JPS6245965A - Pressure controller - Google Patents

Pressure controller

Info

Publication number
JPS6245965A
JPS6245965A JP60185544A JP18554485A JPS6245965A JP S6245965 A JPS6245965 A JP S6245965A JP 60185544 A JP60185544 A JP 60185544A JP 18554485 A JP18554485 A JP 18554485A JP S6245965 A JPS6245965 A JP S6245965A
Authority
JP
Japan
Prior art keywords
propellant
valve
pressure
engine
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60185544A
Other languages
Japanese (ja)
Inventor
Takao Tojo
東條 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60185544A priority Critical patent/JPS6245965A/en
Publication of JPS6245965A publication Critical patent/JPS6245965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Engines (AREA)

Abstract

PURPOSE:To permit the use of an exhaust value having an ordinary capacity by allowing the propellant feeding pressure to be sharply lowered, keeping the propellant feeding pressure constant, in a propellant feeding pressure controller in the ground combustion test equipment for a rocket engine. CONSTITUTION:An imitation engine valve 10 is installed at the position close to a test rocket engine 1 in a pipe 6 for feeding propellant from a propellant feeding tank 2 into the test rocket engine 1, and said valve 10 is opened simultaneously with the engine stop, and the propellant is discharged outside, and said propellant is allowed to continue flowing-out after engine stop. A resistance control valve 11 is installed at the position close to the tank 2 in the pipe 6, and said valve 11 is throttle-controlled in the period in which propellant continues flowing in the pipe 6 by the valve 11. Further, in the pipe for connecting between a pressurized-gas cylinder 3 and the tank 2, a pressurization control valve 4 which is PID-controlled through a control circuit 20 according to the detection signal of a pressure detector 8 is installed, and the propellant feeding pressure is kept constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はロケットエンジンの地上燃焼試験設備に適用さ
れる推進剤供給圧力(以下インターフェース圧力と称す
る)を制御する圧力制御装置に関し、特にインターフェ
ース圧力を急激に降下させる手段に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a pressure control device for controlling propellant supply pressure (hereinafter referred to as interface pressure) applied to a ground combustion test facility for a rocket engine, and in particular to a pressure control device for controlling propellant supply pressure (hereinafter referred to as interface pressure). It relates to a means for rapidly descending.

〔従来技術〕[Prior art]

最近のロケットエンジンの地上燃焼試験においては、実
際のロケ、ト飛翔状態での性能確認を行なうために、エ
ンジンへのインターフェース圧力を、エンジン停止前の
定常圧力P1M (約12〜16 kl / ctn 
)から低圧力PIL (約3〜6kg/m)へ、エンジ
ン停止後の極めて短い時間(約2〜5秒)内に急激に降
下させることが要求されている。
In recent ground combustion tests of rocket engines, in order to confirm performance under actual on-location and flight conditions, the interface pressure to the engine is adjusted to the steady pressure P1M (approximately 12 to 16 kl/ctn) before the engine stops.
) to low pressure PIL (approximately 3 to 6 kg/m) within a very short time (approximately 2 to 5 seconds) after the engine is stopped.

インターフェース圧力を急激に降下させる制御技術は今
のところ存在してないが、上記要求を満たす手段として
第6図に示すような制御手段が考えられる。
Although there is currently no control technique for rapidly reducing the interface pressure, a control means as shown in FIG. 6 can be considered as a means to meet the above requirements.

すなわち、第6図に示す制御手段は、ロケットエンジン
1が燃焼中の定常状態においては、推進剤タンク2内の
圧力を、加圧ガスがンペ3からの加圧ガスを加圧制御弁
4にて制御することにより一定圧に保つ。そしてエンジ
ン1を停止すると同時に上記制御弁4を全閉状態とし、
逃気弁5を開放状態とすることにより、タンク2内の加
圧ガスを逃気させて推進剤の圧力を降下させる手段であ
る。
That is, the control means shown in FIG. 6 controls the pressure in the propellant tank 2 and the pressurized gas from the pump 3 in the steady state when the rocket engine 1 is in combustion. Maintain a constant pressure by controlling the pressure. Then, at the same time as stopping the engine 1, the control valve 4 is fully closed,
By opening the release valve 5, the pressurized gas in the tank 2 is released, thereby lowering the pressure of the propellant.

なお第6図において、6は推進剤供給配管、7は推進剤
供給弁、8は圧力検出器、9け制御装置である。
In FIG. 6, 6 is a propellant supply pipe, 7 is a propellant supply valve, 8 is a pressure detector, and 9 is a control device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに上記制御手段には次のような問題がある。 However, the above control means has the following problems.

(1)大量の加圧ガスを短時間内に逃気する必要がある
ため、逃気弁5として通常の試験終了後における逃気、
あるいは安全装置として作動するときの逃気に必要な容
量の20倍以上の容量を有する大容量逃気弁が必要にな
る。そしてこのような大容量逃気弁を短時間内に制御す
ることにも困難が伴う。
(1) Since it is necessary to release a large amount of pressurized gas within a short time, the release valve 5 is used to release the gas after the normal test.
Alternatively, a large-capacity relief valve having a capacity 20 times or more of the capacity required for relief when operating as a safety device is required. It is also difficult to control such a large capacity relief valve within a short period of time.

(2)逃気すべきがス掃はタンク2内のがス容積すなわ
ちタンク2内の推進剤残量によって左右されるが、この
残1:は試験条件如何によってその都度異なるものとな
る。すなわち、エンジン燃焼時間、初期充填量、エンジ
ン予冷に消費した量等が試験毎に毎回異なることから、
推進剤残量はその都度異なったものとなる。元来、この
種の試験設備は上記した条件を種々変化させながら実施
するものである。かくして逃気するガス量が毎回異なる
ことから、逃気弁5による逃気制御を適確に行なうこと
が極めて困難となる。
(2) The amount of gas that should be released depends on the volume of gas in the tank 2, that is, the amount of propellant remaining in the tank 2, and this amount will differ each time depending on the test conditions. In other words, since the engine combustion time, initial charging amount, amount consumed for engine pre-cooling, etc. differ from test to test,
The amount of propellant remaining will differ each time. Originally, this type of test equipment is used to conduct tests while varying the conditions described above. Since the amount of gas to be released differs each time, it becomes extremely difficult to perform appropriate release control using the release valve 5.

(3)上記した(1)(2)の問題との関連上、インタ
ーフェース圧力降下ノリ一ンを種々変化させて試験する
ことはほとんど不可能である。
(3) In connection with the problems of (1) and (2) above, it is almost impossible to conduct tests while varying the interface pressure drop rate.

なお第6図における推進剤供給弁7を抵抗制御弁に置き
換えて、この抵抗制御弁7を絞り込むことにより圧損を
増大させ、インターフェース圧力を降下させる手段も考
えられる。しかしエンジン停止後は、エンジン内弁1a
が閉じた状態となるため、推進剤は流れておらず、圧損
は生じない。つt、6上記手段は原理的に不可能である
It is also conceivable to replace the propellant supply valve 7 in FIG. 6 with a resistance control valve and to increase the pressure loss by narrowing down the resistance control valve 7, thereby reducing the interface pressure. However, after the engine stops, the engine internal valve 1a
is in a closed state, no propellant is flowing and no pressure loss occurs. t, 6 The above means are impossible in principle.

そこで本発明は前記(1) (2) (3)のような技
術的課題を解決することを目的とする。
Therefore, the present invention aims to solve the technical problems such as (1), (2), and (3) above.

〔問題点を解決するための手段〕[Means for solving problems]

加圧制御弁のPID制御を行なうことにより、推進剤の
供給元圧を加圧ガスにより一定に保持する。そしてロケ
ットエンジンの近傍の推進剤供給配管に推進剤を外部に
放出するエンジン模擬弁を設け、この模擬弁をエンジン
停止後において開放し、推進剤供給配管に推進剤を流し
続けるようにする。そして上記のように推進剤を流し続
けている期間において前記配管に設けた抵抗制御弁を急
激に絞シ込むことにより圧損を急激に増大させるように
する。
By performing PID control of the pressure control valve, the supply source pressure of the propellant is maintained constant by the pressurized gas. An engine simulating valve for discharging propellant to the outside is provided in the propellant supply pipe near the rocket engine, and this simulating valve is opened after the engine is stopped to continue flowing the propellant into the propellant supply pipe. Then, during the period in which the propellant continues to flow as described above, the resistance control valve provided in the piping is rapidly tightened to rapidly increase the pressure loss.

〔作用〕[Effect]

このような手段を講じたことにより、推進剤供給元圧を
一定に保持したまま、インターフェース圧力を急激に降
下させ得、逃気弁としては通常の容量のものを使用でき
る。しかも抵抗側両弁を、所要のインターフェース圧力
降下パターン曲線と供給圧力とに基いて計算機で演算し
た結果に応じて制御することは容易であシ、任意な圧力
降下パターンによる試験を適確に行なえる。
By taking such measures, the interface pressure can be rapidly reduced while the propellant supply source pressure is held constant, and a normal capacity relief valve can be used. Moreover, it is easy to control both resistance side valves according to the results calculated by a computer based on the required interface pressure drop pattern curve and supply pressure, and tests with arbitrary pressure drop patterns can be performed accurately. Ru.

〔実施例〕〔Example〕

第111!lは本発明の一実施例の全体的構成を示す図
である。なお第6図と同一部分には同一符号を付しであ
る。供試ロケットエンジン1には推進剤供給タンク2か
ら推進剤供給配管6を通して推進剤が供給される。上記
配管6のエンジン1に近い位置にはエンジン模擬弁10
が設けである。このエンジン模擬弁10はエンジン1の
停止と同時に開放し、推進剤を外部に放出する。かくし
てエンジン停止後も前記配管6を通じて推進剤を流し続
けることができる。一方、前記配管6のタンク2に近い
位置には抵抗制御弁11が設けである。この抵抗制御弁
11は、前記エンシン模擬弁10により推進剤が配管6
を流れ続けている期間内において絞シ込み制御され、弁
抵抗の増大による圧損の増大をはかり得るものとなって
いる。
111th! 1 is a diagram showing the overall configuration of an embodiment of the present invention. Note that the same parts as in FIG. 6 are given the same reference numerals. Propellant is supplied to the test rocket engine 1 from a propellant supply tank 2 through a propellant supply pipe 6. An engine simulating valve 10 is located in the piping 6 near the engine 1.
is the provision. This engine simulating valve 10 opens at the same time as the engine 1 stops, and releases propellant to the outside. In this way, the propellant can continue to flow through the pipe 6 even after the engine is stopped. On the other hand, a resistance control valve 11 is provided in the piping 6 at a position close to the tank 2. This resistance control valve 11 allows the engine simulating valve 10 to prevent propellant from entering the piping 6.
During the period when the valve continues to flow, it is controlled to be narrowed down, and the pressure drop can be increased due to the increase in valve resistance.

なお加圧制御弁4は圧力検出器8により検出された推進
剤供給元圧を制御回j@20を介してフィードバック制
御され、いわゆるPID制御が行なわれる。その結果、
推進剤供給元圧は一定に保たれる。
Note that the pressurization control valve 4 is feedback-controlled by the propellant supply source pressure detected by the pressure detector 8 via the control circuit j@20, so that so-called PID control is performed. the result,
Propellant source pressure is kept constant.

推進剤供給元圧が上記のように一定に保たれている状態
において、前記した抵抗制御弁11による圧損増大が生
じると、その増大分だけインターフェース圧力を降下さ
せることができる。
In a state where the propellant supply source pressure is kept constant as described above, if an increase in pressure loss occurs due to the resistance control valve 11 described above, the interface pressure can be lowered by the amount of increase.

第2図は制御回路20の具体的構成を示すブロック図で
あシ、第3図はそのタイムチャートを示す図である。こ
の制御回路20の構成および動作については後で詳しく
説明する。
FIG. 2 is a block diagram showing a specific configuration of the control circuit 20, and FIG. 3 is a diagram showing its time chart. The configuration and operation of this control circuit 20 will be explained in detail later.

第4図は本装置の動作原理を示す図である。FIG. 4 is a diagram showing the operating principle of this device.

以下第4図に基づき説明する。エンジン停止後はエンジ
ン内弁1aが閉であり、エンジン模擬弁10を通じて推
進剤を放出するのであるからエンジンインターフェース
圧力PI(k?/cIn2)と推進剤流量F (m /
s・C〕との間には次式が成シ立っ。
This will be explained below based on FIG. After the engine is stopped, the engine internal valve 1a is closed and the propellant is released through the engine simulating valve 10, so the engine interface pressure PI (k?/cIn2) and the propellant flow rate F (m/m/
s・C], the following formula holds true.

(KnO値は、エンジンの等価抵抗係数Kgとほぼ等し
く選ぶのが配管設計上効果的である。即ちKD屋−であ
る、) 供給配管6による圧損は、抵抗制御弁出口圧力をP2〔
kg/cIn2〕と表わすと、p2− p、であり、推
進剤流tFとの間に なる関係がある。また抵抗制御弁11にょる圧損け、推
進剤供給元圧をP t (kg/era’ )とすれば
、Cv:抵抗制御弁7の弁Cv値 〔−〕なる関係があ
る。(通常制御弁はこのCY値を任意の値に制御出来る
ものを言う。) 式(1)より であり、式(1)′を(2)K代入してP2について解
くと、 となる。式(2)′を式(3)に代入してCYについて
解くと である0式(4)を考察すると、K1 + KD + 
KPは推進剤や配管によって与えられる定数であるので
、インターフェース圧力Prの降下パターン曲線の目標
値が P菫 −p、  (t  )            
               ・・・(5)のように
設定されれば、これを式(4)に代入してCY値を計算
して求め、このCV値通りに抵抗制御弁IIを制御する
ことに依ジインター7エース圧力P!を式(5)で示さ
れる所期の圧力降下i4?ターンに一致させることが可
能であることが明らかである。
(It is effective for piping design to select the KnO value to be approximately equal to the equivalent resistance coefficient Kg of the engine. In other words, it is a KD shop.) The pressure loss due to the supply piping 6 increases the resistance control valve outlet pressure by P2 [
kg/cIn2], p2-p, and there is a relationship with the propellant flow tF. Further, if the pressure drop caused by the resistance control valve 11 and the propellant supply source pressure are P t (kg/era'), then there is a relationship such that Cv: the valve Cv value of the resistance control valve 7 [-]. (A normal control valve is one that can control this CY value to an arbitrary value.) From equation (1), substituting equation (1)' into (2) K and solving for P2 yields the following. Substituting equation (2)' into equation (3) and solving for CY, we get 0 Considering equation (4), K1 + KD +
Since KP is a constant given by the propellant and piping, the target value of the drop pattern curve of the interface pressure Pr is P sumi −p, (t)
...If the setting is as shown in (5), the CY value is calculated by substituting this into equation (4), and the resistance control valve II is controlled according to this CV value. Pressure P! is the expected pressure drop i4 given by equation (5)? It is clear that it is possible to match the turns.

式(4)を実際に想定される試験設備の諸データに基づ
いて計算した例を第5図に示す。第5図の例ではインタ
ーフェース圧力P!を、エンジン燃焼中定常圧力Pts
 (−12,0klF/m2)からΔT−5秒でP r
 L (−3kll/cm2)まで直線的に降下させる
場合に要されるCv値副制御状態示している。同図より
更にエンジン模擬弁\ν′を通じて推進剤が流iFにて
放出されることが明らかである。言い変えるとこの推進
剤流量Fを、エンジン停止後も供給配管6や抵抗制御弁
11の中を流すために、エンジン模擬弁10通じて放出
する必要が20について詳しく説明する。圧力制御期間
T中(エンジン燃焼中、急速降圧中、低圧力保持中)、
推進剤供給元圧P、を、圧力検出器6によりフィードバ
ックしPID調節計21にて設定値pym@tと比較演
算を行い、この信号Xにて加圧制御弁4を制御すること
により常にPT−・tと等−10〜 しくなるこう一定値に保つ。スイッチ22は圧力制御が
終了したら、即ち圧力制御指令8PがOFFとなったら
PID制御を断とし加圧制御弁4を全閉にするものであ
る。エンジン1が停止すると停止信号smがONとなシ
、AND素子25に依ジエンジン模擬弁開信号Soが出
力されエンジン模擬弁10が開く、エンジン模擬弁10
は圧力制御が終了する迄(8PがONO間)開き続けそ
の稜間となる。
FIG. 5 shows an example in which equation (4) is calculated based on various data of an actually assumed test facility. In the example of FIG. 5, the interface pressure P! , steady pressure Pts during engine combustion
(-12,0 klF/m2) to Pr in ΔT-5 seconds
The Cv value sub-control state required for linearly lowering the Cv value to L (-3kll/cm2) is shown. It is further clear from the figure that the propellant is discharged in stream iF through the engine simulating valve \v'. In other words, it is necessary to discharge the propellant flow rate F through the engine simulating valve 10 in order to allow the propellant flow rate F to flow through the supply pipe 6 and the resistance control valve 11 even after the engine is stopped, which will be explained in detail 20. During the pressure control period T (during engine combustion, rapid pressure reduction, and maintaining low pressure),
The propellant supply source pressure P is fed back by the pressure detector 6 and compared with the set value pym@t by the PID controller 21, and by controlling the pressure control valve 4 with this signal X, the PT is always maintained. -・t and equal to -10 ~ Keep it at a constant value. The switch 22 is used to turn off the PID control and fully close the pressure control valve 4 when the pressure control is completed, that is, when the pressure control command 8P is turned off. When the engine 1 stops, the stop signal sm turns ON, and the AND element 25 outputs the dependent engine simulation valve opening signal So, and the engine simulation valve 10 opens.
continues to open until the pressure control is completed (8P is between ONO) and becomes the ridge.

関数発生器26はエンジンが停止(Sit :ON) 
スるとその時刻を1−0とし、それ以降式(5)に従っ
て各時刻tに於ける目標インターフェース圧力PI−P
1(t)を演算する。計算回路27は、この目標インタ
ーフェース圧力P!と、圧力検出器8により検出された
実際の推進剤供給元圧Pt(前述のようにこれはPID
調節計21により股定値Pys@tに等しくなっている
が誤差等を考慮してPya@tの値より、実際の値PT
を使用する方が精密な制御が期待出来る。)とよシ式(
4)に従うて制御すべき抵抗制御弁11のCv値を計算
する。尚、実際の制御弁はその開度りを変化させてCv
値を変化させるものであるから、抵抗制御弁11の弁特
性 Cv=f(L)           ・・・(6)よ
り L = f−’ (Cv)         −(
6)’なる開度信号りを抵抗制御弁1ノに与えるための
関数発生器28を設けておく、スイッチ29は圧力制御
が終了したら(即ちSP:0FF)抵抗制御弁11を全
閉とするものである。
The engine of the function generator 26 is stopped (Sit: ON)
Then, that time is set to 1-0, and from then on, the target interface pressure PI-P at each time t is determined according to equation (5).
1(t) is calculated. The calculation circuit 27 calculates this target interface pressure P! and the actual propellant supply source pressure Pt detected by the pressure detector 8 (as mentioned above, this is the PID
The controller 21 indicates that it is equal to the set value Pys@t, but taking into consideration errors, the actual value PT is calculated from the value of Pya@t.
More precise control can be expected by using . ) Toyoshi style (
4) Calculate the Cv value of the resistance control valve 11 to be controlled. In addition, the actual control valve changes its opening degree to control Cv.
Since the value is changed, the valve characteristic of the resistance control valve 11 is Cv=f(L)... From (6), L = f-' (Cv) -(
6) A function generator 28 is provided to provide an opening signal to the resistance control valve 1, and the switch 29 fully closes the resistance control valve 11 when pressure control is completed (i.e., SP: 0FF). It is something.

NOT素子23は圧力制御が終了したら(即ちSP:0
FF)逃気弁開信号BYをONにするもので、これに依
り逃気弁5が開となる。(終了後は安全の為圧力をかけ
ないことが必要である。)上記制御回路20により、第
3図に示すような制御状態が実現でき、インターフェー
ス圧力ptを目標の圧力降下曲線どおりに制御すること
ができる。なお制御回路20は電子回路あるいはコンピ
ュータソフトウェアにより容易に実現し得るものである
。尚、本発明はロケットエンジン地上燃焼試験のみでな
く、一般プラント等において液体の圧力を急激に降下さ
せるような場合の圧力制御装置としても十分応用出来る
ものである。
NOT element 23 is activated when pressure control is completed (that is, SP: 0
FF) This turns on the escape valve open signal BY, which causes the escape valve 5 to open. (After completion, it is necessary to not apply pressure for safety reasons.) The control circuit 20 described above can realize a control state as shown in FIG. 3, and control the interface pressure pt according to the target pressure drop curve. be able to. Note that the control circuit 20 can be easily realized using an electronic circuit or computer software. The present invention can be applied not only to rocket engine ground combustion tests, but also as a pressure control device for rapidly reducing the pressure of liquid in general plants and the like.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば次のような効果を
奏する。
As detailed above, the present invention provides the following effects.

1)大容量の逃気弁は不要であシ、通常の推進剤供給配
管サイズと同程度の抵抗制御弁、エンジン模擬弁を設け
るのみであるから制御は容易であシ、また低コストで実
現可能である。(エンジン模擬弁は配管の予冷・液抜き
に使用する排出弁等を利用しても喪い。) 肋 インターフェース圧力の降圧制御はタンク内推進剤
残量に左右されることはないので全ての試験条件に容易
に対応出来る。
1) There is no need for a large-capacity relief valve, and only a resistance control valve and engine simulating valve of the same size as a normal propellant supply pipe are provided, so control is easy and can be achieved at low cost. It is possible. (The engine simulating valve does not work even if a discharge valve, etc. used for pre-cooling the piping and draining liquid is used.) Since the pressure reduction control of the interface pressure is not affected by the amount of propellant remaining in the tank, all test conditions are met. can be easily accommodated.

!11)任意のインターフェース圧力降下ノリーンに対
してもそのノ母ターンを予め制御回路に設定するのみで
対応出来、設備の変更等は不要である。
! 11) Any interface pressure drop can be dealt with by simply setting the main turn in the control circuit in advance, and there is no need to change equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明の一実施例を示す図で、第1図
は全体の構成を示す系統図、第2図は制御回路の構成を
示すプロンク図、第3図は同制御回路の動作タインング
を示す図、第4図は本装置の動作原理説明図、第5図は
インターフェース圧力と時間の関係を示す図である。第
6図は従来例の構成を示す系統図である。 1・・・供試ロケットエンジン、1a・・・エンジン内
弁、2・・・推進剤供給タンク、3・・・加圧ガスがン
ペ、4・・・加圧制御弁、5・・・逃気弁、6・・・推
進剤供給配管、7・・・供給制御弁、8・・・圧力検出
器、9・・・制御回路、10・・・エンジン模擬弁、1
1・・・抵抗制御弁、20・・・制御回路。 出願人復代理人 弁理士 鈴 江 武 彦第3図 第4図 手続補正書 、In 6q、10.1,7□ 1、事件の表示 特願昭60−185544 号 2、発明の名称 圧力制御装置 3、補正をする渚 事件との関係 特許出願人 (620)  三菱重工業株式会社 4、復代 理 人
Figures 1 to 5 are diagrams showing an embodiment of the present invention. Figure 1 is a system diagram showing the overall configuration, Figure 2 is a Pronk diagram showing the configuration of the control circuit, and Figure 3 is the control circuit diagram. FIG. 4 is a diagram illustrating the operating principle of the device, and FIG. 5 is a diagram illustrating the relationship between interface pressure and time. FIG. 6 is a system diagram showing the configuration of a conventional example. DESCRIPTION OF SYMBOLS 1... Test rocket engine, 1a... Engine internal valve, 2... Propellant supply tank, 3... Pressurized gas pump, 4... Pressurization control valve, 5... Relief valve, 6... Propellant supply piping, 7... Supply control valve, 8... Pressure detector, 9... Control circuit, 10... Engine simulating valve, 1
1... Resistance control valve, 20... Control circuit. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 3 Figure 4 Procedural Amendment, In 6q, 10.1, 7□ 1, Indication of Case Patent Application No. 185544/1986 2, Name of Invention Pressure Control Device 3. Relationship with the Nagisa case to be amended Patent applicant (620) Mitsubishi Heavy Industries, Ltd. 4. Sub-agent

Claims (1)

【特許請求の範囲】[Claims] ロケットエンジンの地上燃焼試験設備における推進剤供
給圧力制御装置において、加圧制御弁のPID制御を行
なうことにより推進剤供給元圧を加圧ガスによって一定
に保つ手段と、ロケットエンジンへ推進剤を供給する配
管に設けられエンジン停止後において推進剤を放出し推
進剤供給用の配管に推進剤を流し続けるエンジン模擬弁
と、このエンジン模擬弁により推進剤が前記配管を流れ
続けている期間において前記配管に設けた抵抗制御弁を
絞り込むことにより圧損を増大させ推進剤供給圧力を目
標パターン通りに降下させる手段とを具備したことを特
徴とする圧力制御装置。
In a propellant supply pressure control device in a rocket engine ground combustion test facility, a means for keeping the propellant supply source pressure constant with pressurized gas by performing PID control of a pressurization control valve and supplying propellant to a rocket engine an engine simulating valve that is installed in a piping that releases propellant and continues to flow the propellant into the propellant supply piping after the engine has stopped; 1. A pressure control device comprising means for increasing pressure loss and reducing propellant supply pressure in accordance with a target pattern by narrowing a resistance control valve provided in the pressure control valve.
JP60185544A 1985-08-23 1985-08-23 Pressure controller Pending JPS6245965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60185544A JPS6245965A (en) 1985-08-23 1985-08-23 Pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60185544A JPS6245965A (en) 1985-08-23 1985-08-23 Pressure controller

Publications (1)

Publication Number Publication Date
JPS6245965A true JPS6245965A (en) 1987-02-27

Family

ID=16172659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60185544A Pending JPS6245965A (en) 1985-08-23 1985-08-23 Pressure controller

Country Status (1)

Country Link
JP (1) JPS6245965A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293283A (en) * 1988-09-30 1990-04-04 Hitachi Ltd Method of controlling fluid supply to equipment
KR100436501B1 (en) * 2001-08-27 2004-06-22 현대모비스 주식회사 testing device of injecter for liquid fuel rocket
US7477966B1 (en) * 2004-02-20 2009-01-13 Lockheed Martin Corporation Propellant management system and method for multiple booster rockets
CN103953464A (en) * 2014-05-06 2014-07-30 北京控制工程研究所 Ground calibration method for on-orbit performance of two-component attitude control thruster
CN109455492A (en) * 2018-12-10 2019-03-12 中国航天空气动力技术研究院 A kind of high pressure shroud test feeder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293283A (en) * 1988-09-30 1990-04-04 Hitachi Ltd Method of controlling fluid supply to equipment
KR100436501B1 (en) * 2001-08-27 2004-06-22 현대모비스 주식회사 testing device of injecter for liquid fuel rocket
US7477966B1 (en) * 2004-02-20 2009-01-13 Lockheed Martin Corporation Propellant management system and method for multiple booster rockets
CN103953464A (en) * 2014-05-06 2014-07-30 北京控制工程研究所 Ground calibration method for on-orbit performance of two-component attitude control thruster
CN109455492A (en) * 2018-12-10 2019-03-12 中国航天空气动力技术研究院 A kind of high pressure shroud test feeder
CN109455492B (en) * 2018-12-10 2024-03-15 中国航天空气动力技术研究院 High-voltage package cover test feeding device

Similar Documents

Publication Publication Date Title
US6655152B2 (en) Fuel control system for multiple burners
JPS6245965A (en) Pressure controller
JPS62142829A (en) Fuel supply controller for afterburner of gas turbine-jet propulsion engine
GB2283336A (en) Device and method of correcting the fuel ammount supplied to Otto engines
CN111271193A (en) Low-temperature liquid rocket propellant pipeline control system and liquid rocket engine
JPS5675932A (en) Safety device for engine controlling number of cylinder
KR900005040A (en) Turbine governing valve monitoring method and device
WO2004005697A3 (en) Battle override valve
JP2001140711A (en) Main engine fuel heating device for ship
CN108563809A (en) The computational methods of the liquefied petroleum gas storage tank pressure relief system amount of releasing
JPH11173214A (en) Burning type thrust generating device
CN211852015U (en) Low-temperature liquid rocket propellant pipeline control structure and liquid rocket engine
JPH067280Y2 (en) Cooling liquid automatic loading and collecting device for cryogenic liquid carrier
JPS5654959A (en) Control method of fuel injection timing adjustment device
JPS5588842A (en) Exhaust gas controller for gas expander for fluidized catalytic cracker
JPS6043103A (en) Steam system controller
JPH0916266A (en) Flow rate controller
RU2143579C1 (en) Pressurization system for spacecraft engine plant propellant tanks (fuel tanks and oxidizer tanks)
JPS62252819A (en) Gas fuel supplier
JPH07305653A (en) Nitrogen engine
JPS60157613A (en) Entrance pressure controller for propellant powder
JPS55100907A (en) Control of pressure at top of blast furnace
JPS5680600A (en) Liquefied gas evaporator and operating method for the same
JPH034735B2 (en)
CN117846814A (en) Method and system for on-orbit entering of spacecraft propulsion system into stable state