JPS6246607B2 - - Google Patents

Info

Publication number
JPS6246607B2
JPS6246607B2 JP17677384A JP17677384A JPS6246607B2 JP S6246607 B2 JPS6246607 B2 JP S6246607B2 JP 17677384 A JP17677384 A JP 17677384A JP 17677384 A JP17677384 A JP 17677384A JP S6246607 B2 JPS6246607 B2 JP S6246607B2
Authority
JP
Japan
Prior art keywords
furnace
exhaust gas
converter
control
gas recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17677384A
Other languages
Japanese (ja)
Other versions
JPS6156221A (en
Inventor
Tooru Yoshida
Toshiki Hino
Hiroshi Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17677384A priority Critical patent/JPS6156221A/en
Publication of JPS6156221A publication Critical patent/JPS6156221A/en
Publication of JPS6246607B2 publication Critical patent/JPS6246607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は密閉転炉の排ガス回収制御方法に関す
るものである。 従来の技術 転炉の排ガス回収制御方法には大別して2つあ
り、その一つは炉口圧一定フイードバツク制御で
ある。この方法は一吹錬を通じて、最も多く見ら
れる炉内発生ガス変動に対して最適な制御パラメ
ーターに固定してフイードバツク制御を行うもの
であり、炉口圧調節はPI調節で行われている。 すなわち公知の式 u(t)=100/P(e(t)+1/T∫e
(t)dt) ……(1) 成田誠之助著、デイジタル・システム制御、
1983、p158(昭晃堂)において、制御パラメー
ターのPBおよびTIを一定としたフイードバツク
制御である。ここにu(t)は調節計の出力、P
Bは比例帯、e(t)は制御偏差、TIは積分時間
である。 他の一つの制御方法は排ガス流量予測制御方法
である(特公昭56−22926号)。この方法は過去の
ある程度マクロな炉内発生量の予測値を基準とし
て制御するものである。 発明が解決しようとする問題点 上述の炉口圧一定制御においては、スラグフオ
ーミング等による激しい炉内発生ガス変動に対応
することができず、このような場合は排ガス回収
ダクトと炉口との中継部で、上下動すなわち炉口
間隙を調節し得るスカートを上げて、炉口圧の変
動を解消する手段をとらざるを得なかつた。 また、排ガス流量予測制御方法においては、分
析値を利用して流量予測をするという手法上、制
御の遅れは避けられず、またガス分析等からのフ
オーミング状況の予測は困難な上、比較的ミクロ
で周期の短いガス変動に対応しきれない弱点があ
つた。 本発明は、上記の従来の技術の有する弱点のな
い密閉転炉排ガス回収制御方法を提供するもので
ある。 問題点を解決するための手段 本発明の構成は、 (1) 密閉転炉における排ガス回収方法において、
前記密閉転炉の炉体に炉内観測装置を設けて炉
内フオーミング状況を検出し、該検出状況に応
じて排ガス回収制御系を操作することを特徴と
する密閉転炉排ガス回収方法、および (2) 特許請求の範囲第1項において、当該転炉に
ついてスラグフオーミング状況と排ガス回収制
御系の相関を求めて、あらかじめ基準制御プロ
グラムを設定しておき、前記スラグフオーミン
グ状況検出に応じて前記プログラムに従い、回
収制御を実施する方法である。 転炉吹錬中には滓化、脱炭、脱燐、脱硫等の多
種の反応が行われるが、炉内状況の把握特に滓化
状況を的確に知ることは、転炉操業上極めて有用
である。 本出願人は転炉側壁に貫通孔を設け、炉内観測
装置を設けて炉況を観測し、スロツピングの検出
を行う装置等に関する一連の特許を出願した(例
えば特開昭60−228931)。 この炉内観測装置は、第1図に示すように転炉
1の側壁に炉内観測孔5を設け、炉内観測用プロ
ーブ6を挿置し、プローブ先端で受光した炉内光
を光電変換素子7で電気信号に変換し、スラグフ
オーミング量検出器9においてスラグフオーミン
グの状況を検出する装置である。 該装置でスラグフオーミング量の大小と、排ガ
ス発生状況との相関を詳細に調査したところ極め
て高い相関関係があり、しかも排ガス発生量の変
動はフオーミング検知により予知できることか
ら、従来の排ガス発生量変動の後におくれて検知
される炉口圧変動によつて、排ガス回収系を制御
するよりも遥かに高精度の制御が可能になること
を知つたのである。 スラグフオーミング量の大小は、詳しくは次の
ごとく求められる。前述のプローブ6内には、光
導体例えば石英系光フアイバーの如く高温物体か
ら放射される放射光を低損失で伝送する導体が内
蔵され、先端部は高温に曝されながら炉内光を受
光して室温下にある光電変換素子7に伝送する。
光電変換素子とは光をその強度に比例して波長別
に電気信号に変換させる機能を有するもので、
ITVカメラがその一例である。 炉内における吹錬中のスラグと、スラグ上部の
ガス雰囲気の発する光の波長と強度の関係に差が
あることから、受光した炉内光を波長別に分別
し、色別面積量および色別面積量の変化量として
演算処理し、特定の色に関わるこれら2つの量の
大きさとスラグフオーミング状況との相関を多数
の実績から求め、これらから得られた判断基準を
用い、炉内観測によるフオーミング状況の検出が
可能になつた。 上記面積量および面積量の変化量をある閾値に
より2値化して1、0の信号としてとり出し、こ
れら信号とフオーミングの大小を判定する基準は
第1表のように示される。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for controlling exhaust gas recovery from a closed converter. BACKGROUND TECHNOLOGY There are two main methods for controlling exhaust gas recovery in a converter, one of which is constant furnace pressure feedback control. This method performs feedback control by fixing the optimal control parameters for the most frequently observed fluctuations in the gas generated in the furnace, and the furnace mouth pressure is adjusted by PI adjustment. That is, the well-known formula u(t)=100/P B (e(t)+1/T I ∫e
(t) dt) ...(1) Seinosuke Narita, Digital System Control,
1983, p158 (Shokodo), this is feedback control in which the control parameters P B and T I are kept constant. Here u(t) is the output of the controller, P
B is the proportional band, e(t) is the control deviation, and T I is the integration time. Another control method is the exhaust gas flow rate predictive control method (Japanese Patent Publication No. 56-22926). This method controls based on past macroscopic predictions of the amount generated in the reactor. Problems to be Solved by the Invention The above-mentioned constant furnace mouth pressure control cannot cope with severe fluctuations in the gas generated in the furnace due to slag forming, etc. In such cases, the connection between the exhaust gas collection duct and the furnace mouth is It was necessary to take measures to eliminate fluctuations in the pressure at the furnace mouth by raising a skirt at the relay section that can move up and down, that is, adjust the gap at the furnace mouth. In addition, in the exhaust gas flow rate prediction control method, control delays are unavoidable because the flow rate is predicted using analysis values, and it is difficult to predict forming conditions from gas analysis, etc., and it is relatively microscopic. However, there was a weakness in the ability to respond to short-period gas fluctuations. The present invention provides a closed converter exhaust gas recovery control method that does not have the weaknesses of the above-mentioned conventional techniques. Means for Solving the Problems The configuration of the present invention is as follows: (1) In a method for recovering exhaust gas in a closed converter,
A closed converter exhaust gas recovery method, characterized in that an in-furnace observation device is provided in the furnace body of the closed converter to detect the in-furnace forming status, and an exhaust gas recovery control system is operated according to the detected status, and ( 2) In claim 1, a reference control program is set in advance by determining the correlation between the slag forming situation and the exhaust gas recovery control system for the converter, and the control program is set in advance in accordance with the detection of the slag forming situation. This method implements collection control according to a program. During converter blowing, various reactions such as slag formation, decarburization, dephosphorization, and desulfurization take place, but it is extremely useful to accurately know the conditions inside the furnace, especially the slag formation status. be. The present applicant has applied for a series of patents related to a device for detecting slopping by providing a through hole in the side wall of a converter and installing an inside observation device to observe the condition of the furnace (for example, Japanese Patent Laid-Open No. 60-228931). As shown in Fig. 1, this in-furnace observation device provides an in-furnace observation hole 5 in the side wall of a converter 1, inserts an in-furnace observation probe 6, and converts the in-furnace light received at the tip of the probe into a photoelectric converter. This is a device in which an element 7 converts the signal into an electrical signal, and a slag forming amount detector 9 detects the state of slag forming. Using this equipment, we investigated in detail the correlation between the amount of slag forming and the status of exhaust gas generation, and found that there was an extremely high correlation.Furthermore, fluctuations in the amount of exhaust gas generated can be predicted by forming detection, so it is possible to predict fluctuations in the amount of exhaust gas generated using conventional methods. They learned that much more precise control than controlling the exhaust gas recovery system could be achieved by detecting changes in the furnace mouth pressure at a later time. The magnitude of the slag forming amount is determined in detail as follows. The aforementioned probe 6 has a built-in conductor such as a quartz-based optical fiber that transmits synchrotron radiation emitted from a high-temperature object with low loss, and the tip receives the light inside the furnace while being exposed to high temperature. and transmits it to the photoelectric conversion element 7 located at room temperature.
A photoelectric conversion element has the function of converting light into electrical signals by wavelength in proportion to its intensity.
ITV cameras are one example. Since there is a difference in the relationship between the wavelength and intensity of the light emitted by the slag being blown in the furnace and the gas atmosphere above the slag, the received furnace light is separated by wavelength, and the amount of area by color and the area by color are calculated. The correlation between the size of these two quantities related to a specific color and the slag forming situation is calculated based on a number of results, and the judgment criteria obtained from these are used to determine the forming process through in-furnace observation. It is now possible to detect situations. The amount of area and the amount of change in the amount of area are binarized using a certain threshold value and taken out as signals of 1 and 0, and the criteria for determining the magnitude of these signals and forming are shown in Table 1.

【表】 スラグフオーミング量検出器は上述の判定機能
を有するものである。 排ガス回収系の制御を前記(1)式で示されるPI調
節で行う場合、定性的には次のように考えられ
る。すなわち、フオーミング傾向の大きい場合
は、制御ゲイン100/PBを大きくしてダンパーの
瞬時応答を速かにし、逆に、ダンパーの定常応答
は悪い方に傾くが、積分時間TIは長くとつて、
位相ずれによる制御偏差の増幅を防いだ方が良
い。フオーミング傾向の小さい場合は制御ゲイン
は大きくする必要はなく、積分時間も長くとる必
要はない。 これらを図に表すと第2図のようになる。 さらにこれらの関係を多くの実験例から定量化
し、前述の第1表と組合せ、一例として制御パラ
メーターの実数を入れた第2表が得られる。した
がつて第2表の数値により基準制御プログラムを
設定しておき、前記スラグフオーミング状況検出
に応じて、回収制御を行うことにより、安定した
しかも極めて効率の高い排ガス回収を行うことが
できる。
[Table] The slag forming amount detector has the above-mentioned determination function. When the exhaust gas recovery system is controlled by the PI adjustment shown by the above equation (1), it can be qualitatively considered as follows. In other words, when the forming tendency is large, the control gain 100/P B is increased to speed up the instantaneous response of the damper, and conversely, the steady response of the damper tends to be worse, but the integration time T I is set longer. ,
It is better to prevent amplification of control deviation due to phase shift. When the forming tendency is small, the control gain does not need to be large, and the integration time does not need to be long. If these are represented in a diagram, it will look like Figure 2. Further, these relationships are quantified from many experimental examples and combined with the above-mentioned Table 1 to obtain Table 2, which includes actual numbers of control parameters as an example. Therefore, by setting a reference control program based on the values in Table 2 and performing recovery control in accordance with the detection of the slag forming situation, stable and extremely efficient exhaust gas recovery can be achieved.

【表】 これを第1図で説明すれば、スラグフオーミン
グ量検出器9から得られた情報は演算処理装置1
0に入力し、基準制御プログラムによりPB,TI
が算出され、一方炉口圧力発信器4からは炉口圧
測定値が入力し、(1)式の演算が行われ、その結果
がダンパー操縦器13に伝達されてダンパー12
の開閉を行う。 本発明の方法を実施例によりさらに具体的に説
明する。 実施例 170t/ch上吹密閉転炉において、前記の炉内観
測装置を設けて炉内フオーミング状況を検出し、
第2表に準拠した基準制御プログラムに従つて転
炉発生ガス回収制御を行いつつ排ガス回収を行つ
た。 制御偏差算出のための炉口圧設定値は0mmAq
一定とし、炉口間隙は200mm一定とした。 得られた結果を第3図および第3表に示す。第
3図Aはスラグフオーミング時の炉内発生ガスパ
ターンを示すもので、1サイクルは8〜10秒であ
つた。したがつてこれに伴う炉口圧変動の1サイ
クルも8〜10秒となり、スラグフオーミング時の
異状変動を炉口圧から検知するためには少なくと
も8〜10秒を要し、制御のタイミングを失するお
それがあることがわかる。第3図Bの実線は従来
の制御パラメーター(PB=200%、TI=2秒)
を使つた場合、破線は本発明の方法により第2表
の基準に従い制御パラメーターを変更し、PB
100%、TI=20秒とした場合のAに対応する炉口
圧変動を表わしたものであつて、振幅の相異は明
らかである。 第3表によれば、本発明と従来技術による各20
回の操業実施例において、平均の炉口圧最大値、
最小絶体値、バラツキすべて本発明の方法が小さ
く、平均炉口燃焼率も約4割減となり、本発明方
法の優秀性が示されている。
[Table] To explain this using FIG. 1, the information obtained from the slag forming amount detector 9 is
0 and P B , T I by the reference control program.
is calculated, and on the other hand, the furnace mouth pressure measurement value is input from the furnace mouth pressure transmitter 4, the calculation of equation (1) is performed, and the result is transmitted to the damper controller 13 and the damper 12
Opens and closes. The method of the present invention will be explained in more detail with reference to Examples. Example In a 170t/ch top-blown closed converter, the above-mentioned furnace observation device was installed to detect the forming situation inside the furnace,
Exhaust gas was recovered while performing converter generated gas recovery control in accordance with a standard control program based on Table 2. The furnace mouth pressure setting value for calculating control deviation is 0 mmAq.
The furnace opening gap was kept constant at 200 mm. The results obtained are shown in FIG. 3 and Table 3. FIG. 3A shows the gas pattern generated in the furnace during slag forming, and one cycle was 8 to 10 seconds. Therefore, one cycle of fluctuating furnace mouth pressure due to this takes 8 to 10 seconds, and it takes at least 8 to 10 seconds to detect abnormal fluctuations during slag forming from the furnace mouth pressure, making it difficult to control the timing. It is clear that there is a risk of loss. The solid line in Figure 3B is the conventional control parameter (P B = 200%, T I = 2 seconds)
When using P B =
This shows the furnace mouth pressure fluctuation corresponding to A when T I = 20 seconds and 100%, and the difference in amplitude is clear. According to Table 3, each 20
In the operation example, the average furnace mouth pressure maximum value,
Both the minimum absolute value and the variation were smaller in the method of the present invention, and the average furnace combustion rate was also reduced by about 40%, demonstrating the superiority of the method of the present invention.

【表】 発明の効果 転炉排ガス回収において、炉内にスラグフオー
ミングが発生して排ガス量に変動が生じた場合
は、おくれて起る炉口圧の変動により、さらに現
状においては炉口部の輝度・ゆらぎ等と合わせて
総合的に判断して対処しようとし、その方法も最
悪の場合はスカートの上昇で逃げることが考えら
れていた。 密閉転炉においては上記方法は適用できないも
のであるが、本発明の方法によれば、炉内観測装
置による炉内フオーミングの検出状況を排ガス回
収制御系の制御操作に直接的に反映させることに
より、制御系操作のタイミングを失することなく
機械的に適切に対処することができ、炉口燃焼率
も低減させることができる。 以上述べたように、本発明は従来法ではなし得
なかつた密閉転炉排ガス回収の操業の安定を可能
とし、排ガス回収率の向上に寄与するものであ
る。
[Table] Effects of the invention During converter exhaust gas recovery, if slag forming occurs in the furnace and fluctuates the amount of exhaust gas, the fluctuating pressure at the furnace mouth that occurs later causes further damage to the furnace mouth. An attempt was made to deal with the problem by making a comprehensive judgment in conjunction with the brightness and fluctuation of the light, and in the worst-case scenario, the idea was to escape by raising the skirt. The above method cannot be applied to a closed converter, but according to the method of the present invention, the detection status of forming inside the furnace by the inside observation device is directly reflected in the control operation of the exhaust gas recovery control system. , it is possible to respond appropriately mechanically without losing the timing of control system operation, and the furnace combustion rate can also be reduced. As described above, the present invention makes it possible to stabilize the operation of closed converter exhaust gas recovery, which could not be achieved with conventional methods, and contributes to improving the exhaust gas recovery rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法による排ガス回収制御の
概要説明図、第2図はスラグフオーミング量と制
御パラメーターの関係を表わす図、第3図Aはス
ラグフオーミング時の発生ガスパターンを示す
図、第3図BはAに対応する炉口圧の変動を示す
図である。 1……転炉、2……スカート、3……排ガス回
収ダクト、4……炉口圧発信器、5……炉内観測
孔、6……観測用プローブ、7……光電変換素
子、9……スラグフオーミング量検出器、10…
…演算処理装置、11……ランス、12……ダン
パー、13……ダンパー操縦器、14……誘引フ
アン。
Fig. 1 is a schematic explanatory diagram of exhaust gas recovery control according to the method of the present invention, Fig. 2 is a diagram showing the relationship between the amount of slag forming and control parameters, and Fig. 3A is a diagram showing the gas pattern generated during slag forming. , FIG. 3B is a diagram showing the fluctuation of the furnace mouth pressure corresponding to A. 1... Converter, 2... Skirt, 3... Exhaust gas recovery duct, 4... Furnace pressure transmitter, 5... Furnace observation hole, 6... Observation probe, 7... Photoelectric conversion element, 9 ...Slag forming amount detector, 10...
... Arithmetic processing unit, 11 ... Lance, 12 ... Damper, 13 ... Damper controller, 14 ... Induction fan.

Claims (1)

【特許請求の範囲】 1 密閉転炉における排ガス回収方法において、
前記密閉転炉の炉体に炉内観測装置を設けて炉内
フオーミング状況を検出し、該検出状況に応じて
排ガス回収制御系を操作することを特徴とする密
閉転炉排ガス回収方法。 2 密閉転炉の炉体に炉内観測装置を設けて炉内
フオーミング状況を検出し、且つ当該転炉につい
てスラグフオーミング状況と排ガス回収制御系の
相関を求めて、あらかじめ基準制御プログラムを
設定しておき、前記スラグフオーミング状況検出
に応じて前記プログラムに従い、回収制御を実施
する方法。
[Claims] 1. In a method for recovering exhaust gas in a closed converter,
A closed converter exhaust gas recovery method, characterized in that an in-furnace observation device is provided in the furnace body of the closed converter to detect the in-furnace forming status, and an exhaust gas recovery control system is operated in accordance with the detected status. 2 Install an in-furnace observation device in the furnace body of a closed converter to detect the forming situation inside the furnace, and also determine the correlation between the slag forming situation and the exhaust gas recovery control system for the converter, and set a standard control program in advance. and performing collection control according to the program in response to the detection of the slag forming situation.
JP17677384A 1984-08-27 1984-08-27 Method for recovering hermetic converter waste gas Granted JPS6156221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17677384A JPS6156221A (en) 1984-08-27 1984-08-27 Method for recovering hermetic converter waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17677384A JPS6156221A (en) 1984-08-27 1984-08-27 Method for recovering hermetic converter waste gas

Publications (2)

Publication Number Publication Date
JPS6156221A JPS6156221A (en) 1986-03-20
JPS6246607B2 true JPS6246607B2 (en) 1987-10-02

Family

ID=16019575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17677384A Granted JPS6156221A (en) 1984-08-27 1984-08-27 Method for recovering hermetic converter waste gas

Country Status (1)

Country Link
JP (1) JPS6156221A (en)

Also Published As

Publication number Publication date
JPS6156221A (en) 1986-03-20

Similar Documents

Publication Publication Date Title
KR101176735B1 (en) Electric arc furnace, method for controlling the same, and method for determining a foam slag height of an electric arc furnace
US4233596A (en) Flare monitoring apparatus
KR20150079971A (en) Method and device for predicting, controlling and/or regulating steelworks processes
CN106795573B (en) Method and device for determining the ignition time point in an oxygen converting process
CA1250356A (en) Method and apparatus for measuring slag-forming conditions within converter
JPS6246607B2 (en)
US4749171A (en) Method and apparatus for measuring slag-foam conditions within a converter
US4314694A (en) Method for controlling exhaust gases in oxygen blown converter
KR100397439B1 (en) Device and method for monitoring and controlling flame of burner
US4192486A (en) Method for controlling exhaust gases in oxygen blown converter
CN116622929A (en) Method for automatically controlling opening degree of two-venturi throat of converter
JP2001254111A (en) Method of controlling furnace heat in blast furnace and guidance device
CN216081763U (en) Converter audio frequency detecting system
CN112899432A (en) Converter smelting method based on flue gas analysis
CA1092361A (en) Method for controlling exhaust gases in oxygen blown converter
JP3874696B2 (en) Converter pressure control method and apparatus for converter
JP3685549B2 (en) Acoustic gas temperature measuring device
JPS5839204B2 (en) Furnace pressure control device in converter waste gas treatment equipment
JP2905026B2 (en) Converter ignition detection method
SU711108A1 (en) Method of oxygen convertor process control
JPS63105321A (en) Combustion control
JPS6148737A (en) Detecting method of converter slag forming
JP2650612B2 (en) How to check the safety of the hoist
Iso et al. Instrumentation and control for a refining process in steelmaking
SU1560917A1 (en) Method of monitoring boiler operation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees