JPS6245666B2 - - Google Patents

Info

Publication number
JPS6245666B2
JPS6245666B2 JP56123708A JP12370881A JPS6245666B2 JP S6245666 B2 JPS6245666 B2 JP S6245666B2 JP 56123708 A JP56123708 A JP 56123708A JP 12370881 A JP12370881 A JP 12370881A JP S6245666 B2 JPS6245666 B2 JP S6245666B2
Authority
JP
Japan
Prior art keywords
microwave
lamp
discharge
waveguide
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56123708A
Other languages
Japanese (ja)
Other versions
JPS5825074A (en
Inventor
Keiichi Baba
Isao Shoda
Hitoshi Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12370881A priority Critical patent/JPS5825074A/en
Publication of JPS5825074A publication Critical patent/JPS5825074A/en
Publication of JPS6245666B2 publication Critical patent/JPS6245666B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit

Description

【発明の詳細な説明】 この発明は、マイクロ波放電を利用した光源装
置に係り、特に無電極放電ランプの始動を改善し
たものに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light source device that utilizes microwave discharge, and particularly to one that improves the starting of an electrodeless discharge lamp.

最近、放電利用の光源装置として高周波放電、
特に高周波にマイクロ波を用いた光源装置が注目
されている。従来の有電極の光源装置ではランプ
の寿命が電極の消耗により決定されていたが、マ
イクロ波を用いた光源装置ではランプを無電極に
できるためランプ寿命が長くなるという特徴があ
る。また、電極による熱損失がなく、放電のイン
ピーダンスが初期状態と安定状態で差が小さいた
め、初期状態での電力注入が容易であり、さらに
放電電力がランプ管壁に偏つている等の理由で最
大出力到達までの時間が短くなるという特徴もあ
る。
Recently, high-frequency discharge has been used as a light source device that uses discharge.
In particular, light source devices that use microwaves as high-frequency waves are attracting attention. In conventional light source devices with electrodes, the life of the lamp is determined by the wear and tear of the electrodes, but in light source devices using microwaves, the lamp can be made electrodeless, resulting in a longer lamp life. In addition, there is no heat loss due to the electrodes, and the difference in discharge impedance is small between the initial state and the stable state, so it is easy to inject power in the initial state. Another feature is that it takes less time to reach maximum output.

この様なマイクロ波放電光源装置として第1図
および第2図に示すものが考えられる。第1図は
無電極放電ランプの断面図、第2図はこの第1図
に示すランプを用いたマイクロ波放電光源装置の
構成を示す断面図であり、図に於いて1は球形に
形成された無電極放電ランプで、内部に所定量の
水銀、始動補助用ガス、例えばアルゴンが少なく
とも封入されている。2は透明石英で形成された
この無電極ランプ1のランプ壁、3はこのランプ
壁から棒状に突出して設けられたランプ支持部、
4はマグネトロン、5はマグネトロンアンテナ、
6は導波管、7はほぼ半球に形成されたマイクロ
波空胴で、マイクロ波を遮断し光を通過させるメ
ツシユ板7aである光透過性部材と、反射板7b
である光反射性部材とから構成されている。8は
このマイクロ波空胴7と導波管6とを通ずる反射
板7bに形成された給電口、9はマグネトロン4
と無電極放電ランプ1を冷却するための冷却フア
ン、10は冷却フアン9からの冷却風をマグネト
ロン4を介して導波管6内に導くための送風管、
11は送風管10内の冷却風を導波管6内に入れ
るため導波管6にあけられた通風口、13はマグ
ネトロン4、導波管6、空胴7等を覆う箱体であ
る。
As such a microwave discharge light source device, those shown in FIGS. 1 and 2 can be considered. Fig. 1 is a sectional view of an electrodeless discharge lamp, and Fig. 2 is a sectional view showing the configuration of a microwave discharge light source device using the lamp shown in Fig. 1. In the figure, 1 is a spherical shape. It is an electrodeless discharge lamp that is filled with at least a predetermined amount of mercury and a starting aid gas such as argon. 2 is a lamp wall of this electrodeless lamp 1 formed of transparent quartz; 3 is a lamp support portion protruding from the lamp wall in a rod shape;
4 is the magnetron, 5 is the magnetron antenna,
6 is a waveguide, 7 is a microwave cavity formed into a substantially hemispherical shape, and includes a light transmitting member which is a mesh plate 7a that blocks microwaves and allows light to pass through, and a reflecting plate 7b.
It is composed of a light reflective member. Reference numeral 8 indicates a power feeding port formed in the reflection plate 7b that passes between the microwave cavity 7 and the waveguide 6, and 9 indicates a magnetron 4.
and a cooling fan for cooling the electrodeless discharge lamp 1; 10 is a blower pipe for guiding cooling air from the cooling fan 9 into the waveguide 6 via the magnetron 4;
Reference numeral 11 designates a ventilation port provided in the waveguide 6 for introducing cooling air in the air pipe 10 into the waveguide 6, and reference numeral 13 designates a box body that covers the magnetron 4, the waveguide 6, the cavity 7, and the like.

この様に構成されたマイクロ波放電光源装置に
おいて、その動作はマグネトロン4によつて発生
されたマイクロ波はマグネトロンアンテナ5を通
して導波管6内に放射される。このマイクロ波は
導波管6を伝播し給電口8を通して空胴7中にマ
イクロ波漏れ電磁界を形成する。このマイクロ波
漏れ電磁界により約5〜10秒後ランプ1内に封入
された始動補助希ガスが放電し、ランプ壁2が熱
せられ、それまでランプ壁2に付着していた水銀
も蒸発し、この時放電ランプ1内に金属ハロゲン
化物が封入されていれば、金属ハロゲン化物も蒸
発し、放電は金属蒸気放電を主体とした放電とな
る。この時封入金属の種類に応じてそれぞれの金
属特有の発光スペクトルを持つた発光を生じるの
でこれを光源として用いる。このランプ1からの
光を有効に利用するため空胴7の後面を反射板7
bとして用い、前面はマイクロ波は透過しないが
光は透過する金属メツシユ板7aで構成して光を
前方のみに放射させる。一方マグネトロン4及び
ランプ1は動作中冷却する必要があるため冷却フ
アン9によりマグネトロン4を冷却し、この冷却
空気は送風管10、送風口11、導波管6及び給
電口8を経てランプ1を冷却した後メツシユ板7
aから排気される。
In the microwave discharge light source device configured in this manner, the microwaves generated by the magnetron 4 are radiated into the waveguide 6 through the magnetron antenna 5. This microwave propagates through the waveguide 6 and forms a microwave leakage electromagnetic field in the cavity 7 through the feed port 8 . After about 5 to 10 seconds due to this microwave leakage electromagnetic field, the starting-assisting noble gas sealed in the lamp 1 is discharged, the lamp wall 2 is heated, and the mercury that had been attached to the lamp wall 2 is also evaporated. At this time, if a metal halide is sealed in the discharge lamp 1, the metal halide also evaporates, and the discharge becomes a discharge mainly consisting of metal vapor discharge. At this time, depending on the type of encapsulated metal, light is emitted with an emission spectrum unique to each metal, and this is used as a light source. In order to effectively utilize the light from this lamp 1, the rear surface of the cavity 7 is covered with a reflector 7.
The front surface is made of a metal mesh plate 7a that does not transmit microwaves but transmits light, so that light is emitted only in the forward direction. On the other hand, since the magnetron 4 and the lamp 1 need to be cooled during operation, the magnetron 4 is cooled by a cooling fan 9, and this cooling air passes through the air pipe 10, the air outlet 11, the waveguide 6, and the power supply port 8 to the lamp 1. After cooling, mesh plate 7
It is exhausted from a.

しかるに、この様に構成されたマイクロ波放電
光源装置にあつては、その無電極放電ランプ1が
点灯状態にあるときは、マイクロ波空胴7が共振
器となるような位置に配設しているものである
が、給電口8の開口部が、マイクロ波インピーダ
ンス整合がとれる大きさになる様比較的小さく、
かつその大きさが固定されているので、電源投入
時の給電口8からの漏れ電磁界が少なくなる為ラ
ンプ1の放電開始までの時間が約5〜10秒と長
く、実用上問題があつた。
However, in the microwave discharge light source device configured in this way, when the electrodeless discharge lamp 1 is in the lighting state, the microwave cavity 7 is arranged at a position where it becomes a resonator. However, the opening of the power feed port 8 is relatively small so that microwave impedance matching can be achieved.
Moreover, since its size is fixed, the electromagnetic field leaking from the power supply port 8 when the power is turned on is reduced, so the time until the lamp 1 starts discharging is long, about 5 to 10 seconds, which poses a practical problem. .

この発明は上記した点に鑑みてなされたもので
あり、無電極放電ランプを有したマイクロ波放電
光電装置において、導波管とマイクロ波空胴とを
通ずる給電口の開口部の大きさを変化させるスラ
イド板を設けて、このスライド板により始動時に
点灯時に比し給電口の開口部の大きさを大きくし
て始動性を改善することを目的とするものであ
る。
This invention has been made in view of the above-mentioned points, and in a microwave discharge photoelectric device having an electrodeless discharge lamp, the size of the opening of the power feeding port that communicates between the waveguide and the microwave cavity is changed. The object of the present invention is to improve starting performance by providing a sliding plate to make the opening of the power supply port larger during starting compared to when the lamp is lit.

以下にこの発明の一実施例を第3図および第4
図に基づいて説明すると、図において、8はマイ
クロ波空胴7と導波管6とを通ずる反射板7bに
形成された給電口で、マイクロ波インピーダンス
整合がとれる大きさより大きな開口部となつてい
る。14は導波管6のマイクロ波空胴7側端部に
挿通配設されたスライド板で、スライドさせるこ
とにより給電口8の開口部の大きさを変えるもの
である。16は導波管6のマイクロ波空胴7側端
部に形成された穴15内に配設され、スライド板
14の位置を保持する押え具で、押し付けばね1
8と、一端がこのばねに、他端がスライド板14
に当接する押え板17とからなり、常時ばね18
の押圧力が押え板17を介してスライド板14に
加えられているものである。
An embodiment of this invention is shown below in Figures 3 and 4.
To explain based on the figure, in the figure, 8 is a feed port formed in the reflection plate 7b that passes between the microwave cavity 7 and the waveguide 6, and is an opening larger than the size that allows microwave impedance matching. There is. A slide plate 14 is inserted through the end of the waveguide 6 on the side of the microwave cavity 7, and is used to change the size of the opening of the power feed port 8 by sliding it. Reference numeral 16 denotes a presser which is disposed in a hole 15 formed at the end of the waveguide 6 on the side of the microwave cavity 7 and holds the slide plate 14 in position.
8, one end is attached to this spring, and the other end is attached to the slide plate 14.
It consists of a presser plate 17 that comes into contact with the spring 18 at all times.
A pressing force of is applied to the slide plate 14 via the presser plate 17.

この様に構成されたマイクロ波放電光源装置に
おいて、まず、スライド板14をばね18の押圧
力に抗して給電口8の開口部の大きさが大きくな
る様にスライドさせておき、電源を投入すると、
マグネトロン4によつて発光されたマイクロ波は
マグネトロンアンテナ5を通して導波管6内に放
射され、このマイクロ波は導波管6を伝播し給電
口8を通して空胴7中にマイクロ波漏れ電磁界を
形成する。この時給電口8の開口部の大きさは大
きくなつているので、空胴7内には多大のマイク
ロ波漏れ電磁界が形成されほぼ瞬時にランプ1内
に封入された始動補助用希ガスが放電し、ランプ
壁2が熱せられ、それまでランプ壁2に付着して
いた水銀及び金属ハロゲン化物も蒸発し放電は金
属蒸気放電を主体とした放電となる。この時封入
金属の種類に応じてそれぞれの金属特有の発光ス
ペクトルを持つた発光を生じるのでこれを光源と
して用いることは第1図および第2図に示したも
のと同様である。
In the microwave discharge light source device configured in this way, first, slide the slide plate 14 against the pressing force of the spring 18 so that the opening of the power supply port 8 becomes larger, and then turn on the power. Then,
The microwave emitted by the magnetron 4 is radiated into the waveguide 6 through the magnetron antenna 5, and this microwave propagates through the waveguide 6 and causes a microwave leakage electromagnetic field into the cavity 7 through the feed port 8. Form. At this time, since the size of the opening of the power feed port 8 is increased, a large microwave leakage electromagnetic field is formed in the cavity 7, and the starting-assisting rare gas sealed in the lamp 1 is released almost instantly. The lamp wall 2 is discharged and the lamp wall 2 is heated, and the mercury and metal halides that had been attached to the lamp wall 2 are also evaporated, and the discharge becomes a discharge mainly consisting of metal vapor discharge. At this time, depending on the type of encapsulated metal, light is emitted with an emission spectrum unique to each metal, so that this can be used as a light source in the same way as shown in FIGS. 1 and 2.

次に、ランプ点灯直後にはランプからの発光を
目視によりあるいは周知の光検知手段による光の
検知により、スライド板14を給電口8の開口部
を閉じる方向にスライドさせて、給電口8の開口
部を、マイクロ波インピーダンス整合がとれる大
きさにする事により安定したランプ点灯状態を維
持するものである。そして、このマイクロ波放電
光源装置にあつては、スライド板14と導波管6
及びマイクロ波空胴7間にギヤツプがある場合に
は、その部分で放電を起こし、装置を破損する可
能性が有る為、導波管6壁内に配設された押え板
17及び押しつけばね18によりスライド板14
を押えつけて、スライド板14と導波管6及びマ
イクロ波空胴7間にはギヤツプを無くしているの
で、この部分における放電を起こさないものであ
る。
Next, immediately after the lamp is turned on, the slide plate 14 is slid in a direction to close the opening of the power supply port 8 by visually observing the light emitted from the lamp or by detecting the light by a well-known light detection means. By making the portion large enough to match the microwave impedance, a stable lamp lighting condition can be maintained. In this microwave discharge light source device, the slide plate 14 and the waveguide 6
If there is a gap between the waveguide 6 and the microwave cavity 7, there is a possibility that electric discharge will occur in that part and damage the device. Slide plate 14
Since there is no gap between the slide plate 14, the waveguide 6, and the microwave cavity 7, no discharge occurs in this portion.

なお、上記実施例ではスライド板14を手動に
よりスライドさせるようにしたが、周知の光検知
手段例えば光電素子と、この光検知手段の出力に
応じてスライド板14を駆動させる駆動装置例え
ば油圧を利用したものあるいは電動機を利用した
ものを組み合せて自動的にスライド板14をスラ
イドさせるようにしても良いものである。
In the above embodiment, the slide plate 14 is slid manually, but it is also possible to use a well-known light detection means such as a photoelectric element and a drive device such as hydraulic pressure to drive the slide plate 14 in accordance with the output of this light detection means. The slide plate 14 may be automatically slid by using a combination of a motor or a motor.

この発明は以上述べたように、マイクロ波発振
器からのマイクロ波により、導波管に給電口を介
して接続されたマイクロ波空胴内に配設された無
電極放電ランプを点灯させるものにおいて、給電
口の開口部の大きさを変化させるスライド板を設
けたので、始動時給電口の開口部の大きさを大き
くしてマイクロ波空胴内のマイクロ波電磁界を多
くして無電極放電ランプの始動性を大幅に向上で
きるとともに始動点灯後、給電口の開口部の大き
さを小さくしてマイクロ波インピーダンス整合が
とれるため、無電極放電ランプの安定点灯が行な
えるという効果を有するものである。
As described above, the present invention is for lighting an electrodeless discharge lamp disposed in a microwave cavity connected to a waveguide via a power supply port using microwaves from a microwave oscillator. Since a slide plate is provided to change the size of the opening of the power supply port, the size of the opening of the power supply port is increased during startup to increase the microwave electromagnetic field inside the microwave cavity, resulting in an electrodeless discharge lamp. This has the effect of significantly improving the starting performance of the lamp, and after starting and lighting the lamp, the size of the opening of the power supply port can be made smaller to ensure microwave impedance matching, resulting in stable lighting of the electrodeless discharge lamp. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は無電極放電ランプの断面図、第2図は
このランプを用いたマイクロ波放電光源装置の一
例を示す断面図、第3図はこの発明の一実施例で
あるマイクロ波放電光源装置を示す断面図、第4
図は第3図の要部断面図である。 図において1は無電極放電ランプ、4はマグネ
トロン、6は導波管、7はマイクロ波空胴、8は
給電口、14はスライド板である。なお、各図中
同一符号は同一又は相当部分を示す。
Fig. 1 is a sectional view of an electrodeless discharge lamp, Fig. 2 is a sectional view showing an example of a microwave discharge light source device using this lamp, and Fig. 3 is a microwave discharge light source device which is an embodiment of the present invention. 4th cross-sectional view showing
The figure is a sectional view of the main part of FIG. 3. In the figure, 1 is an electrodeless discharge lamp, 4 is a magnetron, 6 is a waveguide, 7 is a microwave cavity, 8 is a power supply port, and 14 is a slide plate. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロ波発振器、このマイクロ波発振器よ
り発振されたマイクロ波を導く導波管、この導波
管に給電口を通じて接続され一面を光透過性部材
とし他の面の少なくとも一部を光反射性部材とし
たマイクロ波空胴、このマイクロ波空胴内に少な
くとも点灯状態にあるときはそのマイクロ波空胴
が共振器となるような位置に配設され、内部に放
電発光物質を封入した点光源に近似せる無電極放
電ランプから成るマイクロ波放電光源装置におい
て、給電口の開口部の大きさを変化させるスライ
ド板を設けたことを特徴とするマイクロ波放電光
源装置。
1. A microwave oscillator, a waveguide that guides the microwaves oscillated by the microwave oscillator, and a waveguide connected to the waveguide through a power supply port, with one surface being a light-transmitting member and at least a portion of the other surface being a light-reflecting member. A point light source with a discharge luminescent substance sealed inside the microwave cavity is disposed at a position where the microwave cavity becomes a resonator at least when it is in a lit state. A microwave discharge light source device comprising an approximated electrodeless discharge lamp, characterized in that the microwave discharge light source device is provided with a slide plate for changing the size of an opening of a power supply port.
JP12370881A 1981-08-07 1981-08-07 Microwave discharge light source unit Granted JPS5825074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12370881A JPS5825074A (en) 1981-08-07 1981-08-07 Microwave discharge light source unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12370881A JPS5825074A (en) 1981-08-07 1981-08-07 Microwave discharge light source unit

Publications (2)

Publication Number Publication Date
JPS5825074A JPS5825074A (en) 1983-02-15
JPS6245666B2 true JPS6245666B2 (en) 1987-09-28

Family

ID=14867377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12370881A Granted JPS5825074A (en) 1981-08-07 1981-08-07 Microwave discharge light source unit

Country Status (1)

Country Link
JP (1) JPS5825074A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100556782B1 (en) 2003-12-06 2006-03-10 엘지전자 주식회사 Plasma lamp system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865009A (en) * 1953-12-14 1958-12-16 Litton Industries Inc Tuning iris for wave guides
JPS5054172A (en) * 1973-08-22 1975-05-13
US3943401A (en) * 1975-04-21 1976-03-09 Gte Laboratories Incorporated Electrodeless light source having a lamp holding fixture which has a separate characteristic impedance for the lamp starting and operating mode
JPS5482876A (en) * 1977-12-15 1979-07-02 Mitsubishi Electric Corp Fluorescent lamp without electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865009A (en) * 1953-12-14 1958-12-16 Litton Industries Inc Tuning iris for wave guides
JPS5054172A (en) * 1973-08-22 1975-05-13
US3943401A (en) * 1975-04-21 1976-03-09 Gte Laboratories Incorporated Electrodeless light source having a lamp holding fixture which has a separate characteristic impedance for the lamp starting and operating mode
JPS5482876A (en) * 1977-12-15 1979-07-02 Mitsubishi Electric Corp Fluorescent lamp without electrode

Also Published As

Publication number Publication date
JPS5825074A (en) 1983-02-15

Similar Documents

Publication Publication Date Title
JP4932124B2 (en) Plasma lamp having dielectric waveguide and light emitting method thereof
EP0035898B1 (en) Microwave generated plasma light source apparatus
EP0602746B1 (en) Electrodeless discharge lamp
JP4294998B2 (en) Electrodeless lighting system
JPS637427B2 (en)
JPS6245666B2 (en)
US7397173B2 (en) Lighting apparatus using microwave energy
JPH0231459B2 (en)
JPS5923612B2 (en) Microwave discharge light source device
JPH0226359B2 (en)
KR100451226B1 (en) Apparatus for enhancing starting discharge in plasma lighting system
KR20030080747A (en) Electrodeless lamp for plasma lighting system
JPH0145179B2 (en)
JPH0218560Y2 (en)
JPS6228045Y2 (en)
JPS6340802Y2 (en)
KR100531906B1 (en) Microwave sensor in plasma lighting system
JPS585960A (en) Microwave discharging light-source device
JPS638579B2 (en)
JPS608582B2 (en) Microwave discharge light source device
JPH10149803A (en) Microwave discharge lamp
JPS61216299A (en) Microwave discharge light source unit
JPH0247598Y2 (en)
KR100400401B1 (en) Lighting apparatus for plasma lighting system
JPS631720B2 (en)