JPS6246672B2 - - Google Patents

Info

Publication number
JPS6246672B2
JPS6246672B2 JP55012992A JP1299280A JPS6246672B2 JP S6246672 B2 JPS6246672 B2 JP S6246672B2 JP 55012992 A JP55012992 A JP 55012992A JP 1299280 A JP1299280 A JP 1299280A JP S6246672 B2 JPS6246672 B2 JP S6246672B2
Authority
JP
Japan
Prior art keywords
processing method
fiber
dyed
color
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55012992A
Other languages
Japanese (ja)
Other versions
JPS56112588A (en
Inventor
Masaaki Sekimoto
Jujiro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1299280A priority Critical patent/JPS56112588A/en
Publication of JPS56112588A publication Critical patent/JPS56112588A/en
Publication of JPS6246672B2 publication Critical patent/JPS6246672B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は染色繊維製品の色の深みを向上させる
加工法に関するものである。 合成繊維とりわけポリエステル繊維を主成分と
する繊維製品はその優れた機能特性のためにあら
ゆる繊維構造物の分野に巾広く使用されている
が、大きな欠点として、羊毛、絹などの天然繊維
に比べ、染色物の色の深みが劣ることが言われて
いる。特にフオーマルウエアなどの分野では従来
俗に“カラスの濡れ羽色”“テレフオンブラツ
ク”等と称されている深みのある黒色が得られな
いという問題がある。このため染料面からの改
良、繊維の改良等種々の方法が試みられている
が、いずれも十分な効果をあげるに至つていない
のが現状である。 ところで、“カラスの濡れ羽色”の例にもみら
れるごとく有機体は濡らすとその色の深色度を増
すことは我々の経験するところである。濡れるこ
とにより深色度が増す理由は次の如く説明され
る。 放射体のように自から光を放つ物体を除き、一
般に物体の色は光の反射、吸収によつて決ま
るが色を深く見せるためには光の反射を少なく
し、吸収を多くしてやることが必要である。光の
反射については特に表面反射光を少なくすること
が重要である。なぜならば、表面反射光は光が白
色光のままで反射するために有色体の深色化には
ほとんど寄与しないためである。 この表面反射光の量を減らす方法としては、そ
の基質を構成する物体より屈折率の小さい物質を
その物体基質表面に付与する技術が理論的にも、
又経験的にも知られている。例えばレンズのコー
テイング技術がその例である。これはガラスより
屈折率の小さい透明な薄膜をレンズ面に塗布する
ことにより表面反射光の量を減少させる技術であ
る。上述の濡れによる深色度向上現象も基質より
屈折率の小さい水の薄膜で表面を被うことによ
り、表面反射光の量が減少した結果である。この
ような原理を応用して、繊維製品の深色性、鮮明
性を改良しようとする試みがいくつか提案されて
いる。例えば、繊維製品の表面にシリコーンを付
着させる方法(特開昭48−13695号)、繊維製品の
表面に、構成繊維より低い屈折率の重合体薄膜を
プラズマ重合法又は放電グラフト法で形成させる
方法(特開昭53−111192号)等がある。しかしな
がら、前者の方法の如くシリコーンを単に水分散
液、有機溶剤溶液として繊維製品表面に付着させ
ようとしても、十分な付着が行なわれず、満足す
べき深色効果が得られない。また、後者の方法の
如くプラズマ重合法、放電グラフト法により繊維
製品表面に重合体薄膜を形成させるためには、非
常に高価な特殊装置が必要となり、一般的な加工
法とは云いがたい。 本発明者らは、かかる従来法の欠点を解消すべ
く鋭意検討を重ねた結果、重合体の乳化又は分散
液中に電解性物質を添加すれば、特殊な装置を使
用することなく、優れた深色効果を奏し得ること
を見出し、本発明に到達した。 即ち、本発明は、染色繊維製品の表面に、電解
性物質を含むと共に該繊維よりも低い屈折率を有
する疎水性重合体を乳化又は分散させてなる処理
剤を付着させ、次いで乾燥させることを特徴とす
る繊維製品の深色加工法である。 本発明は、天然繊維、再生繊維、半合成繊維、
合成繊維又はこれらの繊維を混合したもの(混
繊、交撚、混紡等)からなる染色繊維製品に適用
することができ、特に合成繊維、なかでも染色物
の色の深みが悪いポリエステル繊維製品に適用す
るとその効果が顕著に表われる。また、本発明
は、トウ、フイラメント、ヤーン、織編物、不織
布等のあらゆる形態の繊維製品に適用することが
できる。 本発明でいう屈折率が小さい重合体の例として
は、例えば、ポリテトラフルオロエチレン、テト
ラフルオロエチレン−プロピレンコポリマー、テ
トラフルオロエチレン−ヘキサフルオロプロピレ
ンコポリマー、テトラフルオロエチレン−エチレ
ンコポリマー、テトラフルオロエチレン−テトラ
フルオロプロピレンコポリマー、ポリフルオロビ
ニリデン、ポリペンタデカフルオロオクチルアク
リレート、ポリフルオロエチルアクリレート、ポ
リトリフルオロイソプロピルメタアクリレート、
ポリトリフルオロエチルメタアクリレート等の含
フツ素系重合体、ポリジメチルシラン、ポリメチ
ルハイドロジエンシロキサン、ポリジメチルシロ
キサン等の含ケイ素化合物、エチレン−酢ビコポ
リマー、ポリエチルアクリレート、ポリエチルメ
タアクリレート等のアクリル酸エステル等があげ
られ、これらの物より適宜繊維製品を構成する繊
維基質よりも屈折率の小さいものを選び使用すれ
ばよい。この場合できるだけ基質繊維との屈折率
差が大きいものを選ぶことが望ましい。 これらの疎水性重合体を乳化又は分散させるた
めの乳化又は分散剤としては、酸及び/又はアニ
オン活性剤が好適である。酸としては、例えば塩
酸、硫酸、ギ酸、リン酸、脂肪族カルボン酸、脂
肪族スルホン酸、アルキルベンゼンスルホン酸、
アルキルナフタレンスルホン酸、ハロゲン置換脂
肪族カルボン酸、ポリオキシエチレンアルキルエ
ーテル硫酸エステル等の有機、無機の酸を挙げる
ことができ、アニオン活性剤としては、高級脂肪
酸塩、高級アルコール硫酸エステル塩、アルキル
スルホン酸塩、アルキルアリルスルホン酸塩、ホ
ルマリン縮合ナフタリンスルホン酸塩、パーフル
オロアルキルカルボン酸塩、パーフルオロアルキ
ルスルホン酸塩、パーフルオロアルキルリン酸エ
ステル等を挙げることができる。これらの乳化又
は分散剤は、疎水性重合体の重合工程で添加して
もよく、又疎水性重合体を水に乳化又は分散させ
る際に添加してもよい。 本発明における電解性物質としては、食塩、硫
酸ナトリウム、硫酸カリウム、硫酸水素ナトリウ
ム、硫酸水素カリウム、硫酸アンモニウム、塩化
アンモニウム、硝酸ナトリウム、硝酸カリウム、
酢酸アンモニウム、酢酸ナトリウム及び有機、無
機の酸等を挙げることができ、なかでも無機塩が
好ましく、特に硫酸水素カリウムを用いた場合、
深色効果が大きく好ましい結果が得られる。 処理剤を繊維製品表面に付着させる方法として
は、スプレー法、パツデイング法、キスロール
法、ナイフコーテイング法、グラビアコーテイン
グ法等の手段を採用することができる。 かくして、処理剤を繊維製品表面に付着させた
後、乾燥して、その後、必要に応じてヒートセツ
トを施す。 尚、本発明の方法は、染料を改良して深色性を
与えたり、あるいは特開昭52−99400号、特開昭
54−120728号、特公昭54−44300号等に開示され
ているように繊維表面に凹凸を付与して深色化を
はかつたような繊維製品に適用しても、深色性を
更に高める効果が認められる。 本発明の特徴とする電解性物質の添加により極
めて卓越した効果が示現される理由についてはい
まだ明確ではないが、一般に疎水性粒子の分散安
定性は粒子の周囲に形成される静電斥力、フアン
デルワールス引力等の相互ポテンシヤルエネルギ
ーによりバランスがとれ安定性が保持されてお
り、電解性物質の添加によりそのバランスがくず
れ疎水性粒子の分散安定性が大きく低下し、合成
繊維のような疎水性物体の表面に選択的に容易に
吸着するようになるためと解釈される。 また本発明において使用する加工剤は疎水性重
合体であるために水系洗濯に対する堅牢性が大で
あるという利点もあげられる。 以下実施例により本発明を更に詳細に説明する
が、実施例の中の割合は特記しない限りすべて重
量パーセントを意味する。またシロキサンの粘度
はシロキサンそのものの粘度を示し、すべて25℃
で測定した。 更に、深色効果を示す尺度としては、深色度
(K/S)を用い、この値は、サンプルの分光反
射率(R)を島津RC−330型自記分光光度計にて
測定して、次に示すクベルカームンク(Kubelka
−Munk)の式から求めた。この値が大きいほど
深色効果が大きいことを示す。 K/S=(1−R)/2R 尚、Kは吸収係数、Sは散乱係数を示す。 実施例 1 400c.c.のステンレス製オートクレーブにチツ素
の保護雰囲気下において脱イオン水200g、過硫
酸アンモニウム1.1gおよび乳化剤としてパーフ
ルオロ−n−オクタン酸アンモニウム0.15gを加
え容器を閉じ、ドライアイス/アセトン浴で冷却
し、1mmHgまで真空に引き、次いでテトラフル
オロエチレン40g、プロピレン20gを導入し、振
とうしつつ容器を80℃に昇温し、8時間重合せし
めた。そこで反応を中止し室温に冷却し、乾燥固
形分20%の極めて安定したテトラフルオロエチレ
ン−プロピレン共重合体のエマルジヨンを得た。 アルカリ減量を施した目付150g/m2のポリエ
ステル100%ジヨーゼツト織物をDianix Black
HG−FS(三菱化成工業(株)製品)15%owfで130
℃、60分染色後、カセイソーダー1g/、ハイ
ドロサルフアイト2g/を含む水溶液にて、70
℃で20分間還元洗浄し、K/S値16.5(測定波長
500mμ)の黒染布を得た。この黒染布に上記の
反応で得られたテトラフルオロエチレン−プロピ
レン共重合体個形分換算3g、硫酸水素カリウム
0.15g、水300gからなるエマルジヨン処理剤を
パツデイング(ピツクアツプ80%)し、乾燥後
160℃で1分間ヒートセツトした。得られた処理
布のK/S値(測定波長500mμ)は23.5を示
し、未処理布に比べ著しい深色効果を示した。一
方、比較のために、処理剤中に硫酸水素カリウム
を含まない以外は前記方法と全く同じ条件で処理
したところ、得られた処理布のK/S値(測定波
長500mμ)は17.3を示し、未処理布と比べて、
ほとんど深色効果は認められなかつた。 実施例 2 環状ジメチルシロキサン150g、ドデシルベン
ゼンスルホン酸2g、ドデシルベンゼンスルホン
酸ナトリウム5g、および水333gを反応器に入
れはげしく撹拌しながら80℃で24時間重合し、良
好な白色エマルジヨンを得た。得られた重合体個
形分換算5g、氷酢酸2g、水300gからなるエ
マルジヨン処理剤を用意し、実施例1で用いたの
と同じポリエステル100%黒染布にこの処理剤を
パツテイング(ピツクアツプ80%)し、乾燥後
160℃で1分間ヒートセツトした。得られた処理
布のK/S値(測定波長500mμ)は22.5を示
し、未処理布に比べ著しい深色効果が認められ
た。 実施例 3 粘度1000CSのジメチルポリシロキサン30g、
塩基性オレイン酸を含むトール油脂肪酸2g、28
重量%アンモニア水0.5g、トリエタノールアミ
ン0.75g、水66.75gをホモジナイザーにより混
合してエマルジヨンを得た。 目付120g/m2のポリエステル100%加工糸織物
をMiketon Polyester Red 2BSF(三井東圧化学
工業(株)製品)7%owfで130℃、60分染色後、カ
セイソーダー1g/、ハイドロサルフアイト1
g/を含む水溶液にて、70℃で20分間還元洗浄
し、K/S値2.41(測定波長600mμ)の赤染布
を得た。この赤染布に上記条件で得られた重合体
個形分換算5g、氷酢酸2g、水300gからなる
アニオン性エマルジヨン処理剤をパツデイング
(ピツクアツプ75%)し、乾燥後160℃で1分間ヒ
ートセツトした。得られた処理布のK/S値(測
定波長600mμ)は3.22を示し未処理布に比べ著
しい深色効果を示した。 実施例 4 ポリエステルフイラメントとジアセテートフイ
ラメントの重量比が1:1の混繊フイラメント系
からなる目付180g/m2の織物をTerasil Navy
Blue RL(チバガイギー社製品)8%owf、およ
びDianix Black RB−UP(三菱化成工業(株)製
品)10%owfの染料で各々120℃で、60分染色
後、ソーダ灰1g/を含む水溶液にて40℃で20
分間ソーピングし、紺及び黒染布を得た。 エポキシ変性ジメチルポリシロキサン個形分換
算5g、硫酸水素カリウム0.15g、水300gより
なるアニオン性エマルジヨン処理剤を用意し、上
記条件で得られた紺染布及び黒染布にパツデイン
グ(ピツクアツプ80%)し、乾燥後150℃で1分
間ヒートセツトした。得られた処理布の深色度
(K/S)(測定波長500mμ)を未処理布と比較
して示すと次表のようになる。
The present invention relates to a processing method for improving the depth of color of dyed textile products. Synthetic fibers, especially fiber products whose main component is polyester fibers, are widely used in all kinds of textile structures due to their excellent functional properties, but one major drawback is that compared to natural fibers such as wool and silk, It is said that the depth of color of dyed products is inferior. Particularly in the field of formal wear, etc., there is a problem in that it is not possible to obtain a deep black color, which is commonly referred to as "crow's feather color" or "telephone black." For this reason, various methods have been attempted, including improvements in terms of dyes and improvements in fibers, but at present none of them has achieved sufficient effects. By the way, we have experienced that when an organism gets wet, its color becomes more bathochromic, as seen in the example of "the color of a crow's wet feathers." The reason why the bathochromic degree increases with wetting is explained as follows. Except for objects that emit light from themselves, such as radiators, the color of an object is generally determined by the reflection and absorption of light, but in order to make the color appear deeper, it is necessary to reduce the reflection of light and increase the absorption of light. It is. Regarding light reflection, it is particularly important to reduce surface reflected light. This is because the surface-reflected light is reflected as white light, so it hardly contributes to the deepening of the color of the colored body. Theoretically, as a method to reduce the amount of surface reflected light, there is a technique to apply a material with a lower refractive index to the surface of the object substrate than the object that makes up the substrate.
It is also known from experience. An example of this is lens coating technology. This is a technology that reduces the amount of surface reflected light by coating the lens surface with a transparent thin film that has a lower refractive index than glass. The above-mentioned phenomenon of improving the bathochromic degree due to wetting is also a result of the amount of surface reflected light being reduced by covering the surface with a thin film of water having a lower refractive index than the substrate. Several attempts have been proposed to apply this principle to improve the deep color and sharpness of textile products. For example, a method of attaching silicone to the surface of textile products (Japanese Unexamined Patent Publication No. 13695/1989), and a method of forming a thin film of a polymer having a refractive index lower than that of the constituent fibers on the surface of textile products by plasma polymerization or discharge grafting. (Unexamined Japanese Patent Publication No. 53-111192). However, even if silicone is simply applied to the surface of textile products as an aqueous dispersion or an organic solvent solution as in the former method, sufficient adhesion is not achieved and a satisfactory deep color effect cannot be obtained. Furthermore, in order to form a thin polymer film on the surface of a textile product by plasma polymerization or electrical discharge grafting, as in the latter method, very expensive special equipment is required, and it cannot be called a general processing method. The inventors of the present invention have made extensive studies to solve the drawbacks of the conventional methods, and have found that if an electrolytic substance is added to the polymer emulsion or dispersion, an excellent method can be achieved without using any special equipment. It was discovered that a deep color effect can be produced, and the present invention was achieved. That is, the present invention involves attaching to the surface of a dyed textile product a treatment agent in which a hydrophobic polymer containing an electrolytic substance and having a refractive index lower than that of the fiber is emulsified or dispersed, and then drying. This is a deep color processing method for textile products. The present invention includes natural fibers, regenerated fibers, semi-synthetic fibers,
It can be applied to dyed fiber products made of synthetic fibers or mixtures of these fibers (mixed fibers, twisted twists, blended fibers, etc.), and is particularly suitable for synthetic fibers, especially polyester fiber products with poor dyed color depth. When applied, the effect is noticeable. Further, the present invention can be applied to all types of textile products such as tows, filaments, yarns, woven and knitted fabrics, and nonwoven fabrics. Examples of polymers with a low refractive index as used in the present invention include polytetrafluoroethylene, tetrafluoroethylene-propylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, and tetrafluoroethylene-tetrafluoroethylene copolymer. Fluoropropylene copolymer, polyfluorovinylidene, polypentadecafluorooctyl acrylate, polyfluoroethyl acrylate, polytrifluoroisopropyl methacrylate,
Fluorine-containing polymers such as polytrifluoroethyl methacrylate, silicon-containing compounds such as polydimethylsilane, polymethylhydrodiene siloxane, and polydimethylsiloxane, ethylene-vinyl acetate copolymers, polyethyl acrylate, polyethyl methacrylate, etc. Examples include acrylic esters, and among these, one having a refractive index smaller than that of the fiber matrix constituting the textile product may be appropriately selected and used. In this case, it is desirable to select a material that has as large a difference in refractive index as possible with the substrate fiber. As the emulsifying or dispersing agent for emulsifying or dispersing these hydrophobic polymers, acids and/or anionic activators are suitable. Examples of acids include hydrochloric acid, sulfuric acid, formic acid, phosphoric acid, aliphatic carboxylic acid, aliphatic sulfonic acid, alkylbenzenesulfonic acid,
Organic and inorganic acids such as alkylnaphthalene sulfonic acids, halogen-substituted aliphatic carboxylic acids, and polyoxyethylene alkyl ether sulfates can be mentioned. Examples of anion activators include higher fatty acid salts, higher alcohol sulfate ester salts, and alkyl sulfones. Examples include acid salts, alkylaryl sulfonates, formalin condensed naphthalene sulfonates, perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, perfluoroalkyl phosphates, and the like. These emulsifying or dispersing agents may be added during the polymerization process of the hydrophobic polymer, or may be added when the hydrophobic polymer is emulsified or dispersed in water. Examples of electrolytic substances in the present invention include common salt, sodium sulfate, potassium sulfate, sodium hydrogen sulfate, potassium hydrogen sulfate, ammonium sulfate, ammonium chloride, sodium nitrate, potassium nitrate,
Examples include ammonium acetate, sodium acetate, and organic and inorganic acids, among which inorganic salts are preferred, particularly when potassium hydrogen sulfate is used,
A favorable result with a large bathochromic effect can be obtained. As a method for attaching the treatment agent to the surface of the textile product, methods such as a spray method, a padding method, a kiss roll method, a knife coating method, and a gravure coating method can be employed. After the treatment agent has been applied to the surface of the textile product in this way, it is dried, and then heat set is applied if necessary. In addition, the method of the present invention can be carried out by improving the dye to give it bathochromic properties, or by improving the dye to give it bathochromic properties, or by
As disclosed in Japanese Patent Publication No. 54-120728, Japanese Patent Publication No. 54-44300, etc., the deep color property can be further improved even when applied to textile products in which the fiber surface is given unevenness to deepen the color. The effect is recognized. Although the reason why the addition of an electrolytic substance, which is a feature of the present invention, exhibits an extremely outstanding effect is still not clear, the dispersion stability of hydrophobic particles is generally determined by the electrostatic repulsion formed around the particles, Balance and stability are maintained due to mutual potential energy such as Del Waals attraction, but the addition of electrolytic substances disrupts this balance and greatly reduces the dispersion stability of hydrophobic particles, resulting in the dispersion of hydrophobic objects such as synthetic fibers. This is interpreted to be due to the fact that it becomes selectively and easily adsorbed on the surface of. Furthermore, since the processing agent used in the present invention is a hydrophobic polymer, it also has the advantage of being highly resistant to aqueous washing. The present invention will be explained in more detail with reference to Examples below, and all proportions in the Examples mean percent by weight unless otherwise specified. In addition, the viscosity of siloxane indicates the viscosity of the siloxane itself, and all values are 25°C.
It was measured with Furthermore, the bathochromic degree (K/S) is used as a measure to indicate the bathochromic effect, and this value is determined by measuring the spectral reflectance (R) of the sample using a Shimadzu RC-330 self-recording spectrophotometer. Kubelka Munch (Kubelka) shown below
−Munk). The larger this value is, the greater the deep color effect is. K/S=(1-R) 2 /2R In addition, K shows an absorption coefficient and S shows a scattering coefficient. Example 1 200 g of deionized water, 1.1 g of ammonium persulfate, and 0.15 g of ammonium perfluoro-n-octoate as an emulsifier were added to a 400 c.c. stainless steel autoclave under a protective atmosphere of nitrogen, and the container was closed with dry ice/ The mixture was cooled in an acetone bath and evacuated to 1 mmHg, and then 40 g of tetrafluoroethylene and 20 g of propylene were introduced, and while shaking, the temperature of the container was raised to 80° C., and polymerization was carried out for 8 hours. The reaction was then stopped and cooled to room temperature to obtain an extremely stable emulsion of tetrafluoroethylene-propylene copolymer with a dry solids content of 20%. Dianix Black is a 100% polyester dioset fabric with a basis weight of 150g/ m2 that has been subjected to alkali weight loss.
HG-FS (Mitsubishi Chemical Industries, Ltd. product) 130 at 15% owf
After staining at ℃ for 60 minutes, stain with an aqueous solution containing 1 g of caustic soda and 2 g of hydrosulfite.
℃ for 20 minutes, K/S value 16.5 (measurement wavelength
A black dyed cloth of 500 mμ) was obtained. On this black dyed cloth, 3 g of the tetrafluoroethylene-propylene copolymer obtained in the above reaction in terms of individual particles and potassium hydrogen sulfate were added.
After drying, apply an emulsion treatment agent consisting of 0.15g and 300g of water (80% pick-up).
Heat set at 160°C for 1 minute. The K/S value (measured wavelength: 500 mμ) of the obtained treated cloth was 23.5, showing a remarkable bathochromic effect compared to the untreated cloth. On the other hand, for comparison, the treatment was carried out under the same conditions as the above method except that potassium hydrogen sulfate was not included in the treatment agent, and the K/S value (measured wavelength 500 mμ) of the obtained treated cloth was 17.3. Compared to untreated cloth,
Almost no bathochromic effect was observed. Example 2 150 g of cyclic dimethylsiloxane, 2 g of dodecylbenzenesulfonic acid, 5 g of sodium dodecylbenzenesulfonate, and 333 g of water were placed in a reactor and polymerized at 80° C. for 24 hours with vigorous stirring to obtain a good white emulsion. An emulsion treatment agent consisting of 5 g of the obtained polymer solids, 2 g of glacial acetic acid, and 300 g of water was prepared, and this treatment agent was puttered onto the same 100% polyester black dyed cloth used in Example 1 (Pickup 80g). %) and after drying
Heat set at 160°C for 1 minute. The K/S value (measured wavelength: 500 mμ) of the obtained treated cloth was 22.5, and a remarkable deep color effect was observed compared to the untreated cloth. Example 3 30g of dimethylpolysiloxane with a viscosity of 1000CS,
2g tall oil fatty acids containing basic oleic acid, 28
An emulsion was obtained by mixing 0.5 g of wt% ammonia water, 0.75 g of triethanolamine, and 66.75 g of water using a homogenizer. After dyeing 100% polyester processed yarn fabric with a basis weight of 120 g/m 2 with Miketon Polyester Red 2BSF (product of Mitsui Toatsu Chemical Industries, Ltd.) at 130°C for 60 minutes with 7% owf, 1 g of caustic soda and 1 hydrosulfite were dyed.
A red dyed cloth with a K/S value of 2.41 (measured at a wavelength of 600 mμ) was obtained by reduction washing at 70° C. for 20 minutes with an aqueous solution containing g/. This red dyed cloth was padded with an anionic emulsion treatment agent (pickup 75%) consisting of 5 g of the polymer obtained under the above conditions, 2 g of glacial acetic acid, and 300 g of water, and after drying, it was heat set at 160° C. for 1 minute. The K/S value (measured at a wavelength of 600 mμ) of the obtained treated cloth was 3.22, showing a remarkable bathochromic effect compared to the untreated cloth. Example 4 A fabric with a basis weight of 180 g/m 2 made of a mixed filament system with a weight ratio of polyester filament and diacetate filament of 1:1 was fabricated with Terasil Navy.
After dyeing with 8% owf of Blue RL (product of Ciba Geigy) and 10% owf of Dianix Black RB-UP (product of Mitsubishi Chemical Industries, Ltd.) at 120°C for 60 minutes, dyeing was carried out in an aqueous solution containing 1 g of soda ash. 20 at 40℃
Soaping was carried out for a minute to obtain navy blue and black dyed fabrics. An anionic emulsion treatment agent consisting of 5 g of epoxy-modified dimethylpolysiloxane, 0.15 g of potassium hydrogen sulfate, and 300 g of water was prepared and applied to the navy-dyed fabric and black-dyed fabric obtained under the above conditions (pickup 80%). After drying, it was heat set at 150°C for 1 minute. The bathochromic degree (K/S) (measured wavelength: 500 mμ) of the obtained treated fabric is compared with that of the untreated fabric as shown in the following table.

【表】 処理布は未処理布に比べ著しい深色効果を示し
た。
[Table] The treated fabric showed a significant deep color effect compared to the untreated fabric.

Claims (1)

【特許請求の範囲】 1 染色繊維製品の表面に、電解性物質を含むと
共に該繊維よりも低い屈折率を有する疎水性重合
体を乳化又は分散させてなる処理剤を付着させ、
次いで乾燥させることを特徴とする繊維製品の深
色加工法。 2 疎水性重合体を酸及び/又はアニオン活性剤
で乳化又は分散させる特許請求の範囲第1項記載
の加工法。 3 繊維がポリエステル繊維である特許請求の範
囲第1項又は第2項記載の加工法。 4 疎水性重合体が含フツ素系重合体又は含ケイ
素系重合体である特許請求の範囲第1項、第2項
又は第3項記載の加工法。 5 電解性物質が無機塩である特許請求の範囲第
1項、第2項、第3項又は第4項記載の加工法。 6 無機塩が硫酸水素カリウムである特許請求の
範囲第5項記載の加工法。
[Claims] 1. A treatment agent made by emulsifying or dispersing a hydrophobic polymer containing an electrolytic substance and having a refractive index lower than that of the fiber is attached to the surface of a dyed fiber product,
A deep color processing method for textile products, which is characterized by subsequent drying. 2. The processing method according to claim 1, wherein a hydrophobic polymer is emulsified or dispersed with an acid and/or anionic activator. 3. The processing method according to claim 1 or 2, wherein the fiber is a polyester fiber. 4. The processing method according to claim 1, 2 or 3, wherein the hydrophobic polymer is a fluorine-containing polymer or a silicon-containing polymer. 5. The processing method according to claim 1, 2, 3, or 4, wherein the electrolytic substance is an inorganic salt. 6. The processing method according to claim 5, wherein the inorganic salt is potassium hydrogen sulfate.
JP1299280A 1980-02-07 1980-02-07 Deep color process of fiber product Granted JPS56112588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1299280A JPS56112588A (en) 1980-02-07 1980-02-07 Deep color process of fiber product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299280A JPS56112588A (en) 1980-02-07 1980-02-07 Deep color process of fiber product

Publications (2)

Publication Number Publication Date
JPS56112588A JPS56112588A (en) 1981-09-04
JPS6246672B2 true JPS6246672B2 (en) 1987-10-03

Family

ID=11820694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299280A Granted JPS56112588A (en) 1980-02-07 1980-02-07 Deep color process of fiber product

Country Status (1)

Country Link
JP (1) JPS56112588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445565U (en) * 1987-09-16 1989-03-20

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966580A (en) * 1982-09-30 1984-04-16 ユニチカ株式会社 Production of deep black polyester fiber fabric
JPS60162865A (en) * 1984-02-03 1985-08-24 ユニチカ株式会社 Deep color processing method of synthetic fiber
JPS6163791A (en) * 1984-09-06 1986-04-01 信越化学工業株式会社 Darkening of dyed fibir product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445565U (en) * 1987-09-16 1989-03-20

Also Published As

Publication number Publication date
JPS56112588A (en) 1981-09-04

Similar Documents

Publication Publication Date Title
JPS6246672B2 (en)
US5873909A (en) Method and compositions for treating fibrous cellulosic materials
JPS5851557B2 (en) Method for improving color development of fiber structures
US2778746A (en) Process of coloring of glass fabrics
US4283452A (en) Polyester textile material having improved opacity
CN109667153A (en) A kind of fabric anti-flaming dope and the flame retardant fabric using the anti-flaming dope
JPS6246673B2 (en)
Chowdhury et al. Comparative enactment of fluorocarbon-free and fluorocarbon-based water repellent finishes on cotton single jersey fabrics
US4595394A (en) Agent for improving processability of cellulose fibers: acid polymer salts for improved scouring
JPH0345138B2 (en)
KR100701483B1 (en) Color Deepening Agent for Fibers
US4420507A (en) Process for improving opacity of polyester textile materials
JP4628952B2 (en) Fiber deepening agent, deepening method and fiber
JPS6240470B2 (en)
NO180596B (en) Flame retardant and method of use
JP2000265369A (en) Textile treatment agent and treatment of textile structure product
BE883343A (en) OPACIFICATION PROCESS OF POLYESTER TEXTILE MATERIALS AND OPACIFIED TEXTILE MATERIAL OBTAINED
JPS6075670A (en) Treatment of cellulose fiber material
JP3964505B2 (en) Processing method of polyester fiber fabric
JPS6320950B2 (en)
JP2004176238A (en) Cellulosic fiber structure furnished with high color fastness and processing method
JPS63315681A (en) Dark color fastness coloration of aromatic polyamide fiber cloth
JPS6139438B2 (en)
JP2851366B2 (en) Method for producing water-repellent polyester fiber with excellent durability
JP2820150B2 (en) Deep-colored fiber structure