JPS5832382A - Self-temperature controllable heater - Google Patents

Self-temperature controllable heater

Info

Publication number
JPS5832382A
JPS5832382A JP13068081A JP13068081A JPS5832382A JP S5832382 A JPS5832382 A JP S5832382A JP 13068081 A JP13068081 A JP 13068081A JP 13068081 A JP13068081 A JP 13068081A JP S5832382 A JPS5832382 A JP S5832382A
Authority
JP
Japan
Prior art keywords
density polyethylene
low
temperature
self
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13068081A
Other languages
Japanese (ja)
Other versions
JPH0113196B2 (en
Inventor
伊東 亮一
島崎 行雄
八田 敏正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP13068081A priority Critical patent/JPS5832382A/en
Publication of JPS5832382A publication Critical patent/JPS5832382A/en
Publication of JPH0113196B2 publication Critical patent/JPH0113196B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は自己温度制御性ヒータに関するものである。[Detailed description of the invention] The present invention relates to a self-temperature control heater.

従来、ポリオレフィンをベースとする正の温度係数特性
(以下p’rc特性と言う)を有する自己温度制御性ヒ
ータとしては、低密度ポリエチレン、高密度ポリエチレ
ン、エチレン共重合体等のベースレジンにグラファイト
やカーボンブラック等の導電性付与材を添加した系が使
用されている。
Conventionally, self-temperature control heaters with positive temperature coefficient characteristics (hereinafter referred to as p'rc characteristics) based on polyolefins have been made using base resins such as low-density polyethylene, high-density polyethylene, and ethylene copolymers, as well as graphite and other materials. A system to which a conductivity imparting material such as carbon black is added is used.

しかし低中工法高密度ポリエチレンベースの場合には、
高温におけるPTO特性の立ちあがりは大きいが、低温
賛のp’ra特性は平担に近く、したがって動作温度が
高くなり、結晶融点と動作温度の差が小さいため、局部
的に発熱温度が融点を越えることが懸念される。その場
合には導電性付与材が母体中を移動するため抵抗値が変
化し、抵抗値が低下すればますます発熱する傾向を示す
ので遂には発火に至る危険性がある。
However, in the case of low-medium construction method high-density polyethylene base,
The rise in PTO characteristics at high temperatures is large, but the P'RA characteristics at low temperatures are nearly flat, so the operating temperature becomes high, and because the difference between the crystal melting point and the operating temperature is small, the exothermic temperature locally exceeds the melting point. This is a concern. In that case, the resistance value changes as the conductivity imparting material moves in the matrix, and as the resistance value decreases, it tends to generate more heat, and there is a risk that it will eventually catch fire.

一方、高圧法低密度ポリエチレンは低温のPTC特性は
比較的良好であるが、融点が100〜110℃と低いた
め、動作温度をあまり高くとることができない。この点
ではエチレン共重合体ではさらに融点が低くなるため、
動作温度はもつと低目になる。
On the other hand, high-pressure low-density polyethylene has relatively good low-temperature PTC properties, but its melting point is as low as 100 to 110°C, so the operating temperature cannot be set very high. In this respect, ethylene copolymer has an even lower melting point, so
The operating temperature tends to be low.

したがって、低中工法高密度ポリエチレンに近い動作温
度のものを得ることができればポリオレフィン系PTO
の使用範囲が拡大することになり、本発明の目的は、前
記した従来技術の多点を解消し、PTO特性を改善した
自己温度制御ヒータを提供することにある。
Therefore, if it is possible to obtain a product with an operating temperature close to that of low-medium method high-density polyethylene, polyolefin-based PTO
Therefore, the purpose of the present invention is to provide a self-temperature control heater that solves the problems of the prior art described above and has improved PTO characteristics.

すなわち本発明の要旨は、自己温度制御性ヒータのペー
スレジンとして線状低密度ポリエチレンを用いたことに
ある。
That is, the gist of the present invention is that linear low-density polyethylene is used as a pace resin for a self-temperature-controlling heater.

ここで上記線状低密度ポリエチレンとは次のようなもの
をいう。
Here, the above-mentioned linear low-density polyethylene refers to the following.

高級α−オレフィンモノマをエチレンと共重合させるこ
とによって製造したポリマであり、中低圧法で重合した
低密度ポリエチレンをいう。
It is a polymer produced by copolymerizing a higher α-olefin monomer with ethylene, and refers to low-density polyethylene polymerized using a medium-low pressure method.

密度は従来の低密度ポリエチレンと同程度であるが、分
子は中高密度ポリエチレンと同様に直鎖状である。従来
の低密度ポリエチレンは長鎖分岐を多くもっているのに
対し、線状低密度ポリエチレンは短鎖分岐を多くもって
いるのが特徴である。
The density is comparable to conventional low density polyethylene, but the molecules are linear like medium to high density polyethylene. Conventional low density polyethylene has many long chain branches, whereas linear low density polyethylene is characterized by having many short chain branches.

このポリマを単独に用いるほか、他の特性を改善するた
め、エチレン共重合体等を併用してもよい。
In addition to using this polymer alone, an ethylene copolymer or the like may be used in combination to improve other properties.

また導電性付与材とはカーボンブラック、グラファイト
、有機ポリマでグラフト結合したカーボンブラック、金
属粉等が該当する。
Further, the conductivity-imparting material includes carbon black, graphite, carbon black grafted with an organic polymer, metal powder, and the like.

その他安定剤、滑剤、難燃剤、架橋助剤、酸化防止剤、
分散剤等を含んでいても一向に差支えない。
Other stabilizers, lubricants, flame retardants, crosslinking aids, antioxidants,
There is no problem even if it contains a dispersant or the like.

これらの組成はパンバリミキサ、ロール、ニーダ等で均
一に混練した後押出機によってペレット化する。
These compositions are uniformly kneaded using a Panbury mixer, rolls, kneader, etc., and then pelletized using an extruder.

この材料を電極上に押出被覆後、電子線照射や有機過酸
化物等で架橋処理を行なう。
After this material is extruded and coated onto the electrode, crosslinking treatment is performed using electron beam irradiation, organic peroxide, or the like.

実施例1 線状低密度ポリエチレン(密度0.92、閤工=′0.
3)1−00重量部、VulcanXO−7220重量
部、トリメチロールプロパントリメタクリレート2 重
量部、4 、4’−チオビス(ロータージャリフf ル
ー’3−メチルフェノール) o、2重量部、 ステア
リン酸亜鉛0.2重量部をパンバリミキサで均一になる
まで混練し、ロールでシート化した後ベレット化した。
Example 1 Linear low-density polyethylene (density 0.92, threading = '0.
3) 1-00 parts by weight, Vulcan 0.2 parts by weight was kneaded in a panburi mixer until uniform, formed into a sheet with a roll, and then formed into a pellet.

次に第1図に示す様に外径0.20 wmのスズメッキ
線を19本撚りした2本の導体1(導体間距離5 m 
)上に上記混和物を厚さ2簡になるように押出被覆2し
た。次に熱可塑性エラストマTPR5190を厚さ0.
2 mになるように押出被覆3し、20Mraaの電子
線を照射した。抵抗体のF T 、0特性を第6図の7
に示す。
Next, as shown in Fig. 1, two conductors 1 made by twisting 19 tin-plated wires with an outer diameter of 0.20 wm (distance between the conductors 5 m
) The above mixture was extrusion coated on top of the sample to a thickness of 2 layers. Next, thermoplastic elastomer TPR5190 was applied to a thickness of 0.
Extrusion coating 3 was applied to a thickness of 2 m and irradiated with an electron beam of 20 Mraa. The F T , 0 characteristics of the resistor are shown in 7 in Figure 6.
Shown below.

実施例2 線状低密度ポリエチレン(密度0.92、M工=0.3
)100重量部、グラファイトxs−2,5(ロンザ社
)40重量部、トリメチロールプ日パントリメタクリレ
ート2重量部、4,4′−チオビス−(6−ターシャリ
ブチル−3−メチルフェノール)0.2重量部、ステア
リン酸亜鉛0.2重量部の組成物を実施例1と同一条件
で製造した。抵抗体のPTC特性を第3図の8に示す。
Example 2 Linear low density polyethylene (density 0.92, M = 0.3
) 100 parts by weight, graphite xs-2,5 (Lonza) 40 parts by weight, trimethylolpantrimethacrylate 2 parts by weight, 4,4'-thiobis-(6-tert-butyl-3-methylphenol) 0 A composition containing 0.2 parts by weight of zinc stearate and 0.2 parts by weight of zinc stearate was prepared under the same conditions as in Example 1. The PTC characteristics of the resistor are shown at 8 in FIG.

実施例3 実施例1の線状低密度ポリエチレン100重量部の代り
に線状低密度ポリエチレン90重量部、エチレン−プロ
ピレンゴム10重量部トしたほかは実施例1と同じであ
る。
Example 3 The procedure was the same as in Example 1 except that 90 parts by weight of linear low-density polyethylene and 10 parts by weight of ethylene-propylene rubber were used instead of 100 parts by weight of linear low-density polyethylene.

比較例1 実施例1の線状低密度ポリエチレン100重量部の代り
に高圧法低密度ポリエチレン(密度0.92M工=0.
3)100重量部を用いた。他の配合剤および製造法は
実施例1と同じである。
Comparative Example 1 Instead of 100 parts by weight of the linear low density polyethylene of Example 1, high-pressure low density polyethylene (density 0.92M = 0.00 parts by weight) was used.
3) 100 parts by weight was used. Other ingredients and manufacturing method are the same as in Example 1.

比較例2 実施例1の線状低密度ポリエチレン100重量部の代り
に中低工法高密度ポリエチレン(密度0.95、M工=
0.3)100重量部を用いた。他の配合剤および製造
法は実施例1と同じである。
Comparative Example 2 Instead of 100 parts by weight of the linear low density polyethylene of Example 1, medium-low construction method high density polyethylene (density 0.95, M construction =
0.3) 100 parts by weight was used. Other ingredients and manufacturing method are the same as in Example 1.

上記実施例及び比較例の結果を第1表に示す。The results of the above Examples and Comparative Examples are shown in Table 1.

第   1   表 試験方法 (1)発熱温度:抵抗体上に熱電対を取り付け、抵抗体
電極間に父流電圧100vを課電したときの発熱温度を
読みとる。
Table 1 Test method (1) Heat generation temperature: Attach a thermocouple on the resistor and read the heat generation temperature when a father current voltage of 100 V is applied between the resistor electrodes.

(2)体積抵抗率:ホイートストンブリッジを用いて抵
抗値を読みとり、体積抵抗率に換算した。
(2) Volume resistivity: The resistance value was read using a Wheatstone bridge and converted to volume resistivity.

PTC特性は恒温槽中で所定の温度に加熱した状態で抵
抗値を測定した。
For PTC characteristics, the resistance value was measured in a state where the material was heated to a predetermined temperature in a constant temperature bath.

(6)課電サイクル:抵抗体の電極間に交流電圧100
■を1h課電し、10分間課電停止する。
(6) Charge cycle: 100 AC voltage between the electrodes of the resistor
(2) is charged for 1 hour and then stopped for 10 minutes.

とれを1サイクルとして繰り返した。100サイクルお
よび1000サイクル後の発熱温度と体積抵抗率を測定
した。
The process was repeated with each cycle taken as one cycle. The exothermic temperature and volume resistivity were measured after 100 cycles and 1000 cycles.

以上説明した通り本発明は線状低密度ポリエチレンを用
いることによって低温のPTC特性は高圧法低密度ポリ
エチレンに近く、高温では低中工法高密度ポリエチレン
に近いため、全体の温度範囲でPTO特性がシャープに
なる。このことはスイッチングがシャープになり信頼性
が著しく増大する。このPTO特性はポリマの比容一温
度特性と関連しており、線状低密度ポリエチレンに特有
なものである。
As explained above, by using linear low-density polyethylene, the present invention has PTC characteristics at low temperatures close to those of high-pressure process low-density polyethylene, and at high temperatures close to those of low-medium process high-density polyethylene, so the PTO characteristics are sharp over the entire temperature range. become. This results in sharper switching and significantly increased reliability. This PTO property is related to the specific volume-temperature property of the polymer and is unique to linear low density polyethylene.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明自己温度制御性ヒータの一実施例を示す
断面図、第2図は本発明の線状低密度ポリエチレンと従
来の高圧法低密度ポリエチレンと低圧法高密度ポリエチ
レンの比容積一温度特性を示す特性線図、第3図は本発
明の線状低密度ポリエチレンをベースとした組成物のP
TC特性を従来のポリエチレンと比較して示しである特
性線図である。 1:導体(電極)、2:抵抗体、6:絶縁体、4:線状
低密度ポリエチレンの特性曲線、5:高圧法低密度ポリ
エチレンの特性曲線、6:中低工法高密度ポリエチレン
の特性曲線、7:実施例1の特性曲線、8:実施例2の
特性曲線、9:比較例1の特性曲線、10:比較例2の
特性曲線。
Figure 1 is a sectional view showing an embodiment of the self-temperature control heater of the present invention, and Figure 2 is a cross-sectional view showing the specific volumes of the linear low-density polyethylene of the present invention, conventional high-pressure process low-density polyethylene, and low-pressure process high-density polyethylene. A characteristic diagram showing temperature characteristics, FIG. 3 shows the P of the composition based on linear low density polyethylene of the present invention.
FIG. 2 is a characteristic diagram showing TC characteristics in comparison with conventional polyethylene. 1: Conductor (electrode), 2: Resistor, 6: Insulator, 4: Characteristic curve of linear low-density polyethylene, 5: Characteristic curve of high-pressure method low-density polyethylene, 6: Characteristic curve of medium-low method high-density polyethylene , 7: Characteristic curve of Example 1, 8: Characteristic curve of Example 2, 9: Characteristic curve of Comparative Example 1, 10: Characteristic curve of Comparative Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1、 所永間隔で配−された電極の上に線状低密度ポリ
エチレンに導電性付与材を添加した混合物を設け、し力
iる後架橋したことを特徴とする自己温度制御性ヒータ
1. A self-temperature-controlling heater characterized in that a mixture of linear low-density polyethylene and a conductivity imparting material is provided on electrodes arranged at predetermined intervals, and is cross-linked after being heated.
JP13068081A 1981-08-20 1981-08-20 Self-temperature controllable heater Granted JPS5832382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13068081A JPS5832382A (en) 1981-08-20 1981-08-20 Self-temperature controllable heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13068081A JPS5832382A (en) 1981-08-20 1981-08-20 Self-temperature controllable heater

Publications (2)

Publication Number Publication Date
JPS5832382A true JPS5832382A (en) 1983-02-25
JPH0113196B2 JPH0113196B2 (en) 1989-03-03

Family

ID=15040039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13068081A Granted JPS5832382A (en) 1981-08-20 1981-08-20 Self-temperature controllable heater

Country Status (1)

Country Link
JP (1) JPS5832382A (en)

Also Published As

Publication number Publication date
JPH0113196B2 (en) 1989-03-03

Similar Documents

Publication Publication Date Title
US4534889A (en) PTC Compositions and devices comprising them
CA1082447A (en) Voltage stable compositions
US4775778A (en) PTC compositions and devices comprising them
US4277673A (en) Electrically conductive self-regulating article
US4200973A (en) Method of making self-temperature regulating electrical heating cable
US4388607A (en) Conductive polymer compositions, and to devices comprising such compositions
US4935156A (en) Conductive polymer compositions
JP3749504B2 (en) PTC composition, thermistor element, and production method thereof
JPS5818722B2 (en) Self-regulating electrical article and method of manufacturing the same
US3096210A (en) Insulated conductors and method of making same
EP0140893B1 (en) Self-limiting heater and resistance material
US4367168A (en) Electrically conductive composition, process for making an article using same
US4318881A (en) Method for annealing PTC compositions
US4876440A (en) Electrical devices comprising conductive polymer compositions
US5817423A (en) PTC element and process for producing the same
CA1319241C (en) Conductive polymer composition
US5057673A (en) Self-current-limiting devices and method of making same
GB1597007A (en) Conductive polymer compositions and devices
US4327480A (en) Electrically conductive composition, process for making an article using same
JPS6057192B2 (en) Means comprising an electrode and conductive polymer and method for producing the same
US4954695A (en) Self-limiting conductive extrudates and methods therefor
JPS5832382A (en) Self-temperature controllable heater
US4866253A (en) Electrical devices comprising conductive polymer compositions
JPS58164187A (en) Self-temperature controllable heater
KR0153409B1 (en) Polymer composition having positive temperature coefficient characteristics