JPS6246484B2 - - Google Patents

Info

Publication number
JPS6246484B2
JPS6246484B2 JP16895583A JP16895583A JPS6246484B2 JP S6246484 B2 JPS6246484 B2 JP S6246484B2 JP 16895583 A JP16895583 A JP 16895583A JP 16895583 A JP16895583 A JP 16895583A JP S6246484 B2 JPS6246484 B2 JP S6246484B2
Authority
JP
Japan
Prior art keywords
gas
liquid contact
hydrogen
exchange reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16895583A
Other languages
Japanese (ja)
Other versions
JPS6060903A (en
Inventor
Shohei Isomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP16895583A priority Critical patent/JPS6060903A/en
Publication of JPS6060903A publication Critical patent/JPS6060903A/en
Publication of JPS6246484B2 publication Critical patent/JPS6246484B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、水―水素間同位体交換反応を利用
した水素の同位体である重水素またはトリチウム
を分離、濃縮するための装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for separating and concentrating deuterium or tritium, which are hydrogen isotopes, using a water-hydrogen isotope exchange reaction.

水―水素間同位体交換反応は次の2段階の反応
過程により進行し達成されることが知られてい
る。
It is known that the water-hydrogen isotope exchange reaction proceeds and is achieved through the following two-step reaction process.

第1反応過程;水素と水蒸気間の同位体交換反
応 第2反応過程;水と水蒸気間の同位体交換反応 第1反応過程には触媒が必要であり、該触媒と
して、近年、液体水による活性低下を防止する多
孔質のテフロンやスチレン・ジビニルベンゼン共
重合体などを成形した担体に、白金金属を細かく
分散担持した、いわゆる疎水性触媒が多く用いら
れるようになつてきた。この触媒により水素中の
重水素またはトリチウムは、交換反応によつて水
蒸気に移動し濃縮される。第2反応過程では液体
水と水蒸気とを物理的に接触させることにより、
水蒸気中の重水素またはトリチウムが液体水中に
移動し濃縮される。結局、水素から水蒸気、液体
水へと逐次水素同位体が移動し、総括の反応とし
て水素から液体水へと水素同位体が濃縮されるこ
とになる。しかしながら第1および第2の反応過
程はそれぞれ反応温度で一定な平衡定数により律
せられ、一回の反応過程では水素から水へ移動す
る水素同位体は、重水素については約3倍、トリ
チウムについては約5倍程度の濃度比になるにす
ぎない。そのため所望の濃度に水素同位体を分離
濃縮するためには、逐次的に反応過程を何回も繰
返してゆく必要がある。このような目的を達成さ
せるのに従来装置の一例として多段交換反応塔が
ある(特公昭58―5691号公報参照)。第1図にそ
の概念図を示す。1は疎水性触媒を充填した触媒
床であり、ここで塔底方向より上昇してくる水素
ガスと水蒸気(点線の矢印)を触媒床と並流接触
させ、第1反応過程の水素―水蒸気間同位体交換
反応を行わしめる。2は気液接触部であり、ここ
で塔頂方向より降下してくる液体水(白抜きの矢
印)と触媒床より上昇してくる水蒸気を向流接触
させ、第2反応過程の水―水蒸気間同位体交換反
応を行わしめる。3は液体水のデイストリビユー
タであり、気液接触部より降下してくる液体水が
直接触媒床に触れぬように触媒床を貫通する管路
と結合されている。該多段交換反応塔は、第1図
に示すように、このようなユニツトを多段に積み
重ねることにより交換反応を重畳し、所望の水素
同位体分離が達成されるようにしたものである。
1st reaction process: Isotope exchange reaction between hydrogen and water vapor 2nd reaction process: Isotope exchange reaction between water and water vapor So-called hydrophobic catalysts, in which platinum metal is finely dispersed and supported on a carrier made of porous Teflon or styrene/divinylbenzene copolymer to prevent deterioration, have come into widespread use. With this catalyst, deuterium or tritium in hydrogen is transferred to water vapor through an exchange reaction and concentrated. In the second reaction process, by bringing liquid water into physical contact with water vapor,
Deuterium or tritium in water vapor moves into liquid water and becomes concentrated. As a result, hydrogen isotopes are transferred sequentially from hydrogen to water vapor to liquid water, and the overall reaction is to concentrate hydrogen isotopes from hydrogen to liquid water. However, the first and second reaction processes are each governed by an equilibrium constant that is fixed at the reaction temperature, and in one reaction process, the hydrogen isotope transferred from hydrogen to water is approximately 3 times as large for deuterium and about 3 times as large for tritium. The concentration ratio is only about 5 times higher. Therefore, in order to separate and concentrate hydrogen isotopes to a desired concentration, it is necessary to sequentially repeat the reaction process many times. A multistage exchange reaction tower is an example of a conventional device for achieving this purpose (see Japanese Patent Publication No. 5691/1983). Figure 1 shows its conceptual diagram. 1 is a catalyst bed filled with a hydrophobic catalyst, where hydrogen gas and water vapor (dotted arrows) rising from the bottom of the column are brought into co-current contact with the catalyst bed, and the hydrogen-steam gap in the first reaction process is The isotope exchange reaction is carried out. 2 is a gas-liquid contact section, where the liquid water (white arrow) descending from the top of the column and the steam rising from the catalyst bed are brought into countercurrent contact, resulting in the water-steam reaction in the second reaction process. The isotope exchange reaction is carried out between Reference numeral 3 denotes a liquid water distributor, which is connected to a conduit passing through the catalyst bed so that the liquid water falling from the gas-liquid contact portion does not directly touch the catalyst bed. As shown in FIG. 1, the multi-stage exchange reaction column is constructed by stacking such units in multiple stages to superimpose exchange reactions and achieve desired hydrogen isotope separation.

しかしながら、従来装置の欠点として、触媒床
において水素、水蒸気の混合ガスが底部から頂部
へと重力方向に逆らつて上昇するため、飽和水蒸
気の一部が凝縮したり、飛沫同拌などにより触媒
床上で液体水が滞留し、そのため第1反応過程の
触媒交換反応を阻害する現象がしばしば見られ
た。また気液接触部と触媒床とが上下に位置して
いるため塔長を高くすることになり好ましくなか
つた。というのは、特にトリチウムのような放射
性同位元素を取り扱う施設などでは、装置を建設
するのに往々にして高さの制限があり、装置の高
さを極力低くする必要があるからである。
However, a drawback of conventional equipment is that a mixed gas of hydrogen and water vapor rises from the bottom to the top of the catalyst bed against the direction of gravity, which may cause some of the saturated water vapor to condense or drop onto the catalyst bed due to agitation. A phenomenon was often observed in which liquid water remained in the reactor, thereby inhibiting the catalyst exchange reaction in the first reaction process. Furthermore, since the gas-liquid contact section and the catalyst bed are located one above the other, the column length becomes undesirable. This is because, especially in facilities that handle radioactive isotopes such as tritium, there are often height restrictions when constructing equipment, and it is necessary to keep the height of the equipment as low as possible.

本発明者はこのような欠点のない装置につき研
究を進め本発明を完成するに至つた。
The present inventor has conducted research on a device free from such drawbacks and has completed the present invention.

本発明は、水と水素との間で水素同位体交換反
応を行わせるための多段交換反応塔において、 塔底へ向う液体の水と、塔頂へ向う水素と水蒸
気とを接触させる気液接触部; 前記気液接触部の外周に配置された、水素と水
蒸気との間で気相交換反応を行わせる触媒部; 前記気液接触部の上端部外側に配置された上方
仕切部材; 前記触媒部の下端部内側に配置された下方仕切
部材; 前記下方仕切部材の中央に配置され、前記気液
接触部から流下する液体の水を受けて下段の気液
接触部の頂部に散布する装置; 前記触媒部の周囲に設けられた、水素と水蒸気
が通過するための流路; を備えていることを特徴とする多段交換反応塔で
ある。
The present invention provides a gas-liquid contact method in which liquid water toward the bottom of the tower contacts hydrogen and water vapor toward the top of the tower in a multistage exchange reaction tower for carrying out a hydrogen isotope exchange reaction between water and hydrogen. part; a catalyst part disposed around the outer periphery of the gas-liquid contact part for performing a gas phase exchange reaction between hydrogen and water vapor; an upper partition member disposed outside the upper end of the gas-liquid contact part; the catalyst a lower partition member disposed inside the lower end of the section; a device disposed at the center of the lower partition member for receiving liquid water flowing down from the gas-liquid contact section and distributing it to the top of the lower gas-liquid contact section; This is a multi-stage exchange reaction tower characterized by comprising: a flow path provided around the catalyst section through which hydrogen and water vapor pass.

本発明は、従来上下方向に配置されていた気液
接触部と触媒部をほぼ同一水平面上に配置するこ
とにより塔長を低くし、また触媒部すなわち触媒
床における水素と水蒸気の流れ方向を重力方向す
なわち下向きとすることにより触媒床中に液体の
水が滞留するのを防止したことを特徴としてい
る。したがつて本発明の多段交換反応塔は、前述
の従来装置と原理的には異なるものではないが、
従来装置の欠点を解消し、更に分離効果を向上さ
せたものである。
The present invention lowers the column length by arranging the gas-liquid contact part and the catalyst part, which were conventionally arranged vertically, on almost the same horizontal plane, and also changes the flow direction of hydrogen and steam in the catalyst part, that is, the catalyst bed, by gravity. It is characterized by preventing liquid water from staying in the catalyst bed by oriented downward. Therefore, although the multistage exchange reaction column of the present invention is not different in principle from the conventional apparatus described above,
This eliminates the drawbacks of conventional devices and further improves the separation effect.

以下図面を参照して、本発明を更に詳細に説明
する。本発明の交換反応ユニツトは、第2図に示
すように、気液接触部10、その外周に配置され
た触媒床11、および触媒床底部に配置された、
液体の水を下段の気液接触部の頂部に散布するた
めのデイストリビユータ12を備えている。気液
接触部10、触媒床11の横断面形状は特に制限
されないが、一般に同心円形状とするのが便利で
ある。触媒床11の外周には、交換反応ユニツト
の外壁15が設けられ、この外壁15の上端と気
液接触部10の上端は仕切板13によつて連結さ
れている。一方、触媒床11とデイストリビユー
タ12は仕切板16によつて連結されている。こ
のようなユニツトの上端と下端にフランジのよう
な連結手段(図には示されていない)を取り付
け、これよつてユニツトを多段に積み重ね、交換
塔として構成する。
The present invention will be explained in more detail below with reference to the drawings. As shown in FIG. 2, the exchange reaction unit of the present invention includes a gas-liquid contact section 10, a catalyst bed 11 disposed around the outer periphery of the gas-liquid contact section 10, and a catalyst bed 11 disposed at the bottom of the catalyst bed.
A distributor 12 is provided for distributing liquid water to the top of the lower gas-liquid contact section. Although the cross-sectional shapes of the gas-liquid contact portion 10 and the catalyst bed 11 are not particularly limited, it is generally convenient to make them concentric circles. An outer wall 15 of the exchange reaction unit is provided around the outer periphery of the catalyst bed 11, and the upper end of this outer wall 15 and the upper end of the gas-liquid contact section 10 are connected by a partition plate 13. On the other hand, the catalyst bed 11 and the distributor 12 are connected by a partition plate 16. Connecting means such as flanges (not shown) are attached to the upper and lower ends of such units, thereby allowing the units to be stacked in multiple stages and configured as an exchange tower.

気液接触部10は通常の工業用吸収塔などに使
用されている規則充填物、不規則充填物を充填し
たもの、或は数段の組合せからなる多孔板塔、包
鐘塔などで構成しても良い。触媒床11は疎水性
触媒を使用し、球形、円筒状など種々の形状を有
する粒状触媒を積層したもの、或はハニカム状な
どの規則的な形状を有するもので構成しても良
い。
The gas-liquid contact section 10 is composed of a regular packing or irregular packing used in ordinary industrial absorption towers, or a perforated plate tower or a bell tower consisting of a combination of several stages. It's okay. The catalyst bed 11 may be formed by using a hydrophobic catalyst, and may be constructed by stacking granular catalysts having various shapes such as spherical and cylindrical shapes, or having a regular shape such as a honeycomb shape.

触媒床11と外壁15との間隙17を通つて塔
底方向より上昇する水素、水蒸気混合ガスは、点
線矢印の示すように、触媒床上部より触媒床に入
り、重力方向に向つて触媒床を通過し、該触媒床
において第1反応過程の交換反応を行う。この場
合、飛沫同拌とか水蒸気の一部凝縮によつて液体
水が触媒床中の触媒表面上に付着するようなこと
があつても、重力方向にガスが流れているためこ
の液体水は触媒床底部へと押し流されてゆき触媒
床中に滞留することはなく、液体水の被覆による
触媒活性の低下を防止することができる。触媒床
において反応した水素、水蒸気混合ガスは気液接
触部10の底部からその内部に導びかれ、該気液
接触部において上段のデイストリビユータ12よ
り散布される液体水(白抜きの矢印)と接触し、
第2反応過程の交換反応を行う。デイストリビユ
ータ12は気液接触部10の頂部に対して均一に
液体水を散布する役割のみならず、水素、水蒸気
混合ガスが触媒床11を経由せずに直接気液接触
部10に達しないようにするための水封の役割を
も兼ね備えている。塔頂方向より降下する水は太
線矢印のように経由し、デイストリビユータ12
より気液接触部10へ至り、触媒床11を通過す
ることなく塔底へと降下する。交換塔全体は所定
の温度に保たれる。たとえば、外表面を外套14
で覆い、外套内部に一定温度に保たれた温水等を
流すことにより反応温度をたとえば60℃〜80℃の
温度に一定に保つ。
The hydrogen and steam mixed gas rising from the bottom direction through the gap 17 between the catalyst bed 11 and the outer wall 15 enters the catalyst bed from the top of the catalyst bed as indicated by the dotted arrow, and moves up the catalyst bed in the direction of gravity. The exchange reaction of the first reaction step is carried out in the catalyst bed. In this case, even if liquid water were to adhere to the catalyst surface in the catalyst bed due to droplet agitation or partial condensation of water vapor, this liquid water would not be able to reach the catalyst because the gas is flowing in the direction of gravity. It is swept away to the bottom of the bed and does not remain in the catalyst bed, thereby preventing a drop in catalyst activity due to coating with liquid water. The hydrogen and water vapor mixed gas reacted in the catalyst bed is guided from the bottom of the gas-liquid contact section 10 into the interior thereof, and liquid water (white arrow) is dispersed from the upper distributor 12 in the gas-liquid contact section. come into contact with
A second reaction step, an exchange reaction, is performed. The distributor 12 not only plays the role of uniformly distributing liquid water to the top of the gas-liquid contact section 10, but also prevents the hydrogen and water vapor mixed gas from directly reaching the gas-liquid contact section 10 without passing through the catalyst bed 11. It also has the role of a water seal to ensure that. The water falling from the top of the tower passes through the thick line arrow and reaches the distributor 12.
The gas then reaches the gas-liquid contact section 10 and descends to the bottom of the column without passing through the catalyst bed 11. The entire exchange column is maintained at a predetermined temperature. For example, if the outer surface is
The reaction temperature is maintained at a constant temperature of, for example, 60° C. to 80° C. by covering it with water and flowing hot water or the like kept at a constant temperature inside the mantle.

以上に本発明による交換反応塔の機能を証明す
るために、実施例を示す。
Examples are shown above in order to prove the function of the exchange reaction column according to the present invention.

実施例 1 気液接触部として、内径18mm、高さ100mmのカ
ラム内に、3mmのデイクソンリング(商品名)を
充填部として不規則充填したものを使用し、また
触媒床として、高さ80mm、内径20mm、外径38mmの
共心円筒のハニカム状に成形したスチレン・ジビ
ニルベンゼン共重合体―白金触媒を使用して、気
液接触部の効率ηb(第1反応過程の平衡到達率
で定義する)と触媒床の効率ηc(第2反応過程
の平衡到達率で定義する)とを個々に70℃の反応
温度で測定した。その結果第3図に示すような結
果を得た。図の縦軸は効率ηb,ηcを示し、横
軸は水素、水蒸気混合ガスの気液接触部および触
媒床を通過するガス空筒速度である。
Example 1 A column with an inner diameter of 18 mm and a height of 100 mm in which 3 mm Dixon rings (trade name) were irregularly packed was used as a gas-liquid contact part, and a column with a height of 80 mm as a catalyst bed. , using a styrene-divinylbenzene copolymer-platinum catalyst formed into a honeycomb shape of concentric cylinders with an inner diameter of 20 mm and an outer diameter of 38 mm, the efficiency of the gas-liquid contact part ηb (defined as the equilibrium attainment rate of the first reaction process) ) and the efficiency ηc of the catalyst bed (defined as the rate of reaching equilibrium in the second reaction process) were measured individually at a reaction temperature of 70°C. As a result, the results shown in FIG. 3 were obtained. The vertical axis of the figure shows the efficiencies ηb and ηc, and the horizontal axis shows the gas cylinder velocity at which the hydrogen and water vapor mixed gas passes through the gas-liquid contact area and the catalyst bed.

第3図に示されるように、気液接触部と触媒床
の効率が同じ値を持つ場合、例えばηb,η
c0.92の場合、ガス空筒速度は気液接触部では0.4
m/secであり、触媒床では0.8m/secとなる。
このことは気液接触部と触媒床の効率を同じにと
れば、触媒床の断面積は気液接触部の断面積の1/
2で良いことになり、不必要に触媒床の断面積を
大きくする必要はない。結局、本発明による装置
は前述した従来装置と比較すると、塔内径として
1.3倍程度太くすれば良いことになり、それに対
して塔長は0.6倍程度で十分である。
As shown in FIG. 3, when the efficiency of the gas-liquid contact part and the catalyst bed have the same value, for example, ηb, η
For c0.92, the gas cylinder velocity is 0.4 at the gas-liquid contact area.
m/sec, and 0.8 m/sec at the catalyst bed.
This means that if the efficiency of the gas-liquid contact area and the catalyst bed are the same, the cross-sectional area of the catalyst bed will be 1/1/1 of the cross-sectional area of the gas-liquid contact area.
2 is sufficient, and there is no need to unnecessarily increase the cross-sectional area of the catalyst bed. In conclusion, compared to the conventional apparatus described above, the apparatus according to the present invention has a column inner diameter of
It is enough to make the tower about 1.3 times thicker, and about 0.6 times the tower length is sufficient.

実施例 2 実施例1で用いたものと同じ大きさを有する気
液接触部および触媒床を使用し、第2図に示すよ
うな本発明による交換塔を構成した。段数は10段
とした。この交換塔を用いて、塔底よりトリチウ
ムの富化した水素および飽和水蒸気を与え、塔頂
より天然水を供給した。水素流量は毎時17モル、
水流量は毎時8.5モル、反応温度は70℃としてト
リチウム分離試験を実施した。その結果塔頂より
出る水素ガス中のトリチウム濃度は、塔底の水素
ガス中のトリチウム濃度の150分の1に減損する
ことができた。これは各段ユニツトの反応効率と
して、気液接触部の効率ηb=0.92、触媒床効率
ηc=0.95で機能していることに相当し、本交換
塔は非常に高い効率を維持できることが明らかと
なつた。
Example 2 Using a gas-liquid contact section and catalyst bed having the same dimensions as those used in Example 1, an exchange column according to the invention as shown in FIG. 2 was constructed. The number of stages was 10. Using this exchange tower, tritium-enriched hydrogen and saturated steam were supplied from the bottom of the tower, and natural water was supplied from the top of the tower. Hydrogen flow rate is 17 moles per hour,
A tritium separation test was conducted with a water flow rate of 8.5 mol/hour and a reaction temperature of 70°C. As a result, the tritium concentration in the hydrogen gas exiting from the top of the tower was reduced to 1/150 of the tritium concentration in the hydrogen gas at the bottom of the tower. This corresponds to the reaction efficiency of each stage unit functioning at gas-liquid contact section efficiency ηb = 0.92 and catalyst bed efficiency ηc = 0.95, and it is clear that this exchange tower can maintain extremely high efficiency. Summer.

本発明による多段交換反応塔は、実施例1で示
したように従来装置にくらべ塔長を大巾に減少す
ることが可能であり、触媒床を通過する水素、水
蒸気混合ガスは重力方向に流れるので液体水の帯
留による触媒の活性低下を防止できる。また実施
例2で示したように反応効率が高く、製作も容易
である。重水製造、トリチウム分離除去など水素
同位体分離技術の各方面に応用することが可能で
あり、その効果は大きい。
As shown in Example 1, the multistage exchange reaction tower according to the present invention can greatly reduce the tower length compared to the conventional equipment, and the hydrogen and steam mixed gas passing through the catalyst bed flows in the direction of gravity. Therefore, it is possible to prevent a decrease in the activity of the catalyst due to the accumulation of liquid water. Furthermore, as shown in Example 2, the reaction efficiency is high and the production is easy. It can be applied to various fields of hydrogen isotope separation technology, such as heavy water production and tritium separation and removal, and its effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置である多段交換塔の説明図で
あり、第2図は本発明にかかわる多段交換反応塔
の説明図であり、第3図は本発明の実施例で得ら
れたガス空筒速度に対する気液接触部と触媒床の
効率の関係を示すグラフである。 図面番号の説明、1……触媒床、2……気液接
触部、3……デイストリビータ、10……気液接
触部、11…触媒床、12……デイストリビユー
タ、13……仕切板、14……温水槽外套、15
……外壁、16……仕切板、17……気体通路。
FIG. 1 is an explanatory diagram of a conventional multi-stage exchange column, FIG. 2 is an explanatory diagram of a multi-stage exchange reaction column according to the present invention, and FIG. It is a graph showing the relationship between the efficiency of the gas-liquid contact portion and the catalyst bed with respect to the cylinder speed. Explanation of drawing numbers, 1... Catalyst bed, 2... Gas-liquid contact section, 3... Distributor, 10... Gas-liquid contact section, 11... Catalyst bed, 12... Distributor, 13... Partition Board, 14...Hot water tank mantle, 15
...Outer wall, 16...Partition plate, 17...Gas passage.

Claims (1)

【特許請求の範囲】 1 水と水素との間で水素同位体交換反応を行わ
せるための多段交換反応塔において、 塔底へ向う液体の水と、塔頂へ向う水素と水蒸
気とを接触させる気液接触部; 前記液接触部の外周に配置された、水素と水蒸
気との間で気相交換反応を行わせる触媒部; 前記気液接触部の上端部外側に配置された上方
仕切部材; 前記触媒部の下端部内側に配置された下方仕切
部材; 前記下方仕切部材の中央に配置され、前記気液
接触部から流下する液体の水を受けて下段の気液
接触部の頂部に散布する装置; 前記触媒部の周囲に設けられた、水素と水蒸気
が通過するための流路; を備えていることを特徴とする多段交換反応塔。 2 前記気液接触部および前記触媒部が同心の円
筒である特許請求の範囲第1項記載の多段交換反
応塔。 3 前記触媒部の断面積が、前記気液接触部の断
面積の約1/2である特許請求の範囲第1項または
第2項記載の多段交換反応塔。
[Claims] 1. In a multi-stage exchange reaction tower for carrying out a hydrogen isotope exchange reaction between water and hydrogen, liquid water directed toward the bottom of the tower is brought into contact with hydrogen and water vapor directed toward the top of the tower. a gas-liquid contact section; a catalyst section disposed on the outer periphery of the liquid contact section for performing a gas phase exchange reaction between hydrogen and water vapor; an upper partition member disposed outside the upper end of the gas-liquid contact section; a lower partition member disposed inside the lower end of the catalyst section; a lower partition member disposed at the center of the lower partition member to receive liquid water flowing down from the gas-liquid contact section and spray it onto the top of the lower gas-liquid contact section; A multi-stage exchange reaction tower comprising: an apparatus; a flow path provided around the catalyst section through which hydrogen and water vapor pass; 2. The multistage exchange reaction tower according to claim 1, wherein the gas-liquid contact section and the catalyst section are concentric cylinders. 3. The multistage exchange reaction tower according to claim 1 or 2, wherein the cross-sectional area of the catalyst section is about 1/2 of the cross-sectional area of the gas-liquid contact section.
JP16895583A 1983-09-13 1983-09-13 Multi-stage exchange reaction column Granted JPS6060903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16895583A JPS6060903A (en) 1983-09-13 1983-09-13 Multi-stage exchange reaction column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16895583A JPS6060903A (en) 1983-09-13 1983-09-13 Multi-stage exchange reaction column

Publications (2)

Publication Number Publication Date
JPS6060903A JPS6060903A (en) 1985-04-08
JPS6246484B2 true JPS6246484B2 (en) 1987-10-02

Family

ID=15877646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16895583A Granted JPS6060903A (en) 1983-09-13 1983-09-13 Multi-stage exchange reaction column

Country Status (1)

Country Link
JP (1) JPS6060903A (en)

Also Published As

Publication number Publication date
JPS6060903A (en) 1985-04-08

Similar Documents

Publication Publication Date Title
US3789902A (en) Method for concentrating dilute acidic solutions
US3506408A (en) Continuous reaction apparatus containing a solid granular catalyst
JPH0757282B2 (en) Gas-liquid contact method and apparatus
US5158754A (en) Process and apparatus for effecting chemical and/or physical reactions
GB1080847A (en) Multi-stage reactor
JP2884139B2 (en) Liquid phase catalyst assembly for chemical process tower
US3969481A (en) Process for generating ultra high purity H2 or O2
JPH04363132A (en) Catalyst device for distillation reactor
JPS58122046A (en) Water-repellent catalyst for reaction of gas and liquid and gas-liquid reacting method using said catalyst
JPS585691B2 (en) Multistage exchange reaction tower
US2690380A (en) Production of deuterium oxide
US3627497A (en) Apparatus for catalytic ammonia oxidation
US4514377A (en) Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor
JPS6246484B2 (en)
KR890700045A (en) Fluidized bed
US4444737A (en) Process for separating and recovering hydrogen isotope
RU2002131458A (en) CATALYTIC REACTOR FOR EXOTHERMAL PROCESSES PROCESSING IN A GAS-SOLID PHASE WITH A DIFFERENT TEMPERATURE DIFFERENCE
YOSHIKAWA et al. Liquid-solid mass transfer in gas-liquid cocurrent flows through beds of small packings
GB1447711A (en) Apparatus for use in effecting gas-liquid contact
US4191626A (en) Apparatus for finishing and upgrading of heavy water
SU1736335A3 (en) Method and apparatus for concentration of urea solution
US4395386A (en) Apparatus for isotope exchange reaction
RU2081694C1 (en) Column for conduction of catalytic and mass-transfer processes
JPS58133821A (en) Exchange-reaction method of hydrogen isotope
JPS584564B2 (en) Multistage exchange reaction tower