JPS624596B2 - - Google Patents

Info

Publication number
JPS624596B2
JPS624596B2 JP57168529A JP16852982A JPS624596B2 JP S624596 B2 JPS624596 B2 JP S624596B2 JP 57168529 A JP57168529 A JP 57168529A JP 16852982 A JP16852982 A JP 16852982A JP S624596 B2 JPS624596 B2 JP S624596B2
Authority
JP
Japan
Prior art keywords
pipe
branch
rectifying
main pipe
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57168529A
Other languages
Japanese (ja)
Other versions
JPS5958294A (en
Inventor
Kensuke Fueki
Kazuya Hirata
Yukio Matsunaga
Kazuyoshi Urata
Tadami Hashimoto
Masanori Miura
Kenji Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc, Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP57168529A priority Critical patent/JPS5958294A/en
Publication of JPS5958294A publication Critical patent/JPS5958294A/en
Publication of JPS624596B2 publication Critical patent/JPS624596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Description

【発明の詳細な説明】 本発明は、例えば原子炉における冷却材浄化系
(以下単にCUW系という)配管と通常運転時にお
ける給水系(以下単にFOWという)配管との合
流部、或いは再循環系(以下単にPLR系という)
配管とCUW系配管との合流部等に用いる配管継
手に係り、特に合流する流体の温度変動等に起因
する熱疲労の防止が有効に図れる配管継手に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to, for example, a junction between a coolant purification system (hereinafter simply referred to as CUW system) piping and a water supply system (hereinafter simply referred to as FOW) piping in a nuclear reactor, or a recirculation system. (hereinafter simply referred to as PLR system)
The present invention relates to a pipe joint used at a junction between a pipe and a CUW system pipe, and more particularly to a pipe joint that can effectively prevent thermal fatigue caused by temperature fluctuations of merging fluids.

従来、原子炉のCUW系設備として第1図に示
すものが知られている。即ち、原子炉圧力容器1
に冷却器,脱塩器を含むCUW系配管2,FDW系
配管3及びPLR系配管4等を接続しているもので
ある。このものにおいて、FDW系配管3の内部
流体温度は約230℃、またCUW系配管2の内部流
体温度は約190℃であり、両者の温度差は40℃程
度ある。通常運転時においては継続的にこのよう
な温度差を有する流体がFDW系及びCUW系の配
管継手5部で合流するため、この配管継手5が熱
疲労し易いものであつた。
Conventionally, the one shown in Figure 1 is known as CUW system equipment for nuclear reactors. That is, reactor pressure vessel 1
CUW system piping 2, FDW system piping 3, PLR system piping 4, etc., including a cooler and demineralizer, are connected to the pipe. In this, the internal fluid temperature of the FDW system piping 3 is approximately 230°C, and the internal fluid temperature of the CUW system piping 2 is approximately 190°C, and the temperature difference between the two is approximately 40°C. During normal operation, fluids having such a temperature difference continuously merge at the pipe joint 5 of the FDW system and the CUW system, so that the pipe joint 5 was susceptible to thermal fatigue.

ところで、一般に熱疲労は、ある部材の表面温
度が急激に変わつた際に断面上に温度公配がで
き、この場合の各部の熱膨張の差に基づく断面上
の応力発生の結果生じるものである。この応力の
大きさは、加熱または冷却速度,材料の伝導率や
比熱,比容積,幾何学的形状や弾性限度等に原因
している。
By the way, thermal fatigue generally occurs as a result of a temperature distribution occurring on the cross section when the surface temperature of a certain member changes rapidly, and stress is generated on the cross section due to the difference in thermal expansion of each part. . The magnitude of this stress is caused by heating or cooling rates, material conductivity, specific heat, specific volume, geometry, elastic limits, etc.

そこで熱疲労の防止対策として考え得る基本的
な方法としては、 (1) 熱応力を材料の変形で吸収するべく、熱伝導
率が大きくかつ延性に富み、疲労限度の高い材
料を選択する。
Therefore, the basic methods that can be considered to prevent thermal fatigue are: (1) Select a material with high thermal conductivity, high ductility, and a high fatigue limit in order to absorb thermal stress through material deformation.

(2) 合流する各流体の温度差自体を可能な限り小
さくする。
(2) Minimize the temperature difference between the merging fluids as much as possible.

(3) 熱サイクル数を可能な限り低くする運転条件
を確保する。
(3) Ensure operating conditions that keep the number of thermal cycles as low as possible.

(4) 合流部の構造において、2流体の熱伝導が円
滑に行なわれ、且つ管内壁に生じる温度変動を
極力小さく押さえる等が考えられる。
(4) In the structure of the confluence section, heat conduction between the two fluids can be carried out smoothly, and temperature fluctuations occurring on the inner wall of the pipe can be kept to a minimum.

(1)の材料については、工業的に使用している材
質で格別優位な経済的な材質は現在特に見当たら
ず、対策としては現実的ではない。(2)の対策も、
大幅な系統変更や、プラント全体としての熱効率
を下げることとなり、現実的ではない。また、(3)
の運転条件を管理することは、一見効果的である
が、将来の運転状態を考えると予測しきれない場
合があり、不確定要素が多いこと、電力の安定供
給の確保等の面から、現実的ではない。したがつ
て、構造に関する(4)の対策が最も現実的で、効果
的で且つ即効的であると考えられる。
As for the material in (1), there are currently no particularly advantageous and economical materials that are used industrially, and this is not a realistic countermeasure. Measures for (2) are also
This is not realistic as it would require major system changes and reduce the thermal efficiency of the entire plant. Also, (3)
Managing the operating conditions of a power plant may seem effective at first glance, but it may not be possible to predict future operating conditions, there are many uncertainties, and it is not practical in terms of ensuring a stable supply of electricity. Not the point. Therefore, the structural measure (4) is considered to be the most realistic, effective, and immediate.

このことから、従来、高,低温流体の合流部に
用いる熱疲労防止用の配管継手が種々考えられ
た。例えば、第2図に示すように、流入管の一方
である主管11と他方である枝管12との合流部
にその主管11の流量を絞る絞り部13を設け、
この絞り部3を流体が通過する際の圧力上昇によ
る流体の速度上昇を起こさせることにより枝管1
2から流入する流体が分岐コーナー部の管壁に直
接接触することを防止するようにしたものであ
る。
For this reason, various piping joints for preventing thermal fatigue have been considered in the past for use at junctions of high and low temperature fluids. For example, as shown in FIG. 2, a constriction part 13 for restricting the flow rate of the main pipe 11 is provided at the confluence of the main pipe 11, which is one of the inflow pipes, and the branch pipe 12, which is the other,
By causing an increase in the speed of the fluid due to an increase in pressure when the fluid passes through the constriction part 3, the branch pipe 1
This prevents the fluid flowing in from 2 from coming into direct contact with the pipe wall at the branch corner.

しかし、このものでは、仮に主管11の流体を
高速化したとしても、枝管12と主管11との分
岐コーナー部14には、流量変動等に基づいて高
温及び低温の各流体が交互に衝突する状態を避け
られず、局所的に熱疲労発生の可能性が残る。ま
た、管内平均流速は流体振動や腐蝕進行防止の見
地から約4〜5m/sに設定しするのが通常であ
り、これを絞り部13で高速化するには管内断面
積を極端に減少させて圧力上昇を起こさせなけれ
ばならず、この場合、4m/sの平均流速に対し
て2倍に上昇するには、約3Kg/cm2g、また、3
倍にするには8Kg/cm2gの圧力損失が生じること
になり、ポンプの大型化を招くとともに、実際
上、どの程度高速にすれば機能を果たすかが不明
確である。
However, in this case, even if the speed of the fluid in the main pipe 11 is increased, high-temperature and low-temperature fluids alternately collide with the branch corner 14 between the branch pipe 12 and the main pipe 11 based on flow rate fluctuations, etc. This condition cannot be avoided, and the possibility of localized thermal fatigue remains. In addition, the average flow velocity in the pipe is normally set to about 4 to 5 m/s from the viewpoint of preventing fluid vibration and corrosion progression, and in order to increase this speed with the throttle part 13, the cross-sectional area in the pipe must be drastically reduced. In this case, for an average flow velocity of 4 m/s, to double the pressure, approximately 3 Kg/cm 2 g, and 3
Doubling the speed would result in a pressure loss of 8 kg/cm 2 g, which would lead to an increase in the size of the pump, and it is unclear how high the speed should actually be to achieve its function.

これに対し、例えば第2図の一部又は第3図に
示すように、高温流体と低温流体との直接の衝突
を避けるべく配管内面にサーマルスリーブ15,
16を設ける手段もある。即ち、主管11又は枝
管12に小径なサーマルスリーブ15,16を各
管に同軸的に形成し、これによつて分岐コーナ部
14の内表面に直接、高温流体と低温流体が激し
く衝突するのを防止する構成とするものである。
しかし、この場合は、両流体の流れがサーマルス
リーブ15,16によつて阻害されて管内の流れ
が複雑な渦流となり、分岐コーナー部14に温度
差を伴つた流体が衝突することを確実に防止する
のは困難であり、管の熱疲労防止が確実には図れ
ない。
In contrast, as shown in a part of FIG. 2 or in FIG.
There is also a means to provide 16. That is, small-diameter thermal sleeves 15 and 16 are formed coaxially with the main pipe 11 or the branch pipes 12, thereby preventing the high-temperature fluid and the low-temperature fluid from violently colliding directly with the inner surface of the branch corner portion 14. The structure is designed to prevent this.
However, in this case, the flow of both fluids is obstructed by the thermal sleeves 15 and 16, and the flow inside the pipe becomes a complicated vortex, which reliably prevents fluids with a temperature difference from colliding with the branch corner 14. It is difficult to do so, and it is not possible to reliably prevent thermal fatigue of the tube.

なお、T継手やY継手などの合流部では通常乱
流状態で衝突し、激しく撹拌され、その流れの様
子は複雑であり、管壁に約0.1〜1Hzの高サイク
ルの温度変動を発生させ、高サイクル熱疲労の発
生が懸念される。また、分岐コーナー部は丁度、
応力集中の高い所で、熱応力が他の部材以上の約
数倍にも達し、低温流体と高温流体の合流する境
界部でもあり、非常に厳しい条件下となつて熱疲
労の発生が懸念される。
In addition, at junctions such as T-joints and Y-joints, the flow usually collides in a turbulent state and is violently stirred, and the flow is complex, causing high-cycle temperature fluctuations of about 0.1 to 1 Hz on the pipe wall. There is a concern that high cycle thermal fatigue may occur. Also, the branch corner part is exactly
It is a place where stress concentration is high, and the thermal stress reaches several times that of other parts, and it is also the boundary where low-temperature fluid and high-temperature fluid meet, so there is a concern that thermal fatigue will occur under extremely severe conditions. Ru.

本発明はこのような事情に鑑みてなされたもの
で、温度差のある流体の合流部で生じる微妙な温
度変動を極力低くおさえることができ、両流体合
流部の熱疲労の発生要因の減少に大きく寄与でき
る配管継手を提供することを目的とする。
The present invention was developed in view of the above circumstances, and is capable of suppressing subtle temperature fluctuations that occur at the confluence of fluids with different temperatures to the lowest possible level, thereby reducing the causes of thermal fatigue at the confluence of both fluids. The purpose is to provide piping joints that can make a significant contribution.

本発明の配管継手は、枝管部と主管部とからな
る、温度変化を生じる流体合流用の配管継手にお
いて、(a)枝管部の分岐コーナ部に、その枝管部の
一方からこれよりも小径であると共に、先端部が
閉塞し、かつ同軸的に前記主管内部に突出させた
整流筒を設け、かつ(b)前記整流筒の周壁に、前記
流出管部と連通し、かつ該流出管部の軸方向に沿
つて開口し、少なくとも下流側半分以下の範囲に
形成されており、又、前記枝管部の断面積と同等
の総孔断面積を有する複数の整流孔を穿設し、(c)
前記主管の上流側に複数の整流孔を有する整流板
を設け、更に、(d)前記流入管及び主管の双方の分
岐コーナ部にサーマルスリーブを設けたことを特
徴とする。
The piping joint of the present invention is a piping joint for merging fluids that causes temperature changes, which is composed of a branch pipe part and a main pipe part. (b) a rectifying tube having a small diameter, a closed tip, and protruding coaxially into the main pipe; A plurality of rectifying holes are opened along the axial direction of the pipe section, are formed in at least half of the downstream side, and have a total cross-sectional area equivalent to the cross-sectional area of the branch pipe section. ,(c)
A rectifying plate having a plurality of rectifying holes is provided on the upstream side of the main pipe, and (d) a thermal sleeve is provided at the branch corner of both the inflow pipe and the main pipe.

本発明の好適な実施の態様は、整流筒の先端
を、流入管部の他方に一体に形成され、次第に拡
径した基端が一方の流入管部の内面に形成したテ
ーパ部に摺動可能に当接したものとする。
In a preferred embodiment of the present invention, the distal end of the rectifying cylinder is integrally formed with the other inflow pipe part, and the base end whose diameter is gradually enlarged is slidable on a tapered part formed on the inner surface of one inflow pipe part. It is assumed that it came into contact with.

また、一方の流入管部は、その一端が整流筒よ
りも上流側に位置し、かつ分岐コーナ部よりも下
流側に位置するサーマルスリーブを一体に有する
ものとする。
Further, one inflow pipe section integrally includes a thermal sleeve whose one end is located upstream of the rectifying tube and downstream of the branch corner section.

また、他方の流入管部は、その一端が整流筒の
整流孔よりも上流側に位置し、かつ分岐コーナ部
よりも下流側に位置するサーマルスリーブを一体
に有するものとする。更にまた、流入管の少なく
ともいずれか一方は、分岐コーナ部よりも上流側
に、管径方向に孔径を異ならせた複数の整流孔を
有する整流体を一体に設けたものとする。
Further, the other inflow pipe portion integrally includes a thermal sleeve whose one end is located upstream of the flow straightening hole of the flow straightening tube and located downstream of the branch corner portion. Furthermore, at least one of the inflow pipes is integrally provided with a flow regulating hole having a plurality of flow regulating holes having different hole diameters in the pipe radial direction on the upstream side of the branch corner portion.

以下、本発明の一実施例を第4図を参照して説
明する。
An embodiment of the present invention will be described below with reference to FIG.

図において、21は流入管部の一方つまり枝
管、22は流入管部の他方つまり主管、23は流
出管部である。この配管継手の分岐コーナ部に、
枝管21からこれよりも小径で先端が閉塞した整
流管24を同軸的に突出している。なお、この整
流管24の先端は主管22に一体に形成され、次
第に拡径した基端25が枝管21の内面に形成し
たテーパ部26に摺動可能に当接している。ま
た、この整流管24の周壁には流出管部23と連
通する複数の整流孔27をその総孔断面積を枝管
21の断面積と同等にして穿設している。この整
流孔27は、流出管部23の軸方向に沿つて開孔
する形状とし、下流側半分程度に開けたものであ
る。
In the figure, 21 is one side of the inflow pipe section, that is, a branch pipe, 22 is the other side of the inflow pipe section, that is, the main pipe, and 23 is the outflow pipe section. At the branch corner of this piping joint,
A rectifier tube 24 having a smaller diameter and having a closed tip protrudes coaxially from the branch tube 21. The distal end of the rectifying pipe 24 is integrally formed with the main pipe 22, and the proximal end 25 whose diameter is gradually expanded is slidably abutted on a tapered portion 26 formed on the inner surface of the branch pipe 21. Further, a plurality of rectifying holes 27 communicating with the outflow pipe portion 23 are bored in the peripheral wall of the rectifying pipe 24 so that the total cross-sectional area of the holes is equal to the cross-sectional area of the branch pipe 21 . The flow straightening hole 27 is shaped to open along the axial direction of the outflow pipe portion 23, and is opened approximately half way on the downstream side.

また、主管22は、その一端が整流筒24より
も上流側に位置し、かつ分岐コーナ部28よりも
下流側に位置するサーマルスリーブ29を一体に
有している。
Further, the main pipe 22 integrally includes a thermal sleeve 29 whose one end is located upstream of the rectifying cylinder 24 and downstream of the branch corner portion 28 .

更に枝管21は、その一端が整流筒24の整流
孔27よりも上流側に位置し、かつ分岐コーナ部
28よりも下流側に位置する異なるサーマルスリ
ーブ30を一体に有している。
Further, the branch pipe 21 integrally includes a different thermal sleeve 30, one end of which is located upstream of the flow straightening hole 27 of the flow straightening cylinder 24 and downstream of the branch corner portion 28.

更にまた、主管22は、分岐コーナ部28より
も上流側に整流板31を一体に有するものとして
いる。この整流板31は、主管22の管径方向に
孔径を異ならせた複数の整流孔32を有するもの
としている。なお、この整流孔32は主管22の
中心側のものが外周側のものよりも大径としてあ
る。この整流孔32の主管22に対する開口面積
割合は、レイノズル数(Re)=106程度では例え
ば0.466とするのが望ましい。
Furthermore, the main pipe 22 integrally has a current plate 31 on the upstream side of the branch corner portion 28. This rectifying plate 31 has a plurality of rectifying holes 32 having different hole diameters in the radial direction of the main pipe 22. Note that the rectifying hole 32 has a larger diameter on the center side of the main pipe 22 than on the outer peripheral side. The opening area ratio of the rectifying hole 32 to the main pipe 22 is preferably 0.466, for example, when the Raynozzle number (Re) is about 10 6 .

このような構成であると、枝管21及び主管2
2に温度差を有する2流体を流入させて合流した
場合、次のような作用によつて管壁疲労を防止す
ることができる。即ち、主管22から流入する流
体(流れ方向F)は、第4図に仮想線Aで示すよ
うに、流量分布の良好な形状を呈している。そし
てこの主管22に設けたサーマルスリーブ29を
介して分岐コーナ部28には流体が非接触な状態
で流通するものである。
With such a configuration, the branch pipe 21 and the main pipe 2
When two fluids having different temperatures are allowed to flow into the pipe 2 and join together, pipe wall fatigue can be prevented by the following action. That is, the fluid flowing in from the main pipe 22 (in the flow direction F) has a shape with a good flow rate distribution, as shown by the imaginary line A in FIG. Fluid flows to the branch corner portion 28 through a thermal sleeve 29 provided on the main pipe 22 in a non-contact manner.

一方、枝管21に流入する流体(流入方向f)
は、整流筒24から整流孔27を介して流出管部
23側に仮想線Bで示すように良好な流量分布で
通過する。この整流孔27から流通する流体は、
枝管21のサーマルスリーブ30によつて分岐コ
ーナ部28に接触することを防止される。
On the other hand, fluid flowing into the branch pipe 21 (inflow direction f)
The water passes from the rectifier tube 24 to the outflow pipe section 23 side through the rectifier hole 27 with a good flow rate distribution as shown by the imaginary line B. The fluid flowing from this rectifying hole 27 is
The branch pipe 21 is prevented from contacting the branch corner portion 28 by the thermal sleeve 30 .

しかして、主管22及び枝管21から流れ込む
流体は分岐コーナ部28を通過する場合、渦流な
どが抑制された状態で、第4図に仮想線Cで示す
如く良好な流量分布形状で、流出管部23に流出
することになる。即ち、主管22から流入する流
体及び枝管21から流入する流体の両方とも、
A,Bで示す如く良好な流量分布形状で合流する
ため、それらの総和としての流出管部23におけ
る流量分布形状もCの如く良好な特性を得るもの
である。
Therefore, when the fluid flowing from the main pipe 22 and the branch pipe 21 passes through the branch corner part 28, the fluid flows through the outflow pipe with a good flow distribution shape as shown by the imaginary line C in FIG. The liquid will flow out to the section 23. That is, both the fluid flowing in from the main pipe 22 and the fluid flowing in from the branch pipe 21,
Since they merge in a good flow rate distribution shape as shown by A and B, the flow rate distribution shape in the outflow pipe section 23 as a sum of them also has good characteristics as shown in C.

従つて本実施例によると、合流した温度差のあ
る流体が良好は流量分布形状で流出するようにな
るので、極部的な渦流などの発生により各流入流
体が流量変化するなど、未混合状態で分岐コーナ
部28に接触するような虞れがなく、良好な状態
で混合されて平均した温度分布で管内を流通する
ことになる。従つて分岐コーナ部或いはこれに対
向する側面部28Aなどに温度変化を発生する虞
れがなく、この部分に熱応力を余分に発生させる
虞れをなくし疲労を抑制する上で有効なものとな
る。
Therefore, according to this embodiment, the merged fluids with different temperatures flow out with a good flow distribution shape, so that the flow rate of each inflow fluid changes due to the occurrence of polar vortices, etc., resulting in an unmixed state. There is no risk of the mixture coming into contact with the branch corner 28, and the mixture is well mixed and flows through the tube with an average temperature distribution. Therefore, there is no risk of temperature change occurring in the branch corner portion or the side surface portion 28A opposite thereto, which is effective in eliminating the risk of generating excessive thermal stress in this portion and suppressing fatigue. .

なお、前記実施例のように、整流筒24の先端
を主管22に一体に形成し、次第に拡径した基端
25を枝管21の内面形成したテーパ部26に摺
動可能に当接したものにすれば、主管22から流
入する流体は整流筒24の主管22への一体連結
構造の先端部分を通過するから、この整流筒24
が振動などの虞れなく固定状態に保持できる。ま
た、枝管21から流入する流体による整流筒24
に加わる流体圧力でその整流筒24の基端25に
外周方向への押圧力が加わることになるが、この
基端25がテーパ部26に当接していることより
押圧固定状態となり、振動などの発生する虞れが
ない。なお、整流筒24の基端25を枝管21の
テーパ部26に当接した構成にすると、温度変化
によつて整流筒24が熱膨脹した場合においても
当接位置が自動的に調整され、熱応力発生を確実
に防止できる。
Note that, as in the embodiment described above, the tip of the rectifying tube 24 is integrally formed with the main pipe 22, and the proximal end 25 whose diameter is gradually expanded is slidably abutted on the tapered part 26 formed on the inner surface of the branch pipe 21. If this is done, the fluid flowing in from the main pipe 22 will pass through the tip of the integral connection structure of the rectifying cylinder 24 to the main pipe 22.
can be held in a fixed state without the risk of vibration. In addition, the rectifying cylinder 24 is caused by the fluid flowing in from the branch pipe 21.
Fluid pressure applied to the straightening tube 24 applies a pressing force in the outer circumferential direction to the base end 25 of the rectifying cylinder 24, but since the base end 25 is in contact with the tapered portion 26, it is in a pressed and fixed state, and vibrations etc. There is no risk of this occurring. Note that if the base end 25 of the rectifying cylinder 24 is configured to abut against the tapered part 26 of the branch pipe 21, even if the rectifying cylinder 24 thermally expands due to temperature changes, the abutment position will be automatically adjusted and the heat will be removed. Stress generation can be reliably prevented.

また、前記実施例の如く、整流筒24の整流孔
27を、流出管部23の軸方向に沿う形状とし、
少なくとも下流側半分程度に開けたものである
と、二流体が流出管部23の軸線方向に沿つて流
入し、混合するので渦の発生防止がより確実とな
る。
Further, as in the embodiment described above, the flow straightening hole 27 of the flow straightening cylinder 24 is shaped along the axial direction of the outflow pipe portion 23,
If it is opened at least half way on the downstream side, the two fluids will flow in along the axial direction of the outflow pipe section 23 and mix, so that the generation of vortices can be more reliably prevented.

また、前記実施例の如く、サーマルスリーブ2
9,30を各流入管部21,22に設けることに
より分岐コーナ部28に流体が直接接触すること
を防止できるようにすれば、この分岐コーナ部2
8の温度変化を更に確実に防止できるものとな
る。
In addition, as in the above embodiment, the thermal sleeve 2
9 and 30 on each inflow pipe section 21 and 22 to prevent the fluid from coming into direct contact with the branch corner section 28.
This makes it possible to more reliably prevent the temperature change described in No. 8.

更にまた、前記実施例の如く主管22に整流孔
32の径の異なる整流板31を設けたものである
と、流入する流体の流量分布形状を予め良好にで
き(仮想線A参照)、整流効果がより確実とな
る。なお整流板31は、図示しないが枝管21に
設けてもよい。
Furthermore, if the main pipe 22 is provided with the rectifying plates 31 having the rectifying holes 32 of different diameters as in the embodiment described above, the flow rate distribution shape of the inflowing fluid can be made good in advance (see virtual line A), and the rectifying effect can be improved. becomes more certain. Although not shown, the current plate 31 may be provided on the branch pipe 21.

なお、前記実施例では整流筒24を枝管21の
軸線に沿つて配置するものとしたが、この整流筒
24は必ずしもこのような配置にする必要がな
く、例えば主管22の軸方向に沿う配置としても
同様の効果を奏することができる。
In the above embodiment, the rectifying tube 24 is arranged along the axis of the branch pipe 21, but the rectifying tube 24 does not necessarily have to be arranged in this way. The same effect can be achieved as well.

以上のように、本発明は流入管部の分岐コーナ
部にその流入管部の一方方からこれよりも小径で
先端が閉塞した整流筒を同軸的に突出し、この整
流筒の周壁に流出管部と連通する複数の整流孔を
その総孔断面積を流入管部の断面積と同等にして
穿設したものであるから分岐コーナ部に未混合の
渦流体が多量に発生することを確実に防止し、従
つて混度差のある流体を合流する場合にその分岐
コーナ部に温度変化に基づく熱応力を原因とする
疲労の虞れを防止することができ、例えば原子炉
における冷却材浄化系の設備は勿論のことそれ以
外の各種の配管設備においても有効なものとな
り、管路構成の信頼性を向上することができる。
As described above, the present invention protrudes coaxially from one side of the inflow pipe at the branch corner of the inflow pipe with a rectifying cylinder having a smaller diameter and a closed end, and the outflow pipe is attached to the peripheral wall of the rectifying cylinder. Multiple rectifying holes communicating with the pipe are drilled so that the total cross-sectional area of the holes is equal to the cross-sectional area of the inflow pipe, which reliably prevents the generation of a large amount of unmixed vortex fluid at the branch corner. Therefore, when fluids with different mixing ratios are combined, it is possible to prevent the risk of fatigue caused by thermal stress due to temperature changes at the branch corner, for example, in the coolant purification system of a nuclear reactor. It is effective not only for the equipment but also for various other piping equipment, and the reliability of the pipe line configuration can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配管継手を組み込む配管系統の一例を
示す系統図、第2図及び第3図は従来の配管継手
の構成を示す部分断面図、第4図は本発明の一実
施例を示す部分断面図である。 21……流入管部の一方(枝管)、22……流
入管部の他方(主管)、23……流出管部、24
……整流筒、25……整流筒の基端、26……テ
ーパ部、27……整流孔、28……分岐コーナ
部、29,30……サーマルスリーブ、31……
整流板、32……整流孔。
Fig. 1 is a system diagram showing an example of a piping system incorporating a piping joint, Figs. 2 and 3 are partial sectional views showing the configuration of a conventional piping joint, and Fig. 4 is a part showing an embodiment of the present invention. FIG. 21... One side of the inflow pipe section (branch pipe), 22... The other side of the inflow pipe section (main pipe), 23... Outflow pipe section, 24
... rectifying cylinder, 25 ... base end of rectifying cylinder, 26 ... taper part, 27 ... rectifying hole, 28 ... branching corner part, 29, 30 ... thermal sleeve, 31 ...
Rectifying plate, 32... Rectifying hole.

Claims (1)

【特許請求の範囲】[Claims] 1 枝管部と主管部とからなる、温度変化を生じ
る流体合流用の配管継手において、(a)枝管部の分
岐コーナ部に、その枝管部の一方からこれよりも
小径であると共に、先端部が閉塞し、かつ同軸的
に前記主管内部に突出させた整流筒を設け、かつ
(b)前記整流筒の周壁に、前記流出管部と連通し、
かつ該流出管部の軸方向に沿つて開口し、少なく
とも下流側半分以下の範囲に形成されており、
又、前記枝管部の断面積と同等の総孔断面積を有
する複数の整流孔を穿設し、(c)前記主管の上流側
に複数の整流孔を有する整流板を設け、更に、(d)
前記流入管及び主管の双方の分岐コーナー部にサ
ーマルスリーブを設けたことを特徴とする配管継
手。
1. In a piping joint for merging fluids that causes temperature changes, which consists of a branch pipe section and a main pipe section, (a) a pipe with a diameter smaller than this from one of the branch pipe sections to the branch corner section of the branch pipe section, and A rectifying tube whose tip end is closed and protrudes coaxially into the main pipe, and
(b) communicating with the outflow pipe section on the peripheral wall of the straightening tube;
and is opened along the axial direction of the outflow pipe portion and is formed in at least a half of the downstream side,
Further, a plurality of rectifying holes having a total hole cross-sectional area equivalent to the cross-sectional area of the branch pipe portion are bored, (c) a rectifying plate having a plurality of rectifying holes is provided on the upstream side of the main pipe, and ( d)
A piping joint characterized in that thermal sleeves are provided at branch corners of both the inflow pipe and the main pipe.
JP57168529A 1982-09-29 1982-09-29 Piping joint Granted JPS5958294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168529A JPS5958294A (en) 1982-09-29 1982-09-29 Piping joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168529A JPS5958294A (en) 1982-09-29 1982-09-29 Piping joint

Publications (2)

Publication Number Publication Date
JPS5958294A JPS5958294A (en) 1984-04-03
JPS624596B2 true JPS624596B2 (en) 1987-01-30

Family

ID=15869707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168529A Granted JPS5958294A (en) 1982-09-29 1982-09-29 Piping joint

Country Status (1)

Country Link
JP (1) JPS5958294A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575278B2 (en) * 2005-11-08 2010-11-04 株式会社日立製作所 Feed water heater drain pump up system
JP5106310B2 (en) * 2008-08-07 2012-12-26 株式会社東芝 Boiling water reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231846Y2 (en) * 1972-12-11 1977-07-20
JPS50150828U (en) * 1974-05-31 1975-12-15

Also Published As

Publication number Publication date
JPS5958294A (en) 1984-04-03

Similar Documents

Publication Publication Date Title
US3409274A (en) Mixing apparatus for high pressure fluids at different temperatures
US4230410A (en) Mixing device for fluids of different and varying temperatures
JPS624596B2 (en)
JPS624595B2 (en)
JPH08135883A (en) Piping joint
Stelling et al. The onset of flow instability for downward flow in vertical channels
Shin et al. Experimental study on the effect of angles and positions of mixing vanes on CHF in a 2× 2 rod bundle with working fluid R-134a
JPS60116998A (en) Piping joint
CN209876180U (en) Pipeline structure for preventing cold-heat exchange mixed heat fatigue
Lv et al. Design of fluidic diode for a high-temperature DRACS test facility
JPH0535318B2 (en)
CN109238494A (en) Pipeline temperature measuring equipment
GB2055595A (en) Mixing device for flowing fluids
RU2066811C1 (en) Spray-type desuperheater
Groeneveld Forced convective heat transfer to superheated steam in rod bundles
Holmes High temperature problems associated with the design of the commercial fast reactor
Israel et al. Critical heat flux measurements in a 16-rod simulation of a BWR fuel assembly
Fraas A NEW APPROACH TO THE DESIGN OF STEAM GENERATORS FOR MOLTEN SALT REACTOR POWER PLANTS.
JPS5984094A (en) Primary fluid entrance tube for heat exchanger
Guo Mist/steam cooling in a heated horizontal tube
JPS59217091A (en) Structure of branch pipe
JPS6275194A (en) Fluid mixing pipe
Madni et al. LMFBR system analysis: Impact of heat transport system on core thermal-hydraulics
JPS5949478B2 (en) Thermal expansion absorption device for liquid metal piping
Cho et al. Direct Contact Heat Exchange Interfacial Phenomena for Liquid Metal Reactors: Part I—Heat Transfer