JPS6245675B2 - - Google Patents

Info

Publication number
JPS6245675B2
JPS6245675B2 JP55159886A JP15988680A JPS6245675B2 JP S6245675 B2 JPS6245675 B2 JP S6245675B2 JP 55159886 A JP55159886 A JP 55159886A JP 15988680 A JP15988680 A JP 15988680A JP S6245675 B2 JPS6245675 B2 JP S6245675B2
Authority
JP
Japan
Prior art keywords
graphite
composition
particle size
weight
maximum particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55159886A
Other languages
Japanese (ja)
Other versions
JPS5784586A (en
Inventor
Ryoichi Ito
Yukio Shimazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15988680A priority Critical patent/JPS5784586A/en
Publication of JPS5784586A publication Critical patent/JPS5784586A/en
Publication of JPS6245675B2 publication Critical patent/JPS6245675B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自己温度制御性ヒータに関するもので
ある。 ニクロム線や無機絶縁電線などのヒータは電圧
が一定である限り一定の出力を保持しており、エ
ネルギーを大量に消費する欠点があつた。 そのため出力が温度によつて変化する自己温度
制御性ヒータの要求がますます増大している。 これは温度が上昇するとともに抵抗値が増大す
る現象すなわちPTC特性(正温度係数特性)を
利用したものである。 プラスチツクベースのPTCはセラミツクPTC
より安価であるため、実用化されてきている。し
かし、加工における安定性や課電を繰り返した場
合の安定性を保持させることは容易ではない。例
えば導電性カーボンブラツクは加工時の剪断によ
つてストラクチヤが破壊するため、加工条件によ
つて抵抗値が著しく変化しやすい。 一方グラフアイトはストラクチヤ構造をもたな
いので、加工による影響は少ない。 しかし、通常のグラフアイトは最大粒子径が10
μ以上のものが多く、課電中に電気的破壊を生じ
たり、発火する現象が生じる危険性があつた。ま
た、グラフアイトはストラクチヤを形成しないた
め、通常用いられている導電性カーボンブラツク
に比べて一定の抵抗値を得るのに添加量を多くし
なければならない欠点があつた。 添加量が多くなると、ポリマとグラフアイトの
熱膨張の差が大きいため、抵抗値―温度特性の勾
配が小さくなる傾向にある。このため自己温度調
節機能が比較的緩慢になる。したがつてすぐれた
PTC特性を発現するためには添加量が少なくて
加工安定性の良好な組成物を得ることが重要であ
る。上記の理由からグラフアイトでありながら少
ない添加量ですむPTC組成物が得られるならば
工業上の寄与は極めて大きいものと考える。 本発明の目的は、前記した従来技術の欠点を解
消し、導電性付与の添加量を大巾に減少すること
ができ、加工安定性にすぐれたPTC組成物を用
いた新規な自己温度制御性ヒータを提供すること
にある。 すなわち、本発明の要旨は、導電性付与材とし
て最大粒子径が10μ以下のグラフアイトを用いた
ことにある。 結晶性プラスチツクとは結晶を有するプラスチ
ツクであり、ポリエチレン、エチレン―酢酸ビニ
ル共重合体などのエチレン共重合体、エチレン―
プロピレン共重合体、ポリフツ化ビニリデン、塩
素化ポリエチレン、ポリ―ブデン―1、ポリメチ
ルペンテル―1、エチレン―四フツ化エチレン共
重合体などがあげられるが、これらに限定するも
のではない。これらを単独で用いてもよいし、組
合せて用いてもよい。また可撓性を付与したりす
る目的でエチレン―プロピレンゴム、クロロスル
ホン化ポリエチレン、非結晶性塩素化ポリエチレ
ンなどのゴム等を併用しても差支えない。 最大粒子径10μ以下のグラフアイトとは粒度分
布曲線において累積百分率で95%にあたる粒子径
が10μ以下にあるものをいう。 これらの条件に合致するグラフアイトは市販さ
れている。例えばKR2.5(ロンザ)、AT―30、
AT―40(オリエンタル産業)、GP―60(日立粉
末治金)、CSSP、CSPE、AUP、HAG―150(日
本黒鉛工業)等があげられるが、これらに限定さ
れるものではない。 これらのグラフアイトを単独で用いてもよい
し、組み合せて使用してもよい。 ここで、最大粒子径10μ以下に限定した理由と
しては、最大粒子径がこの範囲を越えると、一定
の抵抗値を得るのに多量に添加する必要があるか
らである。その場合にはグラフアイトの容積分率
が大きくなり、ポリマの容積分率が小さくなる。
PTC特性はポリマの比容―温度特性をある程度
反映するので、温度による比容変化のないグラフ
アイト多量に添加することはPTC特性の点から
好ましくない。 またグラフアイトの他に金属粉やカーボンブラ
ツクを併用してもよい。 その他酸化防止剤、安定剤、スコーチ防止剤、
架橋助剤、滑剤、難燃剤を添加しても一向に差し
支えない。 次に本発明の実施例を比較例と共に説明する。 実施例 1 ポリエチレン(密度=0.92、MI=2) 100重量部 グラフアイトGP―60(最大粒子径4μ)
40重量部 4・4―チオビス(6―ターシヤリブチル―m―
クレゾール) 0.2重量部 トリメチロールプロパントリメタクリレート
2重量部 添付図面に示すように、上記組成の発熱体用組
成物2を並行する2条の電極導体1,1′を覆つ
て押出被覆した後、20Mradの電子線を照射し架
橋させて試料を製造した。導体は18AWG同心撚
であり、導体間距離は7mmである。 実施例 2 ポリフツ化ビニリデン 100重量部 グラフアイトKR2.5(最大粒子径5μ) 20重量部 トリアリルトリメリテート 5重量部 実施例1と同様な方法で試料を製造した。 実施例 3 実施例1のポリエチレン100重量部の代りに、
ポリエチレン(密度=0.92、MI=2)80重量部
およびエチレン―プロピレンゴム(ムーニ粘度
ML1+4=40)20重量部の混合物をベースとして用
いた発熱体用組成物を添付図面のような形状に押
出被覆した後、20Mradの電子照射を行ない架橋
させて、試料を製造した。 比較例 1 実施例2のグラフアイトの代りにT―15(最大
粒子径15μ;ロンザ)を用いた。添加量は同じで
ある。 他の条件は実施例2と同じである。 比較例 2 比較例1のグラフアイトT―15の添加量を30重
量部とした。他の条件は実施例2と同じである。 比較例 3 実施例2のグラフアイトの代りに粗粒グラフア
イト、最大粒径200μ以上)を用いた。添加量は
40重量部である。 次に、上記した各例の特性を第1表に示す。
The present invention relates to a self-temperature control heater. Heaters made of nichrome wire or inorganic insulated wire maintain a constant output as long as the voltage remains constant, and they have the disadvantage of consuming a large amount of energy. Therefore, there is an increasing demand for self-temperature control heaters whose output changes with temperature. This utilizes the phenomenon that the resistance value increases as the temperature rises, that is, the PTC characteristic (positive temperature coefficient characteristic). Plastic-based PTC is ceramic PTC
It is being put into practical use because it is cheaper. However, it is not easy to maintain stability during processing and stability when electricity is repeatedly applied. For example, the structure of conductive carbon black is destroyed by shearing during processing, so the resistance value tends to change significantly depending on processing conditions. On the other hand, since graphite does not have a structured structure, it is less affected by processing. However, normal graphite has a maximum particle size of 10
Many of them were larger than μ, and there was a risk of electrical breakdown or ignition occurring during energization. Furthermore, since graphite does not form structures, it has the disadvantage that it requires a larger amount to be added in order to obtain a certain resistance value than the commonly used conductive carbon black. As the amount added increases, the difference in thermal expansion between the polymer and graphite increases, so the gradient of the resistance value-temperature characteristic tends to become smaller. Therefore, the self-temperature adjustment function becomes relatively slow. therefore excellent
In order to exhibit PTC properties, it is important to obtain a composition with a small amount of addition and good processing stability. For the above reasons, if a PTC composition that is made of graphite but requires a small amount of addition can be obtained, it would have an extremely large industrial contribution. The purpose of the present invention is to eliminate the drawbacks of the prior art described above, to provide a novel self-temperature control property using a PTC composition that can greatly reduce the amount of additives that impart conductivity, and has excellent processing stability. The purpose is to provide a heater. That is, the gist of the present invention is that graphite having a maximum particle diameter of 10 μm or less is used as the conductivity imparting material. Crystalline plastics are plastics that have crystals, such as polyethylene, ethylene copolymers such as ethylene-vinyl acetate copolymers, and ethylene-vinyl acetate copolymers.
Examples include propylene copolymer, polyvinylidene fluoride, chlorinated polyethylene, poly-butene-1, polymethylpentyl-1, ethylene-tetrafluoroethylene copolymer, but are not limited thereto. These may be used alone or in combination. Further, for the purpose of imparting flexibility, rubbers such as ethylene-propylene rubber, chlorosulfonated polyethylene, and amorphous chlorinated polyethylene may be used in combination. Graphite with a maximum particle size of 10μ or less refers to a particle whose particle size, which corresponds to a cumulative percentage of 95% in the particle size distribution curve, is 10μ or less. Graphite that meets these conditions is commercially available. For example, KR2.5 (Lonza), AT-30,
Examples include, but are not limited to, AT-40 (Oriental Sangyo), GP-60 (Hitachi Powder Metallurgy), CSSP, CSPE, AUP, HAG-150 (Nippon Graphite Industries), etc. These graphites may be used alone or in combination. Here, the reason why the maximum particle size is limited to 10 μm or less is that if the maximum particle size exceeds this range, it is necessary to add a large amount to obtain a certain resistance value. In that case, the volume fraction of graphite becomes large and the volume fraction of polymer becomes small.
Since the PTC characteristics reflect the specific volume-temperature characteristics of the polymer to some extent, it is not preferable from the viewpoint of the PTC characteristics to add a large amount of graphite, which does not change the specific volume due to temperature. In addition to graphite, metal powder or carbon black may also be used in combination. Other antioxidants, stabilizers, scorch inhibitors,
There is no problem in adding crosslinking aids, lubricants, and flame retardants. Next, examples of the present invention will be described together with comparative examples. Example 1 Polyethylene (density = 0.92, MI = 2) 100 parts by weight Graphite GP-60 (maximum particle size 4μ)
40 parts by weight 4,4-thiobis(6-tertiarybutyl-m-
Cresol) 0.2 parts by weight Trimethylolpropane trimethacrylate
2 parts by weight As shown in the attached drawings, the heating element composition 2 having the above composition was extruded to cover two parallel electrode conductors 1 and 1', and then irradiated with a 20 Mrad electron beam to cross-link the sample. was manufactured. The conductors are 18AWG concentrically twisted, and the distance between the conductors is 7mm. Example 2 Polyvinylidene fluoride 100 parts by weight Graphite KR2.5 (maximum particle size 5μ) 20 parts by weight triallyl trimellitate 5 parts by weight A sample was produced in the same manner as in Example 1. Example 3 Instead of 100 parts by weight of polyethylene in Example 1,
80 parts by weight of polyethylene (density = 0.92, MI = 2) and ethylene-propylene rubber (Mouni viscosity
A sample was manufactured by extrusion coating a heating element composition using 20 parts by weight of the mixture as a base (ML 1+4 = 40) in the shape shown in the attached drawing, and then crosslinking it by irradiating with electrons at 20 Mrad. Comparative Example 1 T-15 (maximum particle size 15μ; Lonza) was used instead of graphite in Example 2. The amount added is the same. Other conditions are the same as in Example 2. Comparative Example 2 The amount of graphite T-15 added in Comparative Example 1 was 30 parts by weight. Other conditions are the same as in Example 2. Comparative Example 3 In place of the graphite used in Example 2, coarse graphite (with a maximum particle size of 200 μm or more) was used. The amount added is
It is 40 parts by weight. Next, Table 1 shows the characteristics of each of the above examples.

【表】【table】

【表】 試験方法は次の通りである。 抵抗値:ホイートストンブリツジを用いて室
温における抵抗値を測定。 課電サイクル:導体間に交流200Vを60分間
印加する。次に10分間課電を休
止する。これを1サイクルと
し、100サイクル繰り返す。動
作温度は交流200V印加時に熱
電対によつて測定した。 なお、本発明のヒータは図示実施例構造の周囲
に、必要に応じシースを包被した構造としてもよ
い。 本発明において、最大粒子径が10μ以下のグラ
フアイトを用いることによつて、導電性付与効果
が著しく改善される理由としては、粒子の形状が
小さくなることによつて、ポリマとグラフアイト
の接触の機会が増していわゆるトンネル効果が促
進されるためと考えられる。
[Table] The test method is as follows. Resistance value: Measure the resistance value at room temperature using a Wheatstone bridge. Power cycle: Apply 200V AC between conductors for 60 minutes. Next, power charging will be suspended for 10 minutes. This is considered one cycle, and is repeated 100 cycles. The operating temperature was measured with a thermocouple when 200V AC was applied. Note that the heater of the present invention may have a structure in which a sheath is wrapped around the structure of the illustrated embodiment, if necessary. In the present invention, the reason why the conductivity imparting effect is significantly improved by using graphite with a maximum particle size of 10μ or less is that the contact between the polymer and graphite is reduced due to the smaller particle shape. This is thought to be because the so-called tunnel effect is promoted by increasing the number of opportunities for

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明自己温度制御性ヒータの一実施例を
示す断面図である。 1,1′:電極導体、2:発熱体用組成物。
The figure is a sectional view showing an embodiment of the self-temperature control heater of the present invention. 1,1': electrode conductor, 2: composition for heating element.

Claims (1)

【特許請求の範囲】[Claims] 1 電子線のような電離性放射線の照射により架
橋可能な結晶性プラスチツク若しくはこの結晶性
プラスチツクとゴムとの混合物に、最大粒子径が
10μ以下のグラフアイトを添加することにより構
成した正温度係数特性を有する組成物と、この組
成物と一体化している電極とを備えており、前記
組成物は電離性放射線により架橋処理されている
ことを特徴とする自己温度制御性ヒータ。
1 Crystalline plastics or mixtures of crystalline plastics and rubber that can be crosslinked by irradiation with ionizing radiation such as electron beams have a maximum particle size.
A composition having a positive temperature coefficient characteristic formed by adding graphite of 10μ or less, and an electrode integrated with this composition, the composition being crosslinked by ionizing radiation. A self-temperature control heater characterized by:
JP15988680A 1980-11-13 1980-11-13 Self-temperature controllable heater Granted JPS5784586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15988680A JPS5784586A (en) 1980-11-13 1980-11-13 Self-temperature controllable heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15988680A JPS5784586A (en) 1980-11-13 1980-11-13 Self-temperature controllable heater

Publications (2)

Publication Number Publication Date
JPS5784586A JPS5784586A (en) 1982-05-26
JPS6245675B2 true JPS6245675B2 (en) 1987-09-28

Family

ID=15703324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15988680A Granted JPS5784586A (en) 1980-11-13 1980-11-13 Self-temperature controllable heater

Country Status (1)

Country Link
JP (1) JPS5784586A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373771U (en) * 1986-10-30 1988-05-17

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968296A (en) * 1972-09-08 1974-07-02
JPS5160236A (en) * 1974-09-27 1976-05-26 Raychem Corp Seinoteikoondokeisu ojusuru soseibutsu
JPS52101737A (en) * 1976-02-20 1977-08-26 Matsushita Electric Ind Co Ltd Heating body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968296A (en) * 1972-09-08 1974-07-02
JPS5160236A (en) * 1974-09-27 1976-05-26 Raychem Corp Seinoteikoondokeisu ojusuru soseibutsu
JPS52101737A (en) * 1976-02-20 1977-08-26 Matsushita Electric Ind Co Ltd Heating body

Also Published As

Publication number Publication date
JPS5784586A (en) 1982-05-26

Similar Documents

Publication Publication Date Title
US4388607A (en) Conductive polymer compositions, and to devices comprising such compositions
EP0140893B1 (en) Self-limiting heater and resistance material
JPH047522B2 (en)
EP0123540A2 (en) Conductive polymers and devices containing them
Das et al. Effect of filler treatment and crosslinking on mechanical and dynamic mechanical properties and electrical conductivity of carbon black‐filled ethylene–vinyl acetate copolymer composites
GB1597007A (en) Conductive polymer compositions and devices
US5057673A (en) Self-current-limiting devices and method of making same
JPS62155502A (en) Conductive material
JPS6245675B2 (en)
US4908156A (en) Self-regulating heating element and a process for the production thereof
Motloung et al. Properties and thermo-switch behaviour of LDPE mixed with carbon black, zinc metal and paraffin wax
US4313101A (en) Electrically impedant articles
JPS6127872B2 (en)
JPS58164187A (en) Self-temperature controllable heater
KR960033167A (en) Heat treatment method of conductive polymer heating element
JPS61198590A (en) Self-temperature controlling heater
JPH0130264B2 (en)
JPS59226493A (en) Self-temperature controllable heater
JPH0114678B2 (en)
JP3125330B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH032454B2 (en)
JPH0113197B2 (en)
JPS60127690A (en) Self-temperature controllable heater
JPH01231284A (en) Heating unit
JPS5832382A (en) Self-temperature controllable heater