第1領域の圧力より低い圧力雰囲気下で加
熱することを特徴とするセラミックス成形体の脱脂方法
(1) A method for degreasing a ceramic molded body, which involves heating a ceramic molded body obtained by molding a mixture of a molding material made of ceramic powder and a binder made of an organic substance, and removing the binder from the molded body, In the first region from the start of substantial decomposition of the binder until the amount of degreasing reaches a critical volume % in the range of at least 20 to 30 volume % of the total amount of the binder, the molded body is heated under a pressurized atmosphere. However, in the second region where the amount of degreasing exceeds the critical volume %,
A method for degreasing a ceramic molded body, comprising heating the molded body under a pressure atmosphere lower than the pressure in the first region.
(2)第2領域では圧力を徐々に低下させつつ加熱する
特許請求の範囲第1項記載のセラミックス成形体の脱脂
方法。
(2) The method for degreasing a ceramic molded body according to claim 1, wherein heating is performed while gradually reducing the pressure in the second region.
JP60184548A 1985-08-22 1985-08-22 Method of dewaxing ceramic formed body Pending JPS6246969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60184548A JPS6246969A (en) 1985-08-22 1985-08-22 Method of dewaxing ceramic formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60184548A JPS6246969A (en) 1985-08-22 1985-08-22 Method of dewaxing ceramic formed body

Publications (1)

Publication Number Publication Date
JPS6246969A true JPS6246969A (en) 1987-02-28

Family

ID=16155122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60184548A Pending JPS6246969A (en) 1985-08-22 1985-08-22 Method of dewaxing ceramic formed body

Country Status (1)

Country Link
JP (1) JPS6246969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172853A (en) * 1988-12-23 1990-07-04 Ngk Insulators Ltd Production of ceramic sintered body
JP2016065456A (en) * 2014-09-22 2016-04-28 株式会社デンソー Auxiliary-chamber type internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172853A (en) * 1988-12-23 1990-07-04 Ngk Insulators Ltd Production of ceramic sintered body
JP2016065456A (en) * 2014-09-22 2016-04-28 株式会社デンソー Auxiliary-chamber type internal combustion engine

Similar Documents

Publication Publication Date Title
US4277539A (en) Refractory articles and composite metal-ceramic articles (cermets) prepared from a silicate-containing aluminum titanate
Bocanegra-Bernal et al. Dense and near-net-shape fabrication of Si3N4 ceramics
EP0125912B2 (en) Method of producing ceramic parts
US5470806A (en) Making of sintered silicon carbide bodies
EP0419682A1 (en) Method of producing ceramic sinter having dense ceramic coating
US4840763A (en) Method for the production of reinforced composites
EP0356461B1 (en) Forming of complex high performance ceramic and metallic shapes
US4551496A (en) Thermoplastic molding of sinterable silicon carbide
US4530808A (en) Binder removal from thermoplastically formed SiC article
JPS6246969A (en) Method of dewaxing ceramic formed body
Alford et al. Engineering ceramics–the process problem
US5389588A (en) Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases
US5030397A (en) Method of making large cross section injection molded or slip cast ceramics shapes
EP0369740B1 (en) Process for degreasing ceramic molded bodies
JPS6246968A (en) Method of dewaxing ceramic formed body
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
JP3853438B2 (en) Method for producing sintered silicon nitride
JPH037628B2 (en)
JPS5891072A (en) Manufacture of silicon nitride sintered body
JPS627675A (en) Method of dewaxing ceramic formed body
JPS62260761A (en) Composition for ceramic injection forming
JPH0641601B2 (en) Molding composition
JPS6186464A (en) Manufacture of ceramic formed body
EP0196600A2 (en) Method for fabricating of large cross section injection molded ceramic shapes
JPS5851911B2 (en) Method for manufacturing fiber-reinforced silicon nitride sintered body