JPS6246336B2 - - Google Patents

Info

Publication number
JPS6246336B2
JPS6246336B2 JP52147560A JP14756077A JPS6246336B2 JP S6246336 B2 JPS6246336 B2 JP S6246336B2 JP 52147560 A JP52147560 A JP 52147560A JP 14756077 A JP14756077 A JP 14756077A JP S6246336 B2 JPS6246336 B2 JP S6246336B2
Authority
JP
Japan
Prior art keywords
container
preform
stretched
multilayer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52147560A
Other languages
Japanese (ja)
Other versions
JPS5480367A (en
Inventor
Takashi Abe
Kazuo Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP14756077A priority Critical patent/JPS5480367A/en
Publication of JPS5480367A publication Critical patent/JPS5480367A/en
Publication of JPS6246336B2 publication Critical patent/JPS6246336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/16Biaxial stretching during blow-moulding using pressure difference for pre-stretching, e.g. pre-blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/18Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using several blowing steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6472Heating or cooling preforms, parisons or blown articles in several stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/12Stretching rods

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、非常に優れたガス及び水蒸気遮断性
を有し、しかも透明性、表面光沢などの外観が良
く、さらには落下強度、剛性、耐熱性等の物性も
優れた多層延伸中空容器の製造方法に関するもの
である。 詳しくは、中空容器を製造するにあたり、所定
形状に成形する前のプリフオームを多層中空成形
法によつて、多層有底コールドパリソンを形成
し、これを所定温度に再加熱した後、金型内で縦
方向を延伸ロツドで、横方向を加圧空気により延
伸する多層延伸中空容器の製造方法に関するもの
である。 従来からポリエチレン、ポリプロピレン、ポリ
塩化ビニルからなる単層の中空容器が一般に出廻
つていた。最近ナイロンやエチレン−ビニルアル
コール共重合体等のガス遮断性の優れた樹脂とポ
リオレフインとを組合せた多層容器が注目される
ようになつてきた。この多層容器は、特に食品分
野において注目され実用化されるようになつた。 また二軸延伸ポリプロピレン中空容器は5〜6
年前より化粧品や医薬容器として使用されてきて
いるほか、最近では炭酸飲料用容器としてポリエ
チレンテレフタレートやアクリルニトリル樹脂の
二軸延伸中空容器が実用化されつつある。これら
のプラスチツク製中空容器は、ガラス瓶に変わる
ものとして脚光をあびるようになつた。 内容物保存性の優れた容器を得るためには、ガ
ス透過性および水蒸気透過性の小さい樹脂を使用
すればよいが、このような樹脂単層の容器では、
価格が高いうえ、成形性が劣る欠点を有してい
た。 このため、ガス遮断性の優れた樹脂とポリオレ
フインを組合せた前述した多層中空容器が価格の
点および成形加工性が安定しているので、注目さ
れていた。しかしながらその基材として用いられ
るポリエチレンやポリプロピレン等のポリオレフ
インを主体とした容器のため内容物が十分透視で
きない欠点を有していた。 また輪液容器に用いた場合、内容物中に異物を
検査するため一定の条件、すなわち450mμの波
長で60%以上の透過率を有する必要であるほか、
十分な滅菌処理を施す必要があつた。 この滅菌処理の方法として高温高圧滅菌法(レ
トルト法)、エチレンオキサイドガスで滅菌する
ガス滅菌法、放射線滅菌法があつた。 これら滅菌法のうちガス滅菌法は、使用したガ
スが容器プラスチツク中へ吸着する問題があつ
た。また放射線滅菌法は、その取扱が困難であつ
た。そのためレトルト法が最も簡便で安定した滅
菌方法として用いられている。しかしこのレトル
ト法による場合高圧下に耐える容器が必要であつ
た。 以上のようなガス遮断性、優れた透明性、耐熱
性の条件を満足し、しかも価格的にも優れた成形
容器が必要とされてきた。 そのため、個々の素材の特長を生かした多層容
器で二軸配向した容器であれば、上記の条件を満
足することがわかつた。 この二軸延伸中空成形は、ポリプロピレンまた
はポリエチレンフタレートで多く用いられてい
る。前者については、例えば特公昭38−16245号
公報に示されるように機械的強度の優れた中空容
器を得る方法として、融点以下晶質溶融点以下に
加熱し内圧により拡張し容器を得ること、特開昭
47−13670号公報ではモノ−α−オレフインのポ
リプロピレンの連続したチユーブを再加熱して引
き伸ばし吹込み成形法に述べられている。また特
公昭49−32962号公報には、ポリプロピレン製中
空容器を製造するにあたり、切断されたポリプロ
ピレン管状体を晶質溶融点以上、融点以下の温度
に加熱後延伸中空成形する成形方法について記載
されている。 このように結晶性高分子は、二軸延伸すること
により通常の一軸延伸法により成形した中空容器
と比較して、透明性、剛性、耐衝撃性が著しく向
上することが認められている。しかしながら単層
からなら二軸延伸するポリプロピレン中空容器
は、殆んどがポリプロピレンを管状に押出成形し
た後、連続的にあるいは一定の長さに切断した
後、再加熱し、延伸配向が十分に行なえる温度範
囲内で延伸中空成形し、二軸延伸ポリプロピレン
容器を得ていた。この時縦方向の延伸は、管状体
を引き取る時引取機で管状体の両側をつまみ延伸
する。このような成形法では、融点以下の温度で
成形するため容器のネジ径および形状に制約があ
つた。また管状体を延伸成形するため、円筒形の
容器には適するが、角形あるいは偏平容器の場合
は、肉厚分布が不均一となり、また肉厚コントロ
ール装置との同調も困難であつた。さらにピンチ
オフ部分の融着強度の低下、および底部をつかみ
延伸するので容器底部にテイルが残るなど成形加
工上での問題が依然として残されていた。 ポリエステルやアクリルニトリル系の樹脂の成
形する方法として、例えば特公昭49−3073号公報
のようにまず、ポリエチレンフタレートを射出成
形し、一定長の有底、無定形の管状体を成形し、
この管状体を延伸ロツドにより縦方向に機械的に
延伸し、また加圧空気により横方向に延伸し中空
成形する方法がある。また特開昭51−101516号公
報では、二軸配向プラスチツク容器の制御装置が
説明され、アクリル系樹脂の射出成形プラスチツ
クプリフオームを成形し、ブローピン先端が縦方
向に移動し、横方向には、加圧流体で配向する方
法が記載されている。 これらの成形法では、ほとんどが射出成形法に
よりコールドパリソンと呼ばれている管状体のプ
リフオームをある一定温度内で再加熱後延伸中空
成形する。この延伸効果が十分にあらわれる素
材、また内容物保持のため必要なガス遮断性のあ
る素材であるため、ポリエチレンテレフタレート
やアクリル系樹脂に限定されてしまう。これらの
樹脂で射出成形法によりプリフオームを得るに
は、単一材料でなければならず、価格の高いもの
となり経済的に劣るものである。またプリフオー
ムが射出成形によつて得られるため、キヤビテイ
からの取り出しが容易に行なえるように一定角度
のテーパーが必要であり、大幅な制限があつた。
さらにポリエチレンフタレートはポリプロピレン
に較べ分子が剛直であるため結晶化速度が遅く延
伸しやすく、非晶質の透明な容器が得られる。し
かしガラス転移点が70℃であるため、前述したレ
トルト法による100〜130℃、5〜20分間の滅菌を
行なうともとの結晶性ポリエチレンテレフタレー
トになり白化し失透する。この二軸延伸テレフタ
レート容器は、約70℃以上の温水充填でも失透し
やすく、また大幅な変形がおこるなど耐熱性に欠
けるものであつた。 本発明の目的は、これら二軸延伸中空成形法に
ついて検討し、多層で、しかも透明性、表面光沢
等の外観が得られるばかりでなく、落下強度、剛
性、耐熱性等の物性も優れた二軸延伸中空成形容
器の製造方法を得ることである。 また本発明の他の目的は、成形上の制限をでき
るだけ取り除き、多くの形状の中空容器が得ら
れ、しかも成形し易い二軸延伸中空成形容器の製
造方法を得ることである。 本発明は、多層中空成形法により一軸延伸した
プリフオームを成形し、これを一定温度範囲内で
再加熱延伸する多層延伸中空容器の製造方法であ
る。 以下本発明を詳細に説明する。 まず第1図に示された多層中空成形機により一
軸延伸したプリフオームを成形する。例えば4層
のパリソンを成形する場合、3種4層の多層ダイ
ヘツド5に副押出機1,3および主押出機2を接
続する。主押出機2には、内層を形成するポリプ
ロピレンを供給する。副押出機3には、中間層
(外層から第2番目の層)ナイロンまたはエチレ
ン−酢酸ビニル共重合体ケン化物等のガス遮断性
の優れた樹脂を供給する。他の副押出機1には、
外層と中間層(外層から第3番目の層)を分岐ア
ダプターにより供給する。この層には、副押出機
3および主押出機2より押出された樹脂に対して
良好な接着性を有する樹脂が用いられる。この樹
脂は、不飽和カルボン酸またはその誘導体により
変性された変性ポリオレフインである。 このうち変性ポリオレフインのポリオレフイン
への不飽和カルボン酸またはその誘導体のグラフ
ト量は、ポリオレフイン100重量部に対して0.01
〜20重量部の範囲である。 さらに接着性を高めるため変性ポリオレフイン
にエチレン−プロピレン共重合体、エチレン−酢
酸ビニル共重合体、エチレン−エチルアクリル酸
共重合体、炭化水素系合成ゴムのいずれかとロジ
ン等の粘着付与剤を添加することがある。この添
加量は、変性ポリオレフイン100重量部に対し1
〜30重量部である。 これらそれぞれの押出機より押出された樹脂
は、多層ダイヘツド5内で内層、第3層、第2
層、外層の順で同心円状の流路を通り順次積層さ
れ、4層パリソンが見掛け上1本のパリソンとし
て押出される。プロー成形機の金型は、最終製品
の容器形状の口部を除きそのまま縮小した形状
で、その大きさは、縦方向が1/4〜1/1.5、横方向
が1/5〜1/1.5の範囲である。この金型により二軸
延伸成形される前のプリフオームを成形する。こ
のプリフオームは、前述した従来の方法によるも
のとは異なり、形状に制限がなく最終製品に近い
形状にすることができる。従つて衝撃強度が要求
される底部は、肉厚に、また偏平型や角型でも適
性な肉厚分布が容易に得られる。また口部や底部
が溶融温度以上で成形できるので鋭角な形状のも
のも得られ、さらにピンチオフ部分の融着強度も
強固なものが得られる。また予め有底パリソンが
得られるため底部のつかみ部分にテイルが見られ
ず外観のすぐれたものが得られる。 そして第2図に示すように、プリフオーム6を
回転軸に取り付けられたマンドレル7と位置合せ
をする。次に第3図のようにプリフオーム6をマ
ンドレル7に挿入固定する。この挿入は、自動装
置によつて行なわれる。プリフオームは口部内径
とマンドレル外径との規制により固定される。こ
の固定されたプリフオーム6は、第4図のよう
に、加熱装置8により加熱される。この加熱装置
8には、赤外線ヒーターが取り付けてある。この
時プリフオーム6を140〜180℃の温度になるよう
に時間と温度設定を制御する。この加熱されたプ
リフオームは、第5図に示すように最終金型9に
導入される。金型9に導入されると第6図に示す
ように延伸ロツド10が伸長し、縦方向に強制的
に延伸される。この延伸ロツド10は、容器底部
の金型9の近くで止まり、金型9には接しない長
さになつている。 この時同時にマンドレル7の先端から圧縮空気
が吹き込まれ、容器は金型壁に十分押しつけられ
る。金型には、5〜10℃の冷却水により冷却され
ていて、圧縮空気の吹き込みと同時に十分冷却さ
れる。この延伸中空成形する時の容器の樹脂温度
は、延伸が十分に行なえる温度でなければならな
い。 この延伸成形された容器11は、第7図のよう
に、金型9を開き取り出される。そしてマンドレ
ル7は、再び第2図の状態に戻り、さらに前述の
工程を繰り返す。 このように本発明の製造方法は、比容器のプリ
フオームを成形後、延伸中空成形するものであ
る。この方法によつて得られた容器は、ガス、水
蒸気遮断性が優れ、しかも耐熱性、透明性、落下
強度等の物性も優れたものである。 前述の詳細な説明では変性ポリオレフイン/
A/変性ポリオレフイン/未変性ポリプロピレン
の4層のものについて説明した。(Aはガス遮断
性の優れたナイロンまたはエチレン−酢酸ビニル
共重合体ケン化物) その他次のような構成の容器も成形可能であ
る。変性ポリオレフイン/A/変性ポリオレフイ
ン、A/変性ポリオレフイン/未変性ポリプロピ
レン等の3層構成のものもある。 次に本発明の実施例について説明する。 実施例 4層のダイヘツドを取り付けた多層ブロー成形
機において、外層が無水マレイン酸変性ポリプロ
ピレン(MI=1.0)、中間層(外層から第2番
目)がエチレン−酢酸ビニル共重合体ケン化物
(MI=1.5、mp=180℃)、中間層(外層から第3
番目)が外層と同じ樹脂、内層が、ポリプロピレ
ン(MI=1.0)になるように押出し成形し、3種
4層のプリフオームを成形した。このプリフオー
ムを約140℃に再加熱後成形金型に導入し、縦方
向に1.5倍、横方向に3倍延伸して二軸延伸4層
の中空容器を得た。 この容器の物性については表1に示す。 比較例 1 実施例1と同じ4層構成のパリソンを成形し、
このパリソンを従来の中空成形方法により成形
し、中空容器を得た。 この容器の物性は、表1に示す。 比較例 2 ポリエチレンテレフタレートよりなる有底パリ
ソンを射出成形により成形し、このパリソンを
100℃に再加熱後、縦方向1.5倍、横方向に3倍延
伸し、中空容器を得た。 この容器の物性は表1に示す。 比較例 3 ポリプロピレンよりなる有底パリソンを射出成
形により成形し、このパリソンを140℃に再加熱
後、縦方向に1.5倍、横方向に3倍延伸し、中空
容器を得た。 この容器の物性は、表1に示す。
The present invention aims to produce a multilayer stretched hollow container that has excellent gas and water vapor barrier properties, has good appearance such as transparency and surface gloss, and also has excellent physical properties such as drop strength, rigidity, and heat resistance. It is about the method. Specifically, when manufacturing a hollow container, a preform before being molded into a predetermined shape is formed into a multilayer bottomed cold parison by a multilayer blow molding method, and after being reheated to a predetermined temperature, it is molded into a mold. The present invention relates to a method for manufacturing a multilayer stretched hollow container in which the longitudinal direction is stretched with a stretching rod and the transverse direction is stretched with pressurized air. Conventionally, single-layer hollow containers made of polyethylene, polypropylene, and polyvinyl chloride have been on the market. Recently, multilayer containers made of a combination of resins with excellent gas barrier properties, such as nylon and ethylene-vinyl alcohol copolymers, and polyolefins have been attracting attention. This multilayer container has attracted attention and has been put into practical use, particularly in the food field. In addition, biaxially stretched polypropylene hollow containers have 5 to 6
Biaxially stretched hollow containers made of polyethylene terephthalate and acrylonitrile resin have recently been put into practical use as containers for carbonated beverages, and they have been used for cosmetics and pharmaceutical containers for many years. These hollow plastic containers have come into the spotlight as an alternative to glass bottles. In order to obtain a container with excellent content preservation properties, it is sufficient to use a resin with low gas permeability and water vapor permeability, but in such a single-layer resin container,
In addition to being expensive, it had the drawbacks of poor moldability. For this reason, the above-mentioned multilayer hollow container, which is a combination of resin with excellent gas barrier properties and polyolefin, has been attracting attention because of its low cost and stable moldability. However, since the container is mainly made of polyolefin such as polyethylene or polypropylene as its base material, it has the disadvantage that the contents cannot be seen through sufficiently. In addition, when used in a ring fluid container, certain conditions must be met in order to inspect for foreign substances in the contents, that is, it must have a transmittance of 60% or more at a wavelength of 450 mμ.
It was necessary to perform sufficient sterilization. Methods for this sterilization treatment include high temperature and high pressure sterilization (retort method), gas sterilization using ethylene oxide gas, and radiation sterilization. Among these sterilization methods, the gas sterilization method has the problem that the gas used is adsorbed into the plastic container. Furthermore, the radiation sterilization method was difficult to handle. Therefore, the retort method is used as the simplest and most stable sterilization method. However, this retort method required a container that could withstand high pressure. There has been a need for a molded container that satisfies the above conditions of gas barrier properties, excellent transparency, and heat resistance, and is also cost-effective. Therefore, it was found that a biaxially oriented multilayer container that takes advantage of the characteristics of each material satisfies the above conditions. This biaxial stretch blow molding is often used with polypropylene or polyethylene phthalate. Regarding the former, for example, as shown in Japanese Patent Publication No. 38-16245, a method for obtaining a hollow container with excellent mechanical strength is to heat the container to a crystalline melting point or below and expand it under internal pressure. Kaisho
No. 47-13670 describes a stretch blow molding process by reheating a continuous tube of mono-α-olefin polypropylene. Furthermore, Japanese Patent Publication No. 49-32962 describes a molding method in which a cut polypropylene tubular body is heated to a temperature above the crystalline melting point and below the melting point and then stretch-hollow-formed to produce a polypropylene hollow container. There is. As described above, it has been recognized that by biaxially stretching a crystalline polymer, the transparency, rigidity, and impact resistance are significantly improved compared to a hollow container formed by a conventional uniaxial stretching method. However, for biaxially stretched polypropylene hollow containers made from a single layer, most polypropylene is extruded into a tubular shape, then cut continuously or into a certain length, and then reheated to achieve sufficient stretching orientation. A biaxially oriented polypropylene container was obtained by stretching and blow-molding within a temperature range. At this time, the stretching in the longitudinal direction is carried out by pinching both sides of the tubular body with a pulling machine when the tubular body is taken up. In such a molding method, since molding is performed at a temperature below the melting point, there are restrictions on the thread diameter and shape of the container. Furthermore, since the tubular body is stretch-molded, it is suitable for cylindrical containers, but in the case of square or flat containers, the wall thickness distribution becomes uneven and it is difficult to synchronize with a wall thickness control device. Furthermore, there still remained problems in the molding process, such as a decrease in fusion strength at the pinch-off portion and a tail remaining at the bottom of the container because the bottom is grabbed and stretched. As a method for molding polyester or acrylonitrile resin, for example, as disclosed in Japanese Patent Publication No. 49-3073, polyethylene phthalate is first injection molded to form an amorphous tubular body with a bottom of a certain length.
There is a method in which this tubular body is mechanically stretched in the longitudinal direction using a stretching rod, and then stretched in the transverse direction using pressurized air to perform blow molding. Further, in Japanese Patent Application Laid-Open No. 51-101516, a control device for a biaxially oriented plastic container is described, in which an injection molded plastic preform of acrylic resin is molded, and the tip of the blow pin moves in the vertical direction, and the tip of the blow pin moves in the horizontal direction. A method of orientation with pressurized fluid is described. In most of these molding methods, a preform of a tubular body called a cold parison is reheated within a certain temperature and then stretch-hollow molded by injection molding. These materials are limited to polyethylene terephthalate and acrylic resins because they are materials that exhibit sufficient stretching effects and gas barrier properties necessary to retain the contents. In order to obtain a preform using these resins by injection molding, a single material must be used, which is expensive and economically inferior. Furthermore, since the preform is obtained by injection molding, a taper at a certain angle is required so that it can be easily removed from the cavity, which is a significant limitation.
Furthermore, since polyethylene phthalate has a more rigid molecule than polypropylene, its crystallization rate is slow and it is easily stretched, resulting in an amorphous transparent container. However, since the glass transition point is 70°C, when it is sterilized by the above-mentioned retort method at 100 to 130°C for 5 to 20 minutes, it becomes the original crystalline polyethylene terephthalate, whitening and devitrification. This biaxially oriented terephthalate container was prone to devitrification even when filled with hot water of about 70° C. or higher, and also suffered from significant deformation, resulting in poor heat resistance. The purpose of the present invention is to study these biaxially stretched blow molding methods, and to achieve a multilayer structure that not only provides an appearance such as transparency and surface gloss, but also has excellent physical properties such as drop strength, rigidity, and heat resistance. An object of the present invention is to obtain a method for manufacturing an axially stretched blow-molded container. Another object of the present invention is to provide a method for producing a biaxially stretched blow-molded container that eliminates molding restrictions as much as possible, allows hollow containers of many shapes to be obtained, and is easy to mold. The present invention is a method for manufacturing a multilayer stretched hollow container, in which a uniaxially stretched preform is molded by a multilayer blow molding method, and then reheated and stretched within a certain temperature range. The present invention will be explained in detail below. First, a uniaxially stretched preform is molded using a multilayer blow molding machine shown in FIG. For example, when molding a four-layer parison, the sub-extruders 1 and 3 and the main extruder 2 are connected to a multilayer die head 5 of three types and four layers. The main extruder 2 is supplied with polypropylene forming the inner layer. The sub-extruder 3 is supplied with a resin having excellent gas barrier properties such as intermediate layer (second layer from the outer layer) nylon or saponified ethylene-vinyl acetate copolymer. The other sub-extruder 1 includes
The outer layer and the middle layer (third layer from the outer layer) are supplied by a branch adapter. For this layer, a resin having good adhesiveness to the resin extruded from the sub-extruder 3 and the main extruder 2 is used. This resin is a modified polyolefin modified with an unsaturated carboxylic acid or its derivative. The amount of unsaturated carboxylic acid or its derivative grafted onto the modified polyolefin is 0.01 parts by weight per 100 parts by weight of the polyolefin.
~20 parts by weight. Furthermore, in order to improve adhesiveness, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylic acid copolymer, or hydrocarbon-based synthetic rubber and a tackifier such as rosin are added to the modified polyolefin. Sometimes. The amount added is 1 part by weight per 100 parts by weight of modified polyolefin.
~30 parts by weight. The resin extruded from each of these extruders is transferred to the inner layer, the third layer, and the second layer in the multilayer die head 5.
The layers and outer layers are sequentially laminated through concentric channels, and the four-layer parison is apparently extruded as one parison. The mold of the blow molding machine is a reduced shape of the container shape of the final product except for the mouth, and its size is 1/4 to 1/1.5 in the vertical direction and 1/5 to 1/1.5 in the horizontal direction. is within the range of This mold is used to mold a preform before being biaxially stretched. Unlike the conventional method described above, this preform is not limited in shape and can be formed into a shape close to that of the final product. Therefore, the bottom portion, which requires impact strength, can be made thicker, and an appropriate thickness distribution can be easily obtained even if the bottom portion is flat or square. Furthermore, since the mouth and bottom parts can be molded at a temperature higher than the melting temperature, it is possible to obtain an acute-angled shape, and furthermore, a product with strong fusion strength at the pinch-off part can be obtained. In addition, since a bottomed parison can be obtained in advance, no tail can be seen in the bottom gripping portion, resulting in an excellent appearance. Then, as shown in FIG. 2, the preform 6 is aligned with the mandrel 7 attached to the rotating shaft. Next, as shown in FIG. 3, the preform 6 is inserted and fixed onto the mandrel 7. This insertion is performed by automatic equipment. The preform is fixed by the regulation between the inner diameter of the mouth and the outer diameter of the mandrel. This fixed preform 6 is heated by a heating device 8, as shown in FIG. This heating device 8 is equipped with an infrared heater. At this time, the time and temperature settings are controlled so that the preform 6 has a temperature of 140 to 180°C. This heated preform is introduced into a final mold 9 as shown in FIG. When introduced into the mold 9, the stretching rod 10 is elongated as shown in FIG. 6, and is forcibly stretched in the longitudinal direction. This stretching rod 10 stops near the mold 9 at the bottom of the container and has a length that does not touch the mold 9. At the same time, compressed air is blown from the tip of the mandrel 7, and the container is sufficiently pressed against the mold wall. The mold is cooled with cooling water at a temperature of 5 to 10°C, and is sufficiently cooled at the same time as compressed air is blown into the mold. The temperature of the resin in the container during this stretch blow molding must be at a temperature that allows for sufficient stretching. This stretch-molded container 11 is taken out by opening the mold 9, as shown in FIG. The mandrel 7 then returns to the state shown in FIG. 2, and the aforementioned steps are repeated. As described above, in the manufacturing method of the present invention, after the preform of the container is molded, it is stretch-hollow molded. The container obtained by this method has excellent gas and water vapor barrier properties, and also has excellent physical properties such as heat resistance, transparency, and drop strength. In the detailed description above, modified polyolefin/
A four-layer structure of A/modified polyolefin/unmodified polypropylene was explained. (A is nylon with excellent gas barrier properties or saponified ethylene-vinyl acetate copolymer) Other containers having the following configurations can also be molded. There are also three-layer structures such as modified polyolefin/A/modified polyolefin and A/modified polyolefin/unmodified polypropylene. Next, examples of the present invention will be described. Example In a multilayer blow molding machine equipped with a four-layer die head, the outer layer was made of maleic anhydride-modified polypropylene (MI=1.0), and the middle layer (second layer from the outer layer) was made of saponified ethylene-vinyl acetate copolymer (MI= 1.5, mp=180℃), middle layer (third layer from outer layer)
The preforms were extruded so that the same resin as the outer layer and the inner layer was made of polypropylene (MI=1.0) to form preforms of 3 types and 4 layers. This preform was reheated to about 140° C., introduced into a mold, and stretched 1.5 times in the longitudinal direction and 3 times in the transverse direction to obtain a biaxially stretched four-layer hollow container. Table 1 shows the physical properties of this container. Comparative Example 1 A parison with the same four-layer structure as in Example 1 was molded,
This parison was molded by a conventional blow molding method to obtain a hollow container. The physical properties of this container are shown in Table 1. Comparative Example 2 A bottomed parison made of polyethylene terephthalate was molded by injection molding, and this parison was
After reheating to 100°C, it was stretched 1.5 times in the longitudinal direction and 3 times in the transverse direction to obtain a hollow container. The physical properties of this container are shown in Table 1. Comparative Example 3 A parison with a bottom made of polypropylene was molded by injection molding, and after reheating the parison to 140° C., it was stretched 1.5 times in the longitudinal direction and 3 times in the transverse direction to obtain a hollow container. The physical properties of this container are shown in Table 1.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多層押出成形機の説明図、第2図から
第7図までは、本発明の製造方法の工程を示す説
明図である。
FIG. 1 is an explanatory diagram of a multilayer extrusion molding machine, and FIGS. 2 to 7 are explanatory diagrams showing the steps of the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】 1 ガス遮断性の優れた樹脂層を含む多層構成
で、口部を除き最終容器をそのまま縮小した形状
の一軸延伸のプリフオームを中空成形法により直
接成形し、このプリフオームを回転軸に取りつけ
られたマンドレルに挿入固定し、加熱装置で140
〜180℃に再加熱後、金型内で縦方向に1.5〜4
倍、横方向に1.5〜5倍延伸することを特徴とす
る多層延伸中空容器の製造方法。 2 ガス遮断性の優れた樹脂層が、ナイロンまた
はエチレン−酢酸ビニル共重合体ケン化物である
特許請求の範囲第1項記載の多層延伸中空容器の
製造方法。
[Scope of Claims] 1. A uniaxially stretched preform with a multilayer structure including a resin layer with excellent gas barrier properties and a reduced size of the final container except for the opening is directly molded by blow molding, and this preform is rotated. It is inserted into a mandrel attached to a shaft and heated to 140°C using a heating device.
After reheating to ~180℃, it is heated vertically in the mold by 1.5~4
1. A method for manufacturing a multilayer stretched hollow container, characterized by stretching the container by 1.5 to 5 times in the transverse direction. 2. The method for producing a multilayer stretched hollow container according to claim 1, wherein the resin layer having excellent gas barrier properties is made of nylon or a saponified ethylene-vinyl acetate copolymer.
JP14756077A 1977-12-08 1977-12-08 Production of multilayered and stretched hollow vessel Granted JPS5480367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14756077A JPS5480367A (en) 1977-12-08 1977-12-08 Production of multilayered and stretched hollow vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14756077A JPS5480367A (en) 1977-12-08 1977-12-08 Production of multilayered and stretched hollow vessel

Publications (2)

Publication Number Publication Date
JPS5480367A JPS5480367A (en) 1979-06-27
JPS6246336B2 true JPS6246336B2 (en) 1987-10-01

Family

ID=15433093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14756077A Granted JPS5480367A (en) 1977-12-08 1977-12-08 Production of multilayered and stretched hollow vessel

Country Status (1)

Country Link
JP (1) JPS5480367A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889261A (en) * 1972-02-29 1973-11-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889261A (en) * 1972-02-29 1973-11-21

Also Published As

Publication number Publication date
JPS5480367A (en) 1979-06-27

Similar Documents

Publication Publication Date Title
EP0511720B1 (en) Method for producing a hot fillable, collapse resistant polyester container
KR100742076B1 (en) Polyester resin lamination vessel and molding method therefor
JPS63194912A (en) Preform for biaxially orienting container and molding method thereof
JPH0471698B2 (en)
US3294885A (en) Method for blow molding thermoplastic
JPH01166930A (en) Manufacture of blow molded vessel from thermoplastic polyester
JPS6243850B2 (en)
JPS5949896B2 (en) Method for manufacturing multilayer stretched hollow containers
JP2001206336A (en) Polyester resin laminated container and its holding method
JPH05200839A (en) Production of heat and pressure-resistant bottle
JPH01133714A (en) Manufacturing device for thermally fixed stretched plastic vessel
JPS634493B2 (en)
JPS6246336B2 (en)
JPS5841182B2 (en) Method for manufacturing hot-fillable plastic containers
JP2001150524A (en) Heat-resistant polyester resin laminated container and method for molding the same
JPH0431286B2 (en)
JPS62270315A (en) Manufacture of oriented polyester vessel
JPS61197205A (en) Orientation blow molding preform
JPH03275327A (en) Stretch-formed and blow-molded container
JPS60189418A (en) Manufacture of heat resisting polyester bottle
JPH0371008B2 (en)
JPH0415725B2 (en)
JPS60137610A (en) Molding process of multilayer pipe for bottle
JPS62199425A (en) Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container
JPS6212023B2 (en)