JPS6245474B2 - - Google Patents

Info

Publication number
JPS6245474B2
JPS6245474B2 JP57133069A JP13306982A JPS6245474B2 JP S6245474 B2 JPS6245474 B2 JP S6245474B2 JP 57133069 A JP57133069 A JP 57133069A JP 13306982 A JP13306982 A JP 13306982A JP S6245474 B2 JPS6245474 B2 JP S6245474B2
Authority
JP
Japan
Prior art keywords
liquid
working fluid
section
phase working
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57133069A
Other languages
Japanese (ja)
Other versions
JPS5924186A (en
Inventor
Masataka Mochizuki
Michio Takaoka
Koichi Masuko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP13306982A priority Critical patent/JPS5924186A/en
Publication of JPS5924186A publication Critical patent/JPS5924186A/en
Publication of JPS6245474B2 publication Critical patent/JPS6245474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0291Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes comprising internal rotor means, e.g. turbine driven by the working fluid

Description

【発明の詳細な説明】 この発明はヒートパイプに関し、特に液相作動
流体を機械力によつて強制的に蒸発部に還流させ
るタイプのヒートパイプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pipe, and particularly to a heat pipe of a type in which a liquid-phase working fluid is forcibly returned to an evaporation section by mechanical force.

周知のようにヒートパイプは、液相作動流体が
熱を受けて蒸発することにより、その潜熱として
熱輸送を行ない、また放熱し凝縮液化した作動流
体を蒸発部に還流させることにより、熱輸送を外
部エネルギを付与することなく継続して行ない得
るものであり、見掛け上の熱伝導率が銅の数十倍
〜百数十倍も高く、従来から、熱交換器や太陽熱
温水機、さらには医療機器等の各種の分野で用い
られており、最近では電力ケーブルの間接冷却等
にも用いられるようになつてきている。
As is well known, in a heat pipe, a liquid-phase working fluid receives heat and evaporates, thereby transporting heat as its latent heat.The heat pipe also transports heat by radiating heat, condensing and liquefying the working fluid, and returning it to the evaporator. It can be used continuously without applying external energy, and its apparent thermal conductivity is tens to hundreds of times higher than that of copper. It is used in various fields such as equipment, and recently it has also been used for indirect cooling of power cables.

ところで、ヒートパイプによつて電力ケーブル
を間接冷却する場合、電力ケーブルはその全長に
亘つて発熱するので、相当長尺のヒートパイプを
冷却すべき電力ケーブルに沿つて布設し、かつ電
力ケーブルに合わせて高低差のある布設を行なう
必要があり、したがつて電力ケーブルの間接冷却
用ヒートパイプとしては、気相作動流体を蒸発部
に還流させるための圧力が高いことが要求され
る。
By the way, when indirectly cooling a power cable with a heat pipe, the power cable generates heat over its entire length, so a fairly long heat pipe is laid along the power cable to be cooled, and the power cable is Therefore, the heat pipe for indirect cooling of power cables is required to have a high pressure in order to return the gas-phase working fluid to the evaporation section.

しかるに、従来のヒートパイプは、金属網や溝
等からなるウイツクにおいて生じる毛細管圧力に
よつて液相作動流体を蒸発部に還流させるもので
あるから、蒸発部(加熱部)が凝縮部(冷却部)
より上方にあり、かつその高低差が大きい場合
や、蒸発部と凝縮部との距離が長く、その間にお
ける液相作動流体の圧力損失が大きい場合には、
ウイツクによる毛細管圧力が不足し、液相作動流
体を蒸発部に還流させ得ない場合があり、そのた
め従来のヒートパイプでは、高低差があり、また
液相作動流体の還流距離の長い電力ケーブルの間
接冷却を行なうことが困難であつた。
However, in conventional heat pipes, the liquid-phase working fluid is returned to the evaporation section by capillary pressure generated in a pipe made of metal nets, grooves, etc., so the evaporation section (heating section) is connected to the condensation section (cooling section). )
If the location is higher and the height difference is large, or if the distance between the evaporation section and the condensation section is long and the pressure loss of the liquid phase working fluid between them is large,
In some cases, the capillary pressure generated by the heat pipe is insufficient and the liquid-phase working fluid cannot be returned to the evaporator. Therefore, in conventional heat pipes, there is a difference in height and a long distance for the liquid-phase working fluid to be returned to the indirect power cable. It was difficult to perform cooling.

このような不都合を解消するために、例えば第
1図に示すように複数本のヒートパイプ1,2を
同一軸線上に配置して相互に連結し、その連結部
に凹凸部3を設けて伝熱面積を広くし、もつて液
相作動流体を還流させるべき長さを、全体の長さ
すなわち熱輸送可能長さよりも短くすることが考
えられるが、このような構成では、その凹凸部3
への液相作動流体の還流が必ずしもスムースには
生ぜず、しかも各ヒートパイプ1,2の実質的な
長さが第1図に示すLとなり、したがつて蒸発部
を凝縮部よりも上側とした所謂トツプヒートモー
ドの場合には、液相作動流体の還流が不充分とな
り、熱輸送能力が劣る問題があつた。
In order to eliminate such inconveniences, for example, as shown in FIG. 1, a plurality of heat pipes 1 and 2 are arranged on the same axis and connected to each other, and an uneven part 3 is provided at the connection part to transmit heat. It is conceivable to widen the thermal area and make the length over which the liquid-phase working fluid should be refluxed shorter than the overall length, that is, the length that can transport heat, but in such a configuration, the uneven portion 3
The reflux of the liquid-phase working fluid to the heat pipes does not necessarily occur smoothly, and the substantial length of each heat pipe 1, 2 is L as shown in FIG. In the case of the so-called top heat mode, there was a problem that the reflux of the liquid phase working fluid was insufficient and the heat transport ability was poor.

また従来、第1のヒートパイプ4を第2図に示
すように中空円柱状に形成し、その中空部内に第
2のヒートパイプ5,6を両側から差し込んでこ
れらのヒートパイプ4,5,6を連結一体化する
構成のものが提案されている(特開昭53−113356
号)が、このような構成では中空円柱状のヒート
パイプ4と前記第2のヒートパイプ5,6との密
着性が悪く、両者の間に空気層が生じることがあ
り、これに加え第1のヒートパイプ4内における
作動流体と第2のヒートパイプ5,6内における
作動流体との間には、それぞれのウイツク7,
8,9およびコンテナ10,11,12の周壁が
存在することになり、したがつて第1のヒートパ
イプ4と第2のヒートパイプ5,6との間の熱伝
達抵抗(全熱抵抗)が大きく、その結果第1のー
トパイプ4を介した第2のヒートパイプ5,6相
互の間の熱伝達が劣り、例えばトツプヒートモー
ドの場合、たとえば液相作動流体の還流が充分生
じたとしても熱輸送を充分に行ない得ず、結局第
2図に示す構成であつても電力ケーブルの間接冷
却には不向きであつた。
Conventionally, the first heat pipe 4 is formed into a hollow cylinder shape as shown in FIG. 2, and the second heat pipes 5, 6 are inserted into the hollow part from both sides. A configuration has been proposed that connects and integrates the
However, in such a configuration, the adhesion between the hollow cylindrical heat pipe 4 and the second heat pipes 5 and 6 is poor, and an air layer may be formed between them. Between the working fluid in the heat pipe 4 and the working fluid in the second heat pipes 5 and 6, there are
8, 9 and the peripheral walls of the containers 10, 11, 12, therefore, the heat transfer resistance (total thermal resistance) between the first heat pipe 4 and the second heat pipe 5, 6 is As a result, heat transfer between the second heat pipes 5 and 6 via the first top pipe 4 is poor, and in the case of the top heat mode, for example, even if sufficient reflux of the liquid phase working fluid occurs, the heat transfer is poor. Transportation could not be carried out satisfactorily, and in the end, even the configuration shown in FIG. 2 was unsuitable for indirect cooling of power cables.

これに対し従来から、液相作動流体を還流させ
る方法として、毛細管作用以外に、遠心力、静電
気力、電磁気力あるいは浸透圧などを利用する方
法が考えられている。このような方法によれば、
液相作動流体を相当高い位置に還流させ、あるい
は液相作動流体を相当長距離に亘つて還流させる
ことができるかも知れないが、遠心力が静電気力
あるいは電磁気力を利用する場合、外部から機械
エネルギや電気エネルギを与えなければならず、
ヒートパイプの有する特徴すなわち外部エネルギ
を付与することなく熱輸送を行なうことができる
という特徴を没却することになる。また静電気力
や電磁気力あるいは浸透圧を利用する場合には、
使用し得る作動流体が限定される問題がある。
On the other hand, as a method for refluxing a liquid-phase working fluid, methods using centrifugal force, electrostatic force, electromagnetic force, osmotic pressure, etc., in addition to capillary action, have conventionally been considered. According to this method,
It may be possible to circulate the liquid phase working fluid to a considerable height or over a considerable distance, but if the centrifugal force uses electrostatic or electromagnetic force, the mechanical energy or electrical energy must be given,
The characteristic of heat pipes, that is, the ability to transport heat without applying external energy, is lost. In addition, when using electrostatic force, electromagnetic force, or osmotic pressure,
There is a problem in that the working fluid that can be used is limited.

この発明は上記の事情に鑑みてなされたもの
で、外部からエネルギを与えることなく、機械力
すなわちポンプ圧によつて液相作動流体を強制的
に蒸発部へ還流させることができ、したがつて電
力ケーブルを間接冷却する場合のように、蒸発部
と凝縮部との高低差が大きく、また液相作動流体
の還流距離の長い場合であつても充分熱輸送する
ことのできるヒートパイプを提供することを目的
とするものである。
This invention was made in view of the above circumstances, and it is possible to forcibly return a liquid phase working fluid to the evaporation section by mechanical force, that is, pump pressure, without applying energy from the outside. To provide a heat pipe capable of sufficiently transporting heat even when there is a large height difference between an evaporating part and a condensing part and a long return distance of a liquid-phase working fluid, as in the case of indirectly cooling a power cable. The purpose is to

以下この発明の実施例を第3図ないし第6図を
参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 6.

第3図はこの発明の一実施例の全体構造を示す
概略図であつて、ここに示すヒートパイプ20は
蒸発部21と凝縮部22との間に揚液用駆動部2
3を設けた構成とされている。
FIG. 3 is a schematic diagram showing the overall structure of an embodiment of the present invention, and a heat pipe 20 shown here has a liquid pumping drive section 2 between an evaporating section 21 and a condensing section 22.
The configuration includes 3.

蒸発部21は、外部から熱を受けて液相作動流
体を蒸発させる部分であつて、、第4図に示すよ
うに直管もしくはコルゲート管などの金属管24
により、電力ケーブル等の発熱体(図示せず)に
合わせて相当長尺に形成されるとともに、先端部
側(第3図では左端部側)が高くなるよう傾斜さ
れている。この蒸発部21には、液相作動流体を
後述するように強制的に還流させるので、基本的
にはウイツクを設ける必要がないが、蒸発部21
を構成する前記金属管24の内周面全体に液相作
動流体を確実に行き亘らせるためには、前記金属
管24の内周面にウイツク特に金属網のような可
撓性のあるウイツク25を設けることが好まし
い。なお、布設すべき個所の環境によつては、前
記金属管24の外周面に防食層26を設けること
が好ましい。
The evaporation section 21 is a section that receives heat from the outside to evaporate the liquid phase working fluid, and as shown in FIG.
Therefore, it is formed to be quite long to match a heat generating element (not shown) such as a power cable, and is sloped so that the tip end side (the left end side in FIG. 3) is higher. Since the liquid-phase working fluid is forcibly refluxed in the evaporator 21 as described later, there is basically no need to provide a wick, but the evaporator 21
In order to ensure that the liquid-phase working fluid spreads over the entire inner circumferential surface of the metal tube 24, the inner circumferential surface of the metal tube 24 is coated with a wick, especially a flexible wick such as a metal net. It is preferable to provide 25. Note that depending on the environment of the location where the cable is to be laid, it is preferable to provide the anti-corrosion layer 26 on the outer peripheral surface of the metal pipe 24.

これに対し凝縮部22は、前記蒸発部21より
も低い位置にあつて空気あるいは冷水等の冷却用
流体(図示せず)に晒され、その冷却用流体によ
つて熱を奪うことにより、気相作動流体を凝縮液
化させるようになつている。なお、凝縮部22を
構成する金属管27の内周面にウイツクを設け、
またその金属管27の外周面に防食層を設けるこ
とは、必要に応じ適宜に行なえばよい。
On the other hand, the condensing section 22 is located at a lower position than the evaporating section 21 and is exposed to a cooling fluid (not shown) such as air or cold water, and removes heat by the cooling fluid. It is adapted to condense and liquefy the phase working fluid. Note that a wick is provided on the inner circumferential surface of the metal tube 27 constituting the condensing section 22,
Further, an anticorrosion layer may be provided on the outer peripheral surface of the metal tube 27 as appropriate.

また、第3図および第4図に示すように、前記
揚液用駆動部23を構成する筐体28の前記凝縮
部22寄りの個所に、凝縮部22において凝縮液
化した作動流体を流入させる液溜め部29が形成
されており、その液溜め部29内にポンプ30が
配置されている。そのポンプ30は、液溜め部2
9内の液相作動流体31を前記蒸発部21に還流
させるためのものであつて、還流条件としては小
容量、高揚程が要求されるから、ポンプ30とし
てはギヤポンプ等容積型ポンプが好ましい。さら
に、揚液用駆動部23内の前記蒸発部21側の個
所に、タービン32が配置されている。そのター
ビン32は、蒸発部21から凝縮部22に向けて
流動する気相作動流体によつて回転し、その回転
力によつて前記ポンプ30を駆動するものであつ
て、蒸発部21と凝縮部22とにおける圧力差が
小さく、かつ気相作動流体の流量が多いことか
ら、タービン32としては、軸流タービンを用い
ることが好ましい。また、タービン32に対する
気相作動流体流速を増速するために、例えば第5
図に示すようにタービン32の前面側に絞り部
(スロツトル)33を設けることが好ましい。
Further, as shown in FIGS. 3 and 4, a liquid that causes the working fluid condensed and liquefied in the condensing section 22 to flow into a portion of the housing 28 constituting the liquid pumping drive section 23 near the condensing section 22 is provided. A reservoir 29 is formed, and a pump 30 is disposed within the reservoir 29. The pump 30 has a liquid reservoir 2
The pump 30 is for refluxing the liquid-phase working fluid 31 in the evaporator 21 to the evaporator 21, and the reflux conditions require a small capacity and a high head. Therefore, the pump 30 is preferably a displacement pump such as a gear pump. Furthermore, a turbine 32 is arranged at a location on the evaporation section 21 side within the liquid pumping drive section 23. The turbine 32 is rotated by the gas-phase working fluid flowing from the evaporator 21 to the condenser 22, and its rotational force drives the pump 30. It is preferable to use an axial flow turbine as the turbine 32 because the pressure difference between the turbine 22 and the turbine 22 is small and the flow rate of the gas phase working fluid is large. Further, in order to increase the gas phase working fluid flow rate to the turbine 32, for example, a fifth
As shown in the figure, it is preferable to provide a throttle 33 on the front side of the turbine 32.

前記タービン32の回転軸34は中空管とされ
るとともに、その回転軸34は気相作動流体の流
動方向と平行に、すなわち揚液用駆動部23の中
心軸線に沿うよう軸受け35によつて回転自在に
支持されており、その回転軸34と前記ポンプ3
0の入力軸36とが、歯車減速機37を介して連
結されている。歯車減速機37の一例を第4図お
よび第6図に示す。すなわち、前記回転軸34の
液溜め部29側の端部にかさ歯車38が取付けら
れ、そのかさ歯車39がウオーム軸40に取付け
られており、そのウオーム軸40と一体のウオー
ム41がウオームホイール42にかみ合つてお
り、そのウオームホイール42と同軸上に設けた
平歯車43がポンプ30の入力軸36に取付けた
平歯車44にかみ合つている。なお、この歯車減
速機37は、摩擦抵抗等による伝達力のロスを低
減し、また加速エネルギを小さくするために、小
型・軽量で、慣性モーメントの小さいものである
ことが好ましい。
The rotating shaft 34 of the turbine 32 is a hollow tube, and the rotating shaft 34 is supported by a bearing 35 so as to be parallel to the flow direction of the gas-phase working fluid, that is, along the central axis of the liquid pumping drive section 23. It is rotatably supported, and its rotating shaft 34 and the pump 3
0 input shaft 36 is connected via a gear reduction gear 37. An example of the gear reducer 37 is shown in FIGS. 4 and 6. That is, a bevel gear 38 is attached to the end of the rotating shaft 34 on the liquid reservoir 29 side, the bevel gear 39 is attached to a worm shaft 40, and a worm 41 integrated with the worm shaft 40 is attached to a worm wheel 42. A spur gear 43 provided coaxially with the worm wheel 42 meshes with a spur gear 44 attached to the input shaft 36 of the pump 30. Note that this gear reducer 37 is preferably small, lightweight, and has a small moment of inertia in order to reduce transmission force loss due to frictional resistance and the like, and to reduce acceleration energy.

さらに、前記ポンプ30の吐出口に送液管45
が接続されており、その送液管45はタービン3
2の回転軸34の内周部を貫通して蒸発部21の
内部にまで延びており、蒸発部21内における周
壁に多数の微小孔46が形成されている。その微
小孔46は、液相作動流体を蒸発部21の内周面
に分配供給するためのものであつて、送液管45
の先端部側での液相作動流体の圧力低下を防ぎ、
液相作動流体を蒸発部21の内周面に可及的に均
等に分配供給するため、微小孔46の孔径は送液
管45の先端部側ほど大きくし、あるいは微小孔
46相互の間隔(ピツチ)Pを送液管45の先端
部側ほど狭くしてある。
Further, a liquid supply pipe 45 is provided at the discharge port of the pump 30.
is connected to the turbine 3, and the liquid feeding pipe 45 is connected to the turbine 3.
It extends into the evaporation section 21 by penetrating the inner circumference of the rotating shaft 34 of No. 2, and a large number of micropores 46 are formed in the peripheral wall inside the evaporation section 21. The micropores 46 are for distributing and supplying the liquid-phase working fluid to the inner circumferential surface of the evaporation section 21, and are used as the liquid-feeding pipe 45.
Prevents the pressure drop of the liquid phase working fluid on the tip side of the
In order to distribute and supply the liquid-phase working fluid to the inner peripheral surface of the evaporator 21 as evenly as possible, the diameter of the micropores 46 is made larger toward the distal end of the liquid sending tube 45, or the distance between the micropores 46 ( Pitch) P is made narrower toward the distal end of the liquid feeding pipe 45.

つぎに上記のように構成したヒートパイプ20
の作用について説明する。
Next, the heat pipe 20 configured as above
The effect of this will be explained.

前記蒸発部21を例えば電力ケーブルに添わせ
るなどのことにより蒸発部21に熱Qを与え、こ
れに対し凝縮部22を冷却用流体に晒して凝縮部
22から熱Qを奪うと、蒸発部21において液相
作動流体が蒸発し、凝縮部22において気相作動
流体が凝縮液化するので、蒸発部21と凝縮部2
2との間で圧力差が生じ、その結果気相作動流体
が蒸発部21から凝縮部22に向けて流れる。そ
の場合、気相作動流体の流速が音速を越えると、
正常な作動状態ではなくなるので、気相作動流体
の流速が音速以下となるよう熱流束等の作動条件
を設定する。蒸発部21から凝縮部22に向けて
流れる気相作動流体がタービン32を通過するこ
とによつてタービン32が回転し、その結果ポン
プ30が歯車減速機37を介してタービン32に
よつて回転させられ、液溜め部29内の液相作動
流体31がポンプ30によつて汲み上げられる。
ポンプ30によつて汲み上げられた液相作動流体
31は、送液管45によつて蒸発部21側に送ら
れ、その微小孔46から蒸発部21の内周面に分
配供給される。その場合、送液管45の基端部側
で、微小孔46の開口径が小さく、あるいは微小
孔46のピツチが大きくなつているから、各微小
孔46からの液相作動流体31の流出が、圧力の
高い送液管45の基端部側で抑制されかつ圧力の
低い先端部側で促進され、その結果、液相作動流
体31の流出量が送液管45の全長すなわち蒸発
部21の全体で均等化され、部分的なドライアウ
トやそれに伴う熱輸送効率の低下が防止される。
他方、凝縮部22に到達した気相作動流体はここ
で熱を奪われて凝縮液化し、その結果生じた液相
作動流体は液溜め部29に流れ込む。
Heat Q is applied to the evaporator 21 by attaching the evaporator 21 to a power cable, for example, and when heat Q is removed from the condenser 22 by exposing the condenser 22 to a cooling fluid, the evaporator 21 The liquid phase working fluid is evaporated in the condensing section 22, and the gas phase working fluid is condensed and liquefied in the condensing section 22.
A pressure difference is generated between the evaporating section 21 and the condensing section 22, so that the gas phase working fluid flows from the evaporating section 21 to the condensing section 22. In that case, if the flow velocity of the gas-phase working fluid exceeds the sound velocity,
Since this is no longer a normal operating condition, operating conditions such as heat flux are set so that the flow velocity of the gas-phase working fluid is below the sonic velocity. The gas-phase working fluid flowing from the evaporator section 21 toward the condensing section 22 passes through the turbine 32, causing the turbine 32 to rotate, and as a result, the pump 30 is rotated by the turbine 32 via the gear reduction gear 37. The liquid-phase working fluid 31 in the liquid reservoir 29 is pumped up by the pump 30.
The liquid-phase working fluid 31 pumped up by the pump 30 is sent to the evaporator 21 side by a liquid feed pipe 45, and is distributed and supplied to the inner peripheral surface of the evaporator 21 through the micropores 46 thereof. In that case, the opening diameter of the micropores 46 is small or the pitch of the micropores 46 is large on the base end side of the liquid sending pipe 45, so that the liquid phase working fluid 31 does not flow out from each micropore 46. , is suppressed at the proximal end side of the liquid sending pipe 45 where the pressure is high and promoted at the distal end side where the pressure is low. It is evened out throughout, preventing partial dryout and the resulting decrease in heat transport efficiency.
On the other hand, the gas-phase working fluid that has reached the condensing section 22 is deprived of heat and condenses into a liquid, and the resulting liquid-phase working fluid flows into the liquid reservoir section 29 .

したがつて上記のヒートパイプ20では、ポン
プ30によつて液相作動流体を蒸発部21に還流
させる構成であるから、従来一般のヒートパイプ
におけるウイツクによるよりも相当高い還流圧力
を得ることができ、そのため上記のヒートパイプ
20によれば、蒸発部21が凝縮部22に対して
相当高い位置にある所謂トツプヒートモードの場
合や蒸発部21と凝縮部22との距離が相当長い
場合であつても、液相作動流体を蒸発部21に確
実に還流させ、充分熱輸送を行なうことができ
る。また上記のヒートパイプ20は、気相作動流
体によつて回転するタービン32によりポンプ3
0を駆動する構成であるから、換言すれば輸送す
べき熱の一部を利用してポンプ30を駆動する構
成であるから、外部から特にエネルギを供給する
ことなく正常に動作させることができる。
Therefore, in the heat pipe 20 described above, since the liquid-phase working fluid is refluxed to the evaporator 21 by the pump 30, a considerably higher reflux pressure can be obtained than by the wick in a conventional general heat pipe. Therefore, according to the heat pipe 20, even in the so-called top heat mode where the evaporating section 21 is located at a considerably higher position than the condensing section 22, or when the distance between the evaporating section 21 and the condensing section 22 is considerably long. Also, the liquid phase working fluid can be reliably refluxed to the evaporator 21, and sufficient heat transport can be carried out. Further, the heat pipe 20 is powered by a pump 3 by a turbine 32 which is rotated by a gas-phase working fluid.
Since the pump 30 is configured to drive the pump 30 by using a portion of the heat to be transported, in other words, the pump 30 can be operated normally without particularly supplying energy from the outside.

以上の説明から明らかなようにこの発明のヒー
トパイプによれば、、蒸発部と凝縮部との間に気
相作動流体によつて回転させられるタービンを設
けるとともに、液相作動流体を汲み上げて蒸発部
に送るポンプを前記タービンによつて駆動させる
よう構成したから、外部から特にエネルギを与え
ずに本来輸送すべき熱エネルギによつて高い還流
圧力を得ることができ、したがつてこの発明のヒ
ートパイプによれば、高い位置に冷却すべき発熱
体等の熱源が存在している場合や熱源と冷却部と
の距離が相当長い場合であつても、液相作動流体
を蒸発部に確実に還流させ、充分熱輸送すること
ができる。またこの発明では、蒸発部に対して液
相の作動流体を流出させるよう送液管に形成した
微小孔の開口径もしくはピツチを、ポンプからの
距離すなわち圧力損失の度合に応じて変えたか
ら、液相作動流体の供給量が蒸発部の全体に亘つ
て均等化され、そのために蒸発部での部分的なド
ライアウトやそれに伴う熱輸送効率の低下を防止
することができる。なおこの発明のヒートパイプ
は、与えられた熱の一部を利用してタービンを駆
動するから、与えられた熱の全てを凝縮部におい
て取出すことは困難であるが、電力ケーブルを冷
却する場合のように、発熱体の熱を奪い去つて単
に冷却すればよい場合には、特に有効である。
As is clear from the above description, according to the heat pipe of the present invention, a turbine rotated by gas-phase working fluid is provided between the evaporating section and the condensing section, and the liquid-phase working fluid is pumped up and evaporated. Since the pump to be sent to the heat pump of the present invention is configured to be driven by the turbine, a high reflux pressure can be obtained by using the heat energy that is originally to be transported without applying any particular energy from the outside. According to the pipe, the liquid-phase working fluid can be reliably returned to the evaporator section even when there is a heat source such as a heating element to be cooled in a high position or when the distance between the heat source and the cooling section is quite long. This allows for sufficient heat transport. In addition, in this invention, the opening diameter or pitch of the micropores formed in the liquid sending pipe to allow liquid-phase working fluid to flow out to the evaporator section is changed depending on the distance from the pump, that is, the degree of pressure loss. The supply amount of the phase working fluid is equalized over the entire evaporation section, thereby preventing partial dryout in the evaporation section and an accompanying decrease in heat transport efficiency. Note that the heat pipe of this invention uses a portion of the applied heat to drive the turbine, so it is difficult to extract all of the applied heat in the condensing section. This is particularly effective when it is necessary to simply cool the heating element by removing its heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートパイプの一例を示す略解
断面図、第2図は従来のヒートパイプの他の例を
示す略解断面図、第3図はこの発明の一実施例の
全体構成を示す略解図、第4図はその揚液用駆動
部の詳細図、第5図はタービンに対する絞り部の
一例を示す概略図第6図は第4図の―線矢視
図である。 20……ヒートパイプ、21……蒸発部、22
……凝縮部、29……液溜め部、30……ポン
プ、31……液相作動流体、32……タービン、
33……絞り部、37……歯車減速機、45……
送液管、46……微小孔。
FIG. 1 is a schematic cross-sectional view showing an example of a conventional heat pipe, FIG. 2 is a schematic cross-sectional view showing another example of a conventional heat pipe, and FIG. 3 is a schematic cross-sectional view showing the overall configuration of an embodiment of the present invention. 4 is a detailed view of the liquid pumping drive section, FIG. 5 is a schematic view showing an example of a throttle section for the turbine, and FIG. 6 is a view taken along the line - - in FIG. 4. 20... Heat pipe, 21... Evaporation section, 22
... Condensation section, 29 ... Liquid reservoir section, 30 ... Pump, 31 ... Liquid phase working fluid, 32 ... Turbine,
33... throttle section, 37... gear reducer, 45...
Liquid feeding pipe, 46...microhole.

Claims (1)

【特許請求の範囲】[Claims] 1 液相差動流体が蒸発する蒸発部と気相作動流
体が凝縮する凝縮部との間に蒸発部から凝縮部に
向けて流動する気相作動流体によつて回転される
タービンを配置するとともに、液相作動流体を溜
める液溜め部を凝縮部内に形成し、かつ前記ター
ビンによつて駆動されるポンプをその液溜め部に
連通させて設け、さらに一端部をそのポンプに連
通させた送液管を蒸発部内に収容して配置し、そ
の送液管の周壁に多数の微小孔を軸線方向に配列
して形成するとともに、その送液管のうちポンプ
に近い基端部側で微小孔の開口径を小さくしもし
くは微小孔のピツチを大きくして液相作動流体の
微小孔からの流出量を送液管の全長に亘つて均等
化したことを特徴とする自己駆動式強制還流型ヒ
ートパイプ。
1. A turbine rotated by the gas-phase working fluid flowing from the evaporator section to the condensation section is disposed between the evaporator section where the liquid-phase differential fluid evaporates and the condensation section where the gas-phase working fluid condenses. , a liquid reservoir for storing a liquid-phase working fluid is formed in the condensing section, a pump driven by the turbine is provided in communication with the liquid reservoir, and one end is communicated with the pump. A tube is housed and arranged in the evaporation section, and a large number of micropores are arranged in the axial direction on the peripheral wall of the liquid transfer tube. A self-driven forced reflux heat pipe characterized by reducing the opening diameter or increasing the pitch of the micropores to equalize the amount of liquid-phase working fluid flowing out from the micropores over the entire length of the liquid pipe. .
JP13306982A 1982-07-29 1982-07-29 Self driving system forced circulation type heat pipe Granted JPS5924186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13306982A JPS5924186A (en) 1982-07-29 1982-07-29 Self driving system forced circulation type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13306982A JPS5924186A (en) 1982-07-29 1982-07-29 Self driving system forced circulation type heat pipe

Publications (2)

Publication Number Publication Date
JPS5924186A JPS5924186A (en) 1984-02-07
JPS6245474B2 true JPS6245474B2 (en) 1987-09-26

Family

ID=15096108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13306982A Granted JPS5924186A (en) 1982-07-29 1982-07-29 Self driving system forced circulation type heat pipe

Country Status (1)

Country Link
JP (1) JPS5924186A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131692A (en) * 1979-04-02 1980-10-13 Kawamoto Seisakusho:Kk Heat pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51162142U (en) * 1975-06-18 1976-12-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131692A (en) * 1979-04-02 1980-10-13 Kawamoto Seisakusho:Kk Heat pipe

Also Published As

Publication number Publication date
JPS5924186A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
US5725049A (en) Capillary pumped loop body heat exchanger
US6990816B1 (en) Hybrid capillary cooling apparatus
US11215232B2 (en) Self-cooled and-or self lubricated electric motor bearing systems
US6745830B2 (en) Heat pipe loop with pump assistance
GB2201764A (en) Heat exchanger tube for evaporation or condensation
US4252185A (en) Down pumping heat transfer device
CN108267036A (en) The loop heat pipe of micro-channel structure auxiliary drive
US7406999B2 (en) Capillary-assisted compact thermosiphon
US10677536B2 (en) Osmotic transport system for evaporative cooling
JP2001517772A (en) Rotating disk evaporative cooler
JP2004210267A (en) Steering device equipped with cooling device
JP2001066080A (en) Loop type heat pipe
CN108253829A (en) The loop heat pipe of micro channel array auxiliary drive
CA2052411C (en) Rotary heat exchanger of improved effectiveness
JPS6245474B2 (en)
US5201196A (en) Centrifugal heat pipe vapor absorption heat pump
JPS58214788A (en) Top heating heat pipe
JP3147352B2 (en) Heat dissipation system and heat engine using the same
CN208398693U (en) The loop heat pipe of micro channel array auxiliary drive
JP2741364B2 (en) Heat pipe radiator in two-phase fluid loop thermal control system
JPS6266097A (en) Thermal syphon device
SE424772B (en) HEAT PUMP VAPOR
US4547130A (en) Capillary input for pumps
JP2732755B2 (en) Double pipe heat pipe
JPH0674613A (en) Structure of accumulator in refrigeration cycle