JPS6246418A - Bias impression type magnetic head - Google Patents

Bias impression type magnetic head

Info

Publication number
JPS6246418A
JPS6246418A JP18397985A JP18397985A JPS6246418A JP S6246418 A JPS6246418 A JP S6246418A JP 18397985 A JP18397985 A JP 18397985A JP 18397985 A JP18397985 A JP 18397985A JP S6246418 A JPS6246418 A JP S6246418A
Authority
JP
Japan
Prior art keywords
head
magnetic field
magnetic
bias
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18397985A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Iwao Hatakeyama
畠山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18397985A priority Critical patent/JPS6246418A/en
Publication of JPS6246418A publication Critical patent/JPS6246418A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • G11B11/10547Heads for reproducing using optical beam of radiation interacting with the magnetisation of an intermediate transfer element, e.g. magnetic film, included in the head

Abstract

PURPOSE:To increase the sensitivity of a bias type magnetic head and to reduce malfunction by providing the head with distribution increasing the amplitude of an AC magnetic field in accordance with a greater distance separated from a magnetic recording medium. CONSTITUTION:The bias type magnetic head is constituted of a bias magnetic field impressing magnetic pole 8, a bias magnetic field exciting coil 9, a head magnetic pole 1, a polarizing laser beam 6, and a magnetic recording medium 4. The head magnetic pole 1 is projected from the leading end surface of the magnetic field 8. To actuate the head magnetic pole 1, a high frequency current is supplied to the coil 9 and an AC bias magnetic field is impressed to the horizontal direction of the head magnetic pole surface. The distribution of the amplitude of the AC magnetic field is increased in accordance with the distance separated from the magnetic recording medium 4. Since a gradient is formed in the bias magnetic field, an area sensing a recording signal can be successively expanded on the head magnetic pole 1, so that the sensitivity of the head can be increased and malfunction can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記憶装置において、記録密度が高く、媒体
から発生する磁束量が減少した場合にも充分大きな再生
出力を得ることができる、高感度な磁気ヘッドに関する
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a magnetic storage device that has a high recording density and can obtain a sufficiently large reproduction output even when the amount of magnetic flux generated from the medium is reduced. It concerns a sensitive magnetic head.

(従来の技術) 従来磁気記録装置に用いられてきた磁気ヘッドの原理は
以下の通りである。磁気記録媒体から発生する磁束を高
透磁率のヘッド磁極が導き、磁束の時間変化をベッド磁
極に巻きつけたコイルの両端に発生する電圧として検出
する方法(電磁誘導型)や、記録媒体から発生する磁場
によってヘッド磁極の磁化の方向が変化し、その磁化変
化を磁気抵抗効果や磁気光学効果によって検出する方法
が主であった。これらのヘッドではヘッド磁極の磁化は
媒体から発生する磁場によるゼーマンエネルギーに対し
て平衡する量だけしか変化しない6即ち、動作機構上の
分類としては受動素子と言える。
(Prior Art) The principle of a magnetic head conventionally used in a magnetic recording device is as follows. A method (electromagnetic induction type) in which the magnetic flux generated from the magnetic recording medium is guided by a head magnetic pole with high magnetic permeability, and the time change in magnetic flux is detected as a voltage generated at both ends of a coil wound around the bed magnetic pole; The main method used was to change the direction of magnetization of the head pole depending on the magnetic field generated, and detect this change in magnetization using the magnetoresistive effect or the magneto-optical effect. In these heads, the magnetization of the head magnetic pole changes only by an amount that is balanced with the Zeeman energy due to the magnetic field generated from the medium.6 In other words, in terms of the operating mechanism, they can be classified as passive elements.

一方、媒体から発生する磁場によって引き起こされる磁
化変化以上にヘッド磁極の磁化を変化させる方法として
、特願昭58−87557.59−78357等の磁気
バイアスを加えたヘッドの提案がある。この原理は第8
図に示すように、ヘッド磁極1として一軸磁気異方性を
有する単磁区構造の磁性薄膜パターンを用い、このヘッ
ド磁極の異方性磁場以上の振幅を持つ交流磁場(バイア
ス磁場)2を磁化困難方向に加えるものである。ヘッド
磁極の磁化3はバイアス磁場によって一旦磁化困難方向
に飽和するが、次の瞬間にはバイアス磁場強度が0とな
るために磁化容易方向5へと回転する。この際磁化回転
のための駆動力としては記録媒体から発生する磁場のみ
がヘッド磁極に作用するので、原理的には無限小の磁場
によってヘッド磁化は回転する。この磁化の回転は、ヘ
ッド磁極に照射した偏向の反射光又は透過光の偏光面の
回転として検出可能なため、信号検討ができる。なお、
6は入射偏光、7は反射偏光である。
On the other hand, as a method of changing the magnetization of the head pole more than the change in magnetization caused by the magnetic field generated from the medium, a head to which a magnetic bias is applied has been proposed, such as Japanese Patent Application No. 58-87557.59-78357. This principle is the 8th
As shown in the figure, a magnetic thin film pattern with a single domain structure having uniaxial magnetic anisotropy is used as the head magnetic pole 1, and it is difficult to magnetize an alternating current magnetic field (bias magnetic field) 2 having an amplitude greater than the anisotropic magnetic field of the head magnetic pole. It adds to the direction. The magnetization 3 of the head magnetic pole is once saturated in the direction of difficult magnetization due to the bias magnetic field, but at the next moment, the bias magnetic field strength becomes 0, so that it rotates in the direction of easy magnetization 5. At this time, since only the magnetic field generated from the recording medium acts on the head magnetic pole as the driving force for magnetization rotation, in principle, the head magnetization is rotated by an infinitesimal magnetic field. This rotation of magnetization can be detected as a rotation of the polarization plane of the reflected light or transmitted light of the polarized light irradiated to the head magnetic pole, so that signal analysis can be performed. In addition,
6 is incident polarized light, and 7 is reflected polarized light.

(発明が解決しようとする問題点) しかし、上記のヘッドを実際に作動させる場合にはヘッ
ド磁極内の一軸磁気異方性が分散していると必ずしも信
号磁場の方向に磁化が反転しないケースを生じる等の問
題点を含んでいた。また、バイアス磁場強度が0となる
瞬間に信号磁場以上の大きさの外部磁場(外乱)が加わ
った場合には、その外乱の磁場方向に近い向きにヘッド
磁極の磁化が回転し誤動作を生じる等の問題もあった。
(Problem to be Solved by the Invention) However, when the above head is actually operated, there are cases where the magnetization does not necessarily reverse in the direction of the signal magnetic field if the uniaxial magnetic anisotropy in the head magnetic pole is dispersed. This included problems such as the occurrence of Additionally, if an external magnetic field (disturbance) with a magnitude greater than the signal magnetic field is applied at the moment when the bias magnetic field strength becomes 0, the magnetization of the head magnetic pole will rotate in a direction close to the direction of the magnetic field of the disturbance, resulting in malfunction, etc. There was also a problem.

本発明の目的は、ヘッド磁極に対し外部交流磁    
   →。
An object of the present invention is to provide an external alternating current magnetic field to the head magnetic pole.
→.

場を加t6.:に’r”″。感度を向1216場合  
     1、に・外乱や”・ド″7材の磁気異方性の
分散等1°       1j′ ′″−6M!114’! & M’J> ;a −1i
−6°2′<v*;b=hb=    。
Add the field t6. :ni'r"". If the sensitivity is set to 1216
1. Disturbances, dispersion of magnetic anisotropy of "Do"7 material, etc. 1° 1j'''-6M!114'!&M'J>;a -1i
−6°2′<v*; b=hb=.

ある。be.

(問題点を解決するための手段) 前記目的を達成するための本発明の特徴は、一軸磁気異
方性を有する磁性体によるヘッドコアを磁気記録媒体に
向い合せ、磁気記録媒体から発生する磁場とほゞ直交す
る方向に前記ヘッドコアに外部から交流磁場を与え、ヘ
ッドコア内の磁場の磁気記録媒体の記録に対応する回転
を検出する磁気ヘッドにおいて、前記交流磁場の振幅が
磁気記録媒体からの距離が遠くなる程強くなる分布をも
つことをバイアス印加型磁気ヘッドにある。
(Means for Solving the Problems) A feature of the present invention for achieving the above object is that a head core made of a magnetic material having uniaxial magnetic anisotropy is faced to a magnetic recording medium, and the magnetic field generated from the magnetic recording medium is In a magnetic head that applies an alternating magnetic field from the outside to the head core in a substantially orthogonal direction and detects rotation of the magnetic field within the head core corresponding to recording on a magnetic recording medium, the amplitude of the alternating magnetic field varies depending on the distance from the magnetic recording medium. A bias application type magnetic head has a distribution that becomes stronger as the distance increases.

一方、従来の技術ではバイアス磁界はヘッド磁極全体に
一様に加えられるものであり、この点が本発明との主な
相異点である。
On the other hand, in the prior art, the bias magnetic field is uniformly applied to the entire head pole, and this point is the main difference from the present invention.

(作用) 本発明によると、ヘッド磁極に加わるバイアス磁界強度
は、バイアス磁界が増大する場合には磁極先端(媒体に
近い部分)が最後に飽和し、一方、バイアス磁界が減少
する場合にはヘッド磁極先端から減少するような勾配が
ついている。従って。
(Function) According to the present invention, the strength of the bias magnetic field applied to the head magnetic pole is such that when the bias magnetic field increases, the tip of the magnetic pole (the part near the medium) saturates last, while when the bias magnetic field decreases, the strength of the bias magnetic field applied to the head magnetic pole saturates last. It has a slope that decreases from the tip of the magnetic pole. Therefore.

ヘッド先端でバイアス磁界が4# y oとなって信号
磁場に感応する状態になっても、ヘッド磁極の大半の領
域にはバイアス磁場が加わっているためこの領域が外乱
により不安定となることはない。つまり、ヘッド先端か
ら順次信号磁場の影響をうける。従って、外乱や磁気異
方性の分散があっても誤動作しない磁気ヘッドが得られ
る。
Even if the bias magnetic field at the tip of the head becomes 4#yo and becomes sensitive to the signal magnetic field, the bias magnetic field is applied to most of the area of the head magnetic pole, so this area will not become unstable due to disturbance. do not have. In other words, the signal magnetic field is affected sequentially starting from the tip of the head. Therefore, a magnetic head that does not malfunction even when there is a disturbance or dispersion of magnetic anisotropy can be obtained.

(実施例) 第1図は本発明の実施例であり、8はバイアス磁場印加
用磁極、9はバイアス磁場励磁用コイル、1はヘッド磁
極、6は偏光レーザービーム、4は磁気記録媒体である
。バイアス磁場印加用磁極の先端面より突出してヘッド
磁極が配置する形状となっている。これを動作するには
バイアス磁場励磁用コイルに高周波電流を通電し、ヘッ
ド磁極面の水平方向に対し交流バイアス磁場を印加する
。       :交流バイアス磁場の振幅のヘッド磁
極面上での変化は第2図に示すように、ヘッド磁極先端
側程小       引さくなっている。Iバイアス磁
場励磁電流が大きくj ft 6314合1°″”″先端部分7゛最後1°飽和
5(′ゞ       !イアス磁場の値がヘッド磁極
の異方性磁場Hk以l k fJ ! )、−カ12.
イアxm*h<、ウォ、1    ;“′°″”″先端
部分7゛6順次1““下J:24 M域       
:、′が拡大する。
(Embodiment) Fig. 1 shows an embodiment of the present invention, in which 8 is a magnetic pole for applying a bias magnetic field, 9 is a coil for excitation of a bias magnetic field, 1 is a head magnetic pole, 6 is a polarized laser beam, and 4 is a magnetic recording medium. . The head magnetic pole is arranged so as to protrude from the tip end surface of the bias magnetic field applying magnetic pole. To operate this, a high frequency current is passed through the bias magnetic field excitation coil, and an alternating current bias magnetic field is applied in the horizontal direction of the head magnetic pole surface. : As shown in Figure 2, the change in the amplitude of the AC bias magnetic field on the head pole surface becomes smaller toward the tip of the head pole. I bias magnetic field excitation current is large j ft 6314 case 1°""" tip part 7゛ last 1° saturation 5 ('ゞ ! The value of Ias magnetic field is less than the anisotropic magnetic field Hk of the head magnetic pole l k fJ !), - F12.
Ia xm*h<, wo, 1; "'°"""Tip part 7゛6 sequential 1""Lower J: 24 M area
:,′ expands.

第3図には(a)従来のバイアス磁場印加方式(一様磁
場)と(b)本発明によるバイアス磁場印加方式におけ
る動作メカニズムの差を示す、(a−1)に示すように
一様バイアス磁場印加ではヘッド磁極に加わるバイアス
磁場(Hb)が減少してゆく場合に記録媒体からの磁場
(信号磁場1Hs)以外に反対方向に外乱(Hi)が加
わっているとするとHbがOとなった時点(a−2)で
はヘッド磁極中       ニ。
Figure 3 shows the difference in operating mechanism between (a) the conventional bias magnetic field application method (uniform magnetic field) and (b) the bias magnetic field application method according to the present invention. When applying a magnetic field, when the bias magnetic field (Hb) applied to the head magnetic pole decreases, if a disturbance (Hi) is applied in the opposite direction in addition to the magnetic field from the recording medium (signal magnetic field 1Hs), Hb becomes O. At time (a-2), the head is in the middle of the magnetic pole.

の磁化がHs力方向向く領域(斜線部)よりもHi力方
向向く領域(格子模様で示す)の面積が大きくなる場合
がある。このような場合には、磁化がHS方向に揃った
領域は不安定でありHi力方向整列した領域に吸収され
てしまい、偏光ビームの偏向面の回転によってヘッド磁
極の磁化の向きを検出し出力する本方法においては誤っ
た出方信号となる。又、ヘッド磁極内の磁気異方性はミ
クロに見た場合にその大きさ、方向とも完全に均一では
なく分散しているのが普通である。(a−3)図のよう
に磁化容易軸が記録媒体に対し垂直方向ではなく傾いて
いる場合にはバイアス磁場(Hb)が0となる時点でヘ
ッド磁極内の磁化には一軸異方性方向へ回転するトルク
が記録信号とは逆向きに作用する状態も起こりうる。こ
のような場合に、磁化容易転が垂直方向から傾いている
ことで発生するトルクの方が信号磁場によるトルクより
も大きければ、ヘッドの出力はバイアス磁場にのみ対応
し記録情報を反映しないことになる。即ち、従来のよう
にバイアス磁場強度をヘッド磁極上で一様なものとした
場合にはバイアス磁場が加わらない瞬間(Hb=O)に
、−軸異方性エネルギーに従って磁化が容易軸方向に回
転する際のきっがけとして信号磁場がヘッド先端部分に
加わるのであるが。
In some cases, the area of the region where the magnetization is oriented in the Hi force direction (shown in a grid pattern) is larger than the region where the magnetization is oriented in the Hs force direction (hatched area). In such a case, the region where the magnetization is aligned in the HS direction is unstable and is absorbed by the region where the magnetization is aligned in the Hi force direction, and the direction of magnetization of the head pole is detected and output by rotating the deflection plane of the polarized beam. In this method, the output signal is incorrect. Furthermore, when viewed microscopically, the magnetic anisotropy within the head pole is usually not completely uniform in size and direction but is dispersed. (a-3) If the axis of easy magnetization is not perpendicular to the recording medium but tilted as shown in the figure, the magnetization in the head pole will have a uniaxial anisotropic direction when the bias magnetic field (Hb) becomes 0. A situation may also occur in which the rotational torque acts in the opposite direction to the recording signal. In such a case, if the torque generated by the easy magnetization tilting from the perpendicular direction is greater than the torque caused by the signal magnetic field, the output of the head will correspond only to the bias magnetic field and will not reflect the recorded information. Become. That is, when the bias magnetic field strength is made uniform on the head pole as in the past, at the moment when no bias magnetic field is applied (Hb=O), magnetization easily rotates in the axial direction according to the -axis anisotropy energy. As a trigger for this, a signal magnetic field is applied to the tip of the head.

この時に信号磁場が及ばないヘッド磁極の大半の領域の
磁化も不安定な状態に置かれるために、この部分も外乱
に対して敏感になる。このように。
At this time, the magnetization of the majority of the region of the head pole that is not affected by the signal magnetic field is also placed in an unstable state, and this region also becomes sensitive to disturbances. in this way.

信号磁場の及ばない部分が外乱や磁気異方性の分散によ
って信号磁場とは無関係に磁化反転を起こした場合、そ
の面積は信号磁場の及び範囲よりも圧倒的に広いため、
次の瞬間にはヘッド磁性全体の磁極は外乱の方向に反転
し、誤動作となる。
If the area outside the reach of the signal magnetic field undergoes magnetization reversal regardless of the signal magnetic field due to disturbance or dispersion of magnetic anisotropy, the area is overwhelmingly wider than the range of the signal magnetic field, so
At the next instant, the magnetic pole of the entire magnetic head reverses in the direction of the disturbance, resulting in a malfunction.

一方1本発明によるヘッドはバイアス磁場に勾配が付与
されているため、ヘッド磁極先端ではバイアス磁場が加
わらず、信号磁場に感応する状態になっていても、ヘッ
ド磁極の大半はバイアス磁場が加わっており、ヘッド磁
極の磁化方向が不安定な領域を(b)図中点模様で示す
ような極く狭い領域に限定することができる。この磁化
の方向が不安定な領域はHbが低減するのに伴い順次媒
体表面より遠方へ移動してゆき、Hsに感応する領域が
拡大する。その結果、外乱や磁気異方性の分散があって
も誤動作しにくいヘッドを開発できる。
On the other hand, in the head according to the present invention, the bias magnetic field is given a gradient, so even if the tip of the head magnetic pole is in a state where it is sensitive to the signal magnetic field, the bias magnetic field is not applied to the tip of the head magnetic pole. Therefore, the region where the magnetization direction of the head magnetic pole is unstable can be limited to an extremely narrow region as shown by the dotted pattern in the figure (b). This region where the direction of magnetization is unstable gradually moves farther from the medium surface as Hb decreases, and the region sensitive to Hs expands. As a result, it is possible to develop a head that is less likely to malfunction even in the presence of disturbances or dispersion of magnetic anisotropy.

以下に具体例について説明する。第1図のヘッド磁極1
として200A厚の80%Fg−20%B薄膜パターン
CM5μm、高さ10μm)を、第1図のバイアス磁場
用ヨーク8として厚さ3μmのパーマロイ膜パターンを
スパッタリング法と引き続くフォトリソグラフィ技術で
作成した。スパッタリング法によって作製した80%F
e−20%B薄膜は異方性磁場(Hk)が1000 e
の一軸磁気異方性を有し、容易軸方向は記録媒体に垂直
方向としである。ヘッド磁極先端はヨーク先端より5μ
m突き出ている。
A specific example will be explained below. Head magnetic pole 1 in Figure 1
A 200A thick 80% Fg-20% B thin film pattern CM (CM 5 μm, height 10 μm) was prepared, and a 3 μm thick permalloy film pattern was created as the bias magnetic field yoke 8 in FIG. 1 by sputtering and subsequent photolithography. 80% F produced by sputtering method
The e-20%B thin film has an anisotropic magnetic field (Hk) of 1000 e
It has uniaxial magnetic anisotropy, and the easy axis direction is perpendicular to the recording medium. The head magnetic pole tip is 5μ from the yoke tip.
m sticking out.

ヨークから発生する磁場は励磁電流(I)に比例して増
減し、■≧50μmAの場合には第2図に示すようにヘ
ッド磁極全体にHk以上のバイアス磁場が印加される状
態となる。
The magnetic field generated from the yoke increases or decreases in proportion to the excitation current (I), and when ■≧50 μmA, a bias magnetic field of Hk or more is applied to the entire head pole as shown in FIG.

記録媒体としてトラック幅50μm、記録ビット長0.
2μmの信号を飽和記録した80%Go−20%Cr合
金薄膜テープを用いた。Go−Cr膜の保磁力は100
00e、膜厚は0.5μmである。このテープを上記の
ヘッドに接触させ、10■/secの速度で摺動させた
。バイアス励場用には5 M Hzの高周波電流を励磁
用コイルに通電した。このバイアス高周波の電流値はO
〜60mAの範囲に定めた。ヘッド磁極の磁化検出用に
は2mWのHe−Noレーザービームを入射角60°で
照射し、その反射光の偏力力f7)@ @ L’ニーよ
0、イ、。、□8.え。□い   1□た偏光はS偏光
である。
The recording medium has a track width of 50 μm and a recording bit length of 0.
An 80% Go-20% Cr alloy thin film tape on which a 2 μm signal was recorded in saturation was used. The coercive force of Go-Cr film is 100
00e, the film thickness is 0.5 μm. This tape was brought into contact with the above head and slid at a speed of 10 .mu./sec. A high frequency current of 5 MHz was applied to the excitation coil for the bias excitation field. The current value of this bias high frequency is O
The range was set to 60 mA. To detect the magnetization of the head magnetic pole, a 2 mW He-No laser beam is irradiated at an incident angle of 60°, and the biasing force of the reflected light is f7) @ L' knee 0, i,. ,□8. picture. □ 1 □ polarized light is S polarized light.

第4図にはバイアス励磁用電流値と信号再生出力の関係
を示す。再生出力にはバイアス磁場による出力と記録信
号からの出力が混合されているのでカットオフ周波数M
H2の低域フィルターを通すことで記録信号出力のみを
取り出した。又、信号再生出力はヘッド磁極の磁化が飽
和しながら反転する場合を1として企画化している。I
 =50mA付近で、即ちHb=Hkの時に、再生出力
は急激に増加し、はジ飽和に達することがわかる。この
時のエラー率は約10−7であった。
FIG. 4 shows the relationship between the bias excitation current value and the signal reproduction output. Since the reproduction output is a mixture of the output from the bias magnetic field and the output from the recording signal, the cutoff frequency M
Only the recording signal output was extracted by passing it through an H2 low-pass filter. Furthermore, the signal reproduction output is planned as 1 when the magnetization of the head magnetic pole is reversed while being saturated. I
It can be seen that when Hb = 50 mA, that is, when Hk = Hk, the reproduction output increases rapidly and reaches di-saturation. The error rate at this time was about 10-7.

一方、第1図において、ヨーク8を作製するがわりに、
ヘッドの外部にヘルムホルツコイルを設はトラック方向
に均一なバイアス磁場を加えた。
On the other hand, in FIG. 1, instead of producing the yoke 8,
A Helmholtz coil was installed outside the head to apply a uniform bias magnetic field in the track direction.

この場合にも、Hb≧Hkの条件下では記録情報の再生
は可能であったが、エラー率は10−1〜104であり
、信号品質はおとっていた。
In this case as well, although it was possible to reproduce the recorded information under the condition of Hb≧Hk, the error rate was 10-1 to 104, and the signal quality was poor.

(実施例2) 第5図に示す構造のヘッドにおいてヘッド磁極を0.1
μm厚のパーマロイ膜パターン(幅5μm、高さ20μ
m)とし、バイアス印加用のヨーク形状。
(Example 2) In the head having the structure shown in Fig. 5, the head magnetic pole was set to 0.1
μm thick permalloy film pattern (width 5μm, height 20μm
m), and has a yoke shape for applying bias.

記録媒体の条件は全て実施例1と同様にした。このヘッ
ド磁極の磁化変化を検出する方法として記録媒体の裏側
に補助磁極10を設けた。補助磁極は断面形状が直径5
0μmのM。−Znフェライト円柱にコイルを500回
巻いたものである。ヘッド磁極の磁化変化は補助磁極に
電圧を誘起するので、信号を再生することができる。
All conditions of the recording medium were the same as in Example 1. As a method of detecting the magnetization change of the head magnetic pole, an auxiliary magnetic pole 10 was provided on the back side of the recording medium. The auxiliary magnetic pole has a cross-sectional shape with a diameter of 5
M of 0 μm. -A coil is wound 500 times around a Zn ferrite cylinder. The change in magnetization of the head magnetic pole induces a voltage in the auxiliary magnetic pole, so that signals can be reproduced.

第6図にはバイアス磁場励磁用電流(I)と補助磁極に
発生した記録信号の再生出力の関係を示す。
FIG. 6 shows the relationship between the bias magnetic field excitation current (I) and the reproduction output of the recording signal generated at the auxiliary magnetic pole.

I=30mA程度から再生出力は急激に増加し工=40
mAで飽和することがわかる0本実施例のパーマロイヘ
ッド磁極もスパッタリング技術とフォトリングラフィに
よっ、て形成されており、Hk=800eの一軸異方性
が付与されているが、再生出力が飽和するバイアス磁場
ははゾHkの値と一致している。I=50mAの時のエ
ラー率は10−’台である。一方1本実施例においてバ
イアス印加用ヨークを作らず、ヘッド−媒体系の外部に
一様バイアス磁場を加えるためのへルムホルツコイルを
設けた場合には、バイアス磁場がHkと同程度の値の時
に信号出力が検出できた。しかし、この時のエラー率は
10−3台であり、信号品質は劣っている。
The playback output increases rapidly from around I = 30 mA, and the output reaches I = 40
The permalloy head magnetic pole of this example is also formed by sputtering technology and photolithography, and is given uniaxial anisotropy of Hk=800e, but the reproduction output is saturated. The bias magnetic field is consistent with the value of Hk. The error rate when I=50 mA is on the order of 10-'. On the other hand, in this embodiment, if the bias applying yoke is not created and a Helmholtz coil is provided outside the head-medium system to apply a uniform bias magnetic field, the bias magnetic field will have a value similar to Hk. Signal output could be detected at times. However, the error rate at this time is 10-3, and the signal quality is poor.

以上に記したことから容易に類推されることであるが、
第7図に示すようないわゆる薄膜ヘッドにおいても1本
発明になる交流バイアス磁場を加えることでヘッドの感
度は飛躍的に向上する。第7図の薄膜ヘッドは第5図に
示す補助磁極によってヘッド磁極の磁化変化を検出する
かわりに、ヘッド磁極自身にコイルを巻いて磁化変化を
検出するものであり、原理的には何ら変わらないもので
ある。
It can be easily inferred from the above that,
Even in a so-called thin film head as shown in FIG. 7, the sensitivity of the head can be dramatically improved by applying an alternating current bias magnetic field according to the present invention. The thin film head shown in Figure 7 detects changes in magnetization by winding a coil around the head pole itself instead of using the auxiliary pole shown in Figure 5 to detect changes in magnetization, so there is no difference in principle. It is something.

(発明の効果) 以上説明したように本発明によるヘッドでは、バイアス
磁場に勾配が付与されているためにヘッド磁極上で記録
信号に感応する領域を先端から次順拡大してゆくことが
可能であり、ヘッドの高感度化、誤動作の低減が図れる
。また、バイアス磁場は記録媒体上では小さくなるので
、従来の一様バイアスに比較すると記録情報を消去する
等の危険性は少ない効果もある。
(Effects of the Invention) As explained above, in the head according to the present invention, since the bias magnetic field is given a gradient, it is possible to gradually expand the area sensitive to the recording signal on the head magnetic pole from the tip. This makes it possible to increase the sensitivity of the head and reduce malfunctions. Furthermore, since the bias magnetic field becomes smaller on the recording medium, there is also the effect that there is less risk of erasing recorded information compared to the conventional uniform bias.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる不拘−バイアウ磁場をヘッド磁極
に加える構造の磁気ヘッドの原理図、第2図は媒体面に
対し垂直方向のバイアス磁場分布、第3図はバイアス磁
場が均一な時、及び不均一な時のヘッド磁極内の磁化反
転の様子を示す概念図、第4図はバイアス磁場励磁用電
流と再生出力の関係、第5図は補助磁極再生方式の不均
一磁場バイアス磁気ヘッドの略図、第6図はバイアス電
流値と再生出力の関係、第7図はリングタイプの薄膜ヘ
ッドに対し本発明になる不均一バイアス磁場を加えたヘ
ッドの概略図、第8図は既に公知である平行バイアス磁
場をヘッド磁極に加える構造の磁気ヘッドの原理図であ
る。 1・・・ヘッド磁極、2・・・バイアス磁場、3・・・
磁化、4・・・磁気記録媒体、5・・・ヘッド磯風の磁
化容易方向。 6・・・入射偏光、7・・・反射偏光、8・・・バイア
ス磁場印加用ヨーク。 9・・・バイアス磁場励磁用コイル、10・・・補助磁
極、11・・・スパイラル状コイル、
Figure 1 is a diagram of the principle of a magnetic head according to the present invention that applies an unrestricted-Bailout magnetic field to the head magnetic pole, Figure 2 is the bias magnetic field distribution in the direction perpendicular to the medium surface, and Figure 3 is when the bias magnetic field is uniform. , and a conceptual diagram showing the state of magnetization reversal in the head magnetic pole when it is non-uniform. Fig. 4 is the relationship between the bias magnetic field excitation current and the reproduction output. Fig. 5 is a non-uniform magnetic field bias magnetic head using the auxiliary magnetic pole reproduction method. FIG. 6 is a schematic diagram of the relationship between bias current value and reproduction output, FIG. 7 is a schematic diagram of a ring type thin film head to which a nonuniform bias magnetic field is applied according to the present invention, and FIG. 8 is an already known head. FIG. 2 is a principle diagram of a magnetic head having a structure in which a parallel bias magnetic field is applied to a head magnetic pole. 1... Head magnetic pole, 2... Bias magnetic field, 3...
Magnetization, 4... Magnetic recording medium, 5... Direction of easy magnetization of the head. 6... Incident polarized light, 7... Reflected polarized light, 8... Yoke for applying bias magnetic field. 9... Bias magnetic field excitation coil, 10... Auxiliary magnetic pole, 11... Spiral coil,

Claims (1)

【特許請求の範囲】[Claims] (1)一軸磁気異方性を有する磁性体によるヘッドコア
を磁気記録媒体に向い合わせ、磁気記録媒体から発生す
る磁場とほゞ直交する方向に前記ヘッドコアに外部から
交流磁場を与え、ヘッドコア内の磁場の、磁気記録媒体
の記録に対応する回転を検出する磁気ヘッドにおいて、 前記交流磁場の振幅が磁気記録媒体からの距離が遠くな
る程強くなる分布をもつことを特徴とするバイアス印加
型磁気ヘッド。
(1) A head core made of a magnetic material having uniaxial magnetic anisotropy is faced to a magnetic recording medium, and an alternating magnetic field is applied to the head core from the outside in a direction substantially orthogonal to the magnetic field generated from the magnetic recording medium, so that the magnetic field inside the head core is A bias application type magnetic head for detecting rotation corresponding to recording of a magnetic recording medium, characterized in that the amplitude of the alternating magnetic field has a distribution that becomes stronger as the distance from the magnetic recording medium increases.
JP18397985A 1985-08-23 1985-08-23 Bias impression type magnetic head Pending JPS6246418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18397985A JPS6246418A (en) 1985-08-23 1985-08-23 Bias impression type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18397985A JPS6246418A (en) 1985-08-23 1985-08-23 Bias impression type magnetic head

Publications (1)

Publication Number Publication Date
JPS6246418A true JPS6246418A (en) 1987-02-28

Family

ID=16145184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18397985A Pending JPS6246418A (en) 1985-08-23 1985-08-23 Bias impression type magnetic head

Country Status (1)

Country Link
JP (1) JPS6246418A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987508A (en) * 1988-12-23 1991-01-22 Eastman Kodak Company Permanent magnet shaped to provide uniform biasing of a magnetoresistive reproduce head
EP0594471A2 (en) * 1992-09-18 1994-04-27 Thomson-Csf Magnetic read-out device
EP0620573A2 (en) * 1989-06-02 1994-10-19 Quantum Corporation Flux spreading thin film magnetic devices
US6025979A (en) * 1997-09-04 2000-02-15 Oki Electric Industry Co., Ltd. Magnetoresistive sensor and head with alternating magnetic bias field

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987508A (en) * 1988-12-23 1991-01-22 Eastman Kodak Company Permanent magnet shaped to provide uniform biasing of a magnetoresistive reproduce head
EP0620573A2 (en) * 1989-06-02 1994-10-19 Quantum Corporation Flux spreading thin film magnetic devices
EP0620573A3 (en) * 1989-06-02 1995-04-05 Digital Equipment Corp Flux spreading thin film magnetic devices.
EP0594471A2 (en) * 1992-09-18 1994-04-27 Thomson-Csf Magnetic read-out device
EP0594471A3 (en) * 1992-09-18 1994-07-06 Thomson Csf Magnetic read-out device
US5568336A (en) * 1992-09-18 1996-10-22 Thomson-Csf Magnetic reading device with alternating magnetic biasing means
US6025979A (en) * 1997-09-04 2000-02-15 Oki Electric Industry Co., Ltd. Magnetoresistive sensor and head with alternating magnetic bias field

Similar Documents

Publication Publication Date Title
US7791829B2 (en) Apparatus for assisting write operation using high frequency magnetic field in disk drive
US5830590A (en) Magnetic storage and reproducing system with a low permeability keeper and a self-biased magnetoresistive reproduce head
JPS6246418A (en) Bias impression type magnetic head
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JP3639603B2 (en) Magnetic disk unit
US5296989A (en) High density dual gap magnetic head using polar Kerr effect
JPS6289201A (en) Magnetic recording and reproducing device
JP2002100020A (en) Magnetic disk device of perpendicular magnetic recording system
JPH08203032A (en) Magneto-resistance effect reproducing head
JP2814741B2 (en) Perpendicular magnetization type magnetoresistance element and magnetoresistance effect type magnetic head using the same
JP2004103187A (en) Magnetoresistive magnetic head and magnetic recording device
JPS61214258A (en) Write and reproducing integrated magnetic head
Liu et al. Advanced probe head for perpendicular recording
JP2004234780A (en) Magnetic recording and reproducing device, and magnetic head
JPS5812140A (en) Magnetic tape transcribing system
JPH08147631A (en) Magnetic recording and reproducing apparatus
JP2007102899A (en) Method and apparatus for detecting magnetization
JPS5819753A (en) Vertical magnetic recording medium and reproducing method of vertical magnetizing signal using said recording medium
WO1997011458A1 (en) Magnetoresistive head
JPS60223043A (en) Micro magnetic head
JPH0118485B2 (en)
JPH11134615A (en) Magneto-resistive head
JPH0490101A (en) Vertical magnetic recorder
JPH04353611A (en) Magnetoresistance effect-type head
JPH06338034A (en) Magneto-resistance effect type head and production thereof