JPS6246562A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6246562A
JPS6246562A JP18580585A JP18580585A JPS6246562A JP S6246562 A JPS6246562 A JP S6246562A JP 18580585 A JP18580585 A JP 18580585A JP 18580585 A JP18580585 A JP 18580585A JP S6246562 A JPS6246562 A JP S6246562A
Authority
JP
Japan
Prior art keywords
semiconductor layer
channel
holes
electrodes
hetero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18580585A
Other languages
Japanese (ja)
Inventor
Keiichi Ohata
惠一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18580585A priority Critical patent/JPS6246562A/en
Publication of JPS6246562A publication Critical patent/JPS6246562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form an IC, which operates at high speed and has the high degree of integration and excellent mass productivity, by modulating conductivity between a pair of electrodes having ohmic properties to holes formed in a first semiconductor layer by injecting electrons to a second semiconductor layer from a third semiconductor layer. CONSTITUTION:Holes are induced on the reverse side of a hetero-interface between a first semiconductor layer 12 and a second semiconductor layer 13 in response to the quantity of electrons injected toward an electrode 15 along the hetero-interface from a control electrode 17, and a hole channel 19 having high conductivity is shaped. The channel holes are accelerated between electrodes 15, 16, and large currents can be made to flow. That is, the channel fills the same role as a field-effect transistor FET using a hetero-interface having the different energy levels of valence bands as a channel. That is, the modulation mode of currents means conductivity modulation by electron injection, and the channel functions in a FET manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速動作の半導体装置、特に正孔をキャリアと
する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device that operates at high speed, and particularly to a semiconductor device that uses holes as carriers.

〔従来技術とその問題点〕[Prior art and its problems]

近年、高速コンピュータ用素子として、超高速素子の研
究開発が盛んに行われている。このような超高速素子の
中で、大きな電流駆動能力を有するものとして、バイポ
ーラトランジスタが注目されている。特に0aAs等化
合物半導体を用いた高性能バイポーラトランジスタとし
て、エミッタにベースよりバンドギャップの大きい半導
体を用いた、いわゆるヘテロバイポーラトランジスタ(
HBT)およびそのIC化が研究されている。
In recent years, research and development of ultrahigh-speed devices as devices for high-speed computers has been actively conducted. Among such ultra-high-speed devices, bipolar transistors are attracting attention as they have a large current driving capability. In particular, as a high-performance bipolar transistor using a compound semiconductor such as 0aAs, a so-called hetero bipolar transistor (
HBT) and its IC implementation are being researched.

例えば、1981年国際電子デバイス会議(Inter
national Electron Devices
 Meeting)ダイジェスト、629頁から632
頁にあるように、ベースにGaAsを、エミッタにAβ
GaAsを用いたnpn型が良く研究されている。しか
しながら、HBTでは構造およびプロセスが極めて複雑
であり、高集積化には多くの問題点を残している。また
、特にコレクターベース間容量が大きく、高速性も限定
されている。さらに高集積化には相補型構成のメリット
が大であるが、正孔をキャリアとするpnp型は得られ
ていないのが現状である。
For example, the 1981 International Conference on Electronic Devices (Inter
national electron devices
Meeting) Digest, pages 629-632
As shown in the page, GaAs is used for the base and Aβ is used for the emitter.
The npn type using GaAs has been well studied. However, HBTs have extremely complex structures and processes, and many problems remain in achieving high integration. In addition, the capacity between the collector bases is especially large, and the high speed is also limited. Furthermore, although a complementary type structure has great advantages in achieving high integration, the current situation is that a pnp type structure in which holes are used as carriers has not been obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電流駆動能力が大きく、かつ高速で超
高速ICに適した正孔をキャリアとする新規な半導体装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel semiconductor device that uses holes as carriers and has a large current drive capability and is suitable for ultra-high-speed ICs.

〔発明の構成〕[Structure of the invention]

本発明の半導体装置は、低不純物密度の第1の半導体層
上に、第1の半導体層より電子親和力および電子親和力
とバンドギャップの和の両方が大きい低不純物密度ある
いはp型の第2の半導体層と、電子を注入するための第
3の半導体層とが積載され、第1の半導体層に対して形
成された一対のオーム性電極を備え、第1の半導体層中
に形成された正孔に対して前記オーム性の一対の電極の
間の導電度を第3の半導体層から第2の半導体層に電子
を注入することによって変調することを特徴としている
In the semiconductor device of the present invention, a low impurity density or p-type second semiconductor having a larger electron affinity and a sum of electron affinity and band gap than the first semiconductor layer is formed on the first semiconductor layer with a low impurity density. layer and a third semiconductor layer for injecting electrons, comprising a pair of ohmic electrodes formed with respect to the first semiconductor layer, and a pair of ohmic electrodes formed in the first semiconductor layer. In contrast, the conductivity between the pair of ohmic electrodes is modulated by injecting electrons from the third semiconductor layer to the second semiconductor layer.

〔構成の詳細な説明〕 第1図は本発明による半導体装置の基本構造の一例を示
す模式的構造断面図である。
[Detailed Description of Structure] FIG. 1 is a schematic structural sectional view showing an example of the basic structure of a semiconductor device according to the present invention.

この半導体装置は、高抵抗基板11、例えば半絶縁性I
nP基板上に、低不純物密度の第1の半導体層12、例
えばアンドープIn/l’As層と、第1の半導体層よ
り電子親和力および電子親和力とバンドギャップとの和
の両方の大きい第2の半導体層13、例えばアンドープ
InP層と、電子注入のための第3の半導体層14、例
えばn”−InP層と、第1の半導体層12に対して形
成されるオーム性の一対の電極15.16、例えばp”
−InA!As領域15a、16aとAu−Znオーム
性電極15b。
This semiconductor device includes a high-resistance substrate 11, for example, a semi-insulating I
A first semiconductor layer 12 having a low impurity density, for example, an undoped In/l'As layer, and a second semiconductor layer having both a larger electron affinity and a sum of electron affinity and band gap than the first semiconductor layer are formed on the nP substrate. A semiconductor layer 13, for example an undoped InP layer, a third semiconductor layer 14 for electron injection, for example an n''-InP layer, and a pair of ohmic electrodes 15 formed on the first semiconductor layer 12. 16, for example p”
-InA! As regions 15a, 16a and Au-Zn ohmic electrode 15b.

16bから構成される一対の電極と、p”−InP履1
4にオーム性の制御電極17とが積載されている。
A pair of electrodes consisting of 16b and p''-InP 1
4 is loaded with an ohmic control electrode 17.

以上のような構造の半導体装置の制御電極17下におけ
る熱平衡状態におけるバンドダイヤグラムを第2図に示
す、ここでE。、 EF、 EVはそれぞれ伝導帯下端
、フェルミレベル、価電子帯上端のエネルギーレベルを
表わす。
A band diagram in a thermal equilibrium state under the control electrode 17 of the semiconductor device having the above structure is shown in FIG. 2, where E is shown. , EF, and EV represent the energy levels of the lower end of the conduction band, the Fermi level, and the upper end of the valence band, respectively.

今、電極15をアースにして、制御電極17に負の充分
大きい電圧を印加し、電子を注入した場合を考える。第
3図には、この場合の制御電極17下におけるバンドダ
イヤグラムを示す。図において、注入された電子を・印
で示し、注入の状態を矢印で示す。この時電子は、第1
の半導体層12と第2の半導体層13の伝導帯のエネル
ギー準位の差によって、第1の半導体層12と第2の半
導体層13のへテロ界面の第2の半導体層側に蓄積され
る。蓄積された電子を18で示す。これら電子はへテロ
界面に沿って動くが、同時に電荷中性を保つために正孔
を誘起する。この場合、第1の半導体層12と第2の半
導体層13の伝導帯のエネルギー準位の差によって、誘
起正孔は第1の半導体層側に蓄積される。蓄積された正
孔を0印19で示す。
Now, consider the case where the electrode 15 is grounded, a sufficiently large negative voltage is applied to the control electrode 17, and electrons are injected. FIG. 3 shows a band diagram under the control electrode 17 in this case. In the figure, the injected electrons are indicated by marks, and the state of injection is indicated by arrows. At this time, the electron is the first
is accumulated on the second semiconductor layer side of the hetero interface between the first semiconductor layer 12 and the second semiconductor layer 13 due to the difference in the energy level of the conduction band between the semiconductor layer 12 and the second semiconductor layer 13. . The accumulated electrons are indicated by 18. These electrons move along the heterointerface, but at the same time induce holes to maintain charge neutrality. In this case, the induced holes are accumulated on the first semiconductor layer side due to the difference in the energy level of the conduction band between the first semiconductor layer 12 and the second semiconductor layer 13. The accumulated holes are indicated by 0 mark 19.

この状態で、電極16に負の電圧を印加したときの正孔
および電子の流れを第4図に示す。制御電極17から第
1の半導体層12と第2の半導体層13のへテロ界面に
沿って電極15に向かって注入された電子の量に見合っ
てヘテロ界面の反対側に正孔が誘起され、高導電度の正
孔チャネルが形成される。
FIG. 4 shows the flow of holes and electrons when a negative voltage is applied to the electrode 16 in this state. Holes are induced on the opposite side of the hetero interface in proportion to the amount of electrons injected from the control electrode 17 toward the electrode 15 along the hetero interface between the first semiconductor layer 12 and the second semiconductor layer 13, A highly conductive hole channel is formed.

このチャネル正孔は電極15.16間の電界で加速され
、大電流が流れ得る。すなわち、チャネルは価電子帯の
エネルギーレベルの異なるヘテロ界面をチャネルとする
電界効果トランジスタ(FET)と同様な振舞いをする
。すなわち、電流の変調モードは電子注入による導電度
変調であり、チャネルはFET的である。
This channel hole is accelerated by the electric field between the electrodes 15 and 16, and a large current can flow. That is, the channel behaves similar to a field effect transistor (FET) whose channel is a heterointerface having different energy levels in the valence band. That is, the current modulation mode is conductivity modulation by electron injection, and the channel is FET-like.

ここで正孔チャネルの電流と、制御電極17へ流出する
電流比、すなわち電流増幅率は、正孔が高速である程、
および注入された電子の流出が少ない程大きくなる。本
半導体装置では、注入された電子は、第1および第2の
半導体層12.13のへテロ接合界面に蓄積されて第1
の半導体層12側へ流出することが少なく、かつ正孔1
9と場所的に少し離れているため正孔と再結合すること
が少なく、従って消失が少ない。さらに電極15と17
間の電界は小さく、電子電流は小さい。またチャネルの
正孔も第2の半導体層13によるバリアのために制御電
極17側へ流出することは少ない。また正孔チャネルは
、不純物の少ない高品質なヘテロ界面に形成されるため
、正孔は極めて高速となり、チャネル電流も大きくなる
。従って本発明の半導体装置では、正孔をキャリアとし
ても電流増幅率を大きくとることができる。また制御電
極17と電極16間の第2の半導体層は、FETと同様
に空乏化しており、従ってFETと同様に小さい制御電
極17−電極16間のフィードバック容量を有している
。すなわち本半導体装置により、FETと同様な構造の
簡単さ、高速性、小さな寄生抵抗および寄生容量を有し
、バイポーラトランジスタ並の大電流駆動を実現するも
のである。
Here, the ratio of the current in the hole channel to the current flowing out to the control electrode 17, that is, the current amplification factor, is as follows:
And the smaller the outflow of injected electrons, the larger it becomes. In this semiconductor device, the injected electrons are accumulated at the heterojunction interface between the first and second semiconductor layers 12.
The hole 1 is less likely to flow out to the semiconductor layer 12 side, and the hole 1
Since it is located a little apart from 9, it is less likely to be recombined with holes, and therefore less likely to disappear. Furthermore, electrodes 15 and 17
The electric field between them is small, and the electron current is small. Further, holes in the channel are also less likely to flow out to the control electrode 17 side due to the barrier provided by the second semiconductor layer 13. Furthermore, since the hole channel is formed at a high-quality heterointerface with few impurities, the hole becomes extremely fast and the channel current becomes large. Therefore, in the semiconductor device of the present invention, a large current amplification factor can be obtained even when holes are used as carriers. Further, the second semiconductor layer between the control electrode 17 and the electrode 16 is depleted like an FET, and therefore has a small feedback capacitance between the control electrode 17 and the electrode 16 like an FET. That is, this semiconductor device has a simple structure similar to that of an FET, high speed, small parasitic resistance and parasitic capacitance, and realizes large current drive comparable to that of a bipolar transistor.

なお第2の半導体層のInP層13はp型ドープされて
いても良いが、この場合は層13は十分薄くてn”−p
接合の空乏層によって完全に空乏化し、熱平衡状態で層
13中はもちろんチャネル層12中にも、注入電子に対
して無視しうる程キャリア数が少ないことが必要である
Note that the InP layer 13 of the second semiconductor layer may be p-type doped, but in this case, the layer 13 is sufficiently thin and n''-p doped.
It is necessary that the number of carriers is completely depleted by the junction depletion layer, and that the number of carriers in the layer 13 as well as in the channel layer 12 in a thermal equilibrium state is negligible with respect to the injected electrons.

〔実施例〕〔Example〕

本発明の半導体装置の一実施例の構造を第5図に示す。 The structure of one embodiment of the semiconductor device of the present invention is shown in FIG.

基板11として、半絶縁性InP基板を用い、分子線エ
ピタキシーにより、第1の半導体層12として電子密度
5 XIO”am−3,厚さ3000人のアンドープI
nΔj2As層、および第2の半導体層13として、電
子密度I X1015cm−’、 厚さ200人のアン
ドープInP層、さらに電子注入のための第3の半導体
層14として、SlがIXIO19am−3ドープされ
た厚さ100人のn”−InP層を連続成長させる。
A semi-insulating InP substrate is used as the substrate 11, and the first semiconductor layer 12 is formed by undoped I with an electron density of 5 XIO" am-3 and a thickness of 3000 by molecular beam epitaxy.
As the nΔj2As layer, and as the second semiconductor layer 13, an undoped InP layer with an electron density of IX1015 cm-' and a thickness of 200 nm, and as the third semiconductor layer 14 for electron injection, Sl was doped with IXIO19am-3. Successively grow a 100-layer n''-InP layer.

n”−InP層1層上4上βを蒸着し、電極21と22
間を覆うレジストパターンを形成し、このマスクを用い
てAβをエツチングし、さらにサイドエツチングを行っ
て制御電極17を形成する。前記マスクを再び用いてA
u−Znの蒸着、リストオフを行い、熱処理して、オー
ム性電極21.22を形成する。
Deposit β on the n''-InP layer 1 and then form the electrodes 21 and 22.
A resist pattern is formed to cover the gap, Aβ is etched using this mask, and side etching is further performed to form the control electrode 17. Using the mask again, A
U-Zn vapor deposition, list-off, and heat treatment are performed to form ohmic electrodes 21 and 22.

したがって制御電極17は、オーム性電極21と22間
に自己整合で形成される。、なお本実施例では、この合
金層が第1図の15aと15bおよび16aと16bを
兼ねるようにしている。さらにこれら電極をマスクにし
て、これら電極間のn”−InP層14をエツチングす
れば素子が完成する。なお、電極17の電極長は0.5
μm、電極21と22間は2μmである。
Control electrode 17 is therefore formed in self-alignment between ohmic electrodes 21 and 22. In this embodiment, these alloy layers also serve as 15a and 15b and 16a and 16b in FIG. Further, using these electrodes as a mask, the n''-InP layer 14 between these electrodes is etched to complete the device.The electrode length of the electrode 17 is 0.5
The distance between the electrodes 21 and 22 is 2 μm.

本実施例においては、電極21を接地し、電極22に負
電圧、例えば1■を印加した状態で、制御電極17に0
.6 V以上の負電圧を印加すると電極21.22間に
電流が流れ、制御電極17への負電圧を上げる、すなわ
ち電子の注入量を増すと、チャネル電流は指数関数的に
増大し、良好な正孔キャリアの高電流駆動のトランジス
タ動作が得られる。
In this embodiment, the electrode 21 is grounded and the control electrode 17 is applied with a negative voltage of 1 cm, for example, 0.
.. When a negative voltage of 6 V or more is applied, a current flows between the electrodes 21 and 22, and when the negative voltage to the control electrode 17 is increased, that is, the amount of electron injection is increased, the channel current increases exponentially, resulting in a good condition. Transistor operation with high current drive of hole carriers can be obtained.

なお以上では、半導体層として、InPとInAβAs
を用いた例について述べたが、電子親和力並びに電子親
和力とバンドギャップの和についての条件を満たす限り
、他の半導体でも良いことはもちろんである。また電子
の注入ソースとしてのn゛層14は成長結晶層を用いた
場合について説明したが、第2の半導体層13中にイオ
ン注入によって形成しても良いことは明らかである。
In the above description, InP and InAβAs are used as the semiconductor layer.
Although we have described an example using semiconductors, it goes without saying that other semiconductors may be used as long as they satisfy the conditions regarding electron affinity and the sum of electron affinity and band gap. Further, although the case where a grown crystal layer is used as the n' layer 14 as an electron injection source has been described, it is clear that it may be formed in the second semiconductor layer 13 by ion implantation.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明によれば、FETと同様な簡単な構
造で、高電流動作可能な高性能トランジスタが実現され
、高速、高集積な、量産性に優れたICの実現が可能と
なる。
As described above, according to the present invention, a high-performance transistor capable of high current operation is realized with a simple structure similar to an FET, and it becomes possible to realize a high-speed, highly integrated IC that is excellent in mass production. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の基本構造の一例を示す図
、 第2図および第3図は本発明の詳細な説明するためのバ
ンドダイヤグラム、 第4図は電子および正孔の流れを示す図、第5図は本発
明の一実施例を示す図である。 11・・・・・・・・・・・・・・・・・・・・・高抵
抗基板12・・・・・・・・・・・・・・・・・・・・
・第1の半導体層13・・・・・・・・・・・・・・・
・・・・・・第2の半導体層14・・・・・・・・・・
・・・・・・・・・・・第3の半導体層15.16・・
・・・・・・・・・・・・・p型のオーム性電極17・
・・・・・・・・・・・・・・・・・・・・制御電極1
8・・・・・・・・・・・・・・・・・・・・・注入電
子19・・・・・・・・・・・・・・・・・・・・・チ
ャネル正孔代理人 弁理士  岩 佐 義 幸 第1図 第2図   第3図 第4図 第5図
FIG. 1 is a diagram showing an example of the basic structure of the semiconductor device of the present invention, FIGS. 2 and 3 are band diagrams for explaining the present invention in detail, and FIG. 4 is a diagram showing the flow of electrons and holes. FIG. 5 is a diagram showing an embodiment of the present invention. 11・・・・・・・・・・・・・・・・・・High resistance board 12・・・・・・・・・・・・・・・・・・・・・
・First semiconductor layer 13・・・・・・・・・・・・・・・
. . . Second semiconductor layer 14 . . .
......Third semiconductor layer 15.16...
・・・・・・・・・・・・P-type ohmic electrode 17・
・・・・・・・・・・・・・・・・・・・・・Control electrode 1
8・・・・・・・・・・・・・・・・・・・Injected electron 19・・・・・・・・・・・・・・・・・・Channel hole substitute People Patent Attorney Yoshiyuki Iwasa Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)低不純物密度の第1の半導体層上に、第1の半導
体層より電子親和力および電子親和力とバンドギャップ
の和の両方が大きい低不純物密度あるいはp型の第2の
半導体層と、電子を注入するための第3の半導体層とが
積載され、第1の半導体層に対して形成された一対のオ
ーム性電極を備え、第1の半導体層中に形成された正孔
に対して前記オーム性の一対の電極の間の導電度を第3
の半導体層から第2の半導体層に電子を注入することに
よって変調することを特徴とする半導体装置。
(1) A low impurity density or p-type second semiconductor layer having a larger electron affinity and a sum of electron affinity and band gap than the first semiconductor layer, and a p-type second semiconductor layer on the low impurity density first semiconductor layer; a third semiconductor layer for injecting holes formed in the first semiconductor layer, and a pair of ohmic electrodes formed with respect to the first semiconductor layer; The conductivity between a pair of ohmic electrodes is the third
1. A semiconductor device characterized in that modulation is performed by injecting electrons from a semiconductor layer into a second semiconductor layer.
JP18580585A 1985-08-26 1985-08-26 Semiconductor device Pending JPS6246562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18580585A JPS6246562A (en) 1985-08-26 1985-08-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18580585A JPS6246562A (en) 1985-08-26 1985-08-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6246562A true JPS6246562A (en) 1987-02-28

Family

ID=16177195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18580585A Pending JPS6246562A (en) 1985-08-26 1985-08-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6246562A (en)

Similar Documents

Publication Publication Date Title
US5179037A (en) Integration of lateral and vertical quantum well transistors in the same epitaxial stack
JP2773487B2 (en) Tunnel transistor
JP2773474B2 (en) Semiconductor device
JP2604349B2 (en) Semiconductor device
US5571732A (en) Method for fabricating a bipolar transistor
US4903091A (en) Heterojunction transistor having bipolar characteristics
US4926232A (en) Resonant-tunneling bipolar transistor
US5489785A (en) Band-to-band resonant tunneling transistor
JP2800675B2 (en) Tunnel transistor
WO1987000692A1 (en) Semiconductor device
JPS6246562A (en) Semiconductor device
JPS6246564A (en) Semiconductor device
JP2792295B2 (en) Tunnel transistor
JPH088360B2 (en) Tunnel transistor and manufacturing method thereof
JPH04277680A (en) Tunnel transistor and manufacture of the same
JP2710312B2 (en) Semiconductor device
JPS6246563A (en) Semiconductor device
JPH0388369A (en) Heterostructure semiconductor device
JP4018355B2 (en) Resonant tunnel barrier structure
JP2778447B2 (en) Tunnel transistor and manufacturing method thereof
JP2655594B2 (en) Integrated semiconductor device
JPS6035577A (en) Field effect transistor
JPH01149465A (en) Heterojunction bipolar transistor
JPH0797633B2 (en) Field effect transistor
JPH01302771A (en) Field effect transistor