JPS624543B2 - - Google Patents

Info

Publication number
JPS624543B2
JPS624543B2 JP8403579A JP8403579A JPS624543B2 JP S624543 B2 JPS624543 B2 JP S624543B2 JP 8403579 A JP8403579 A JP 8403579A JP 8403579 A JP8403579 A JP 8403579A JP S624543 B2 JPS624543 B2 JP S624543B2
Authority
JP
Japan
Prior art keywords
pulse
circuit
valve body
fuel injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8403579A
Other languages
Japanese (ja)
Other versions
JPS569626A (en
Inventor
Toshio Kondo
Hideya Fujisawa
Kunio Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP8403579A priority Critical patent/JPS569626A/en
Publication of JPS569626A publication Critical patent/JPS569626A/en
Publication of JPS624543B2 publication Critical patent/JPS624543B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は燃料噴射装置に関し、特に燃料噴射弁
の特性の違いからくる噴射燃料量の差を補正する
燃料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection device, and more particularly to a fuel injection device that corrects differences in the amount of injected fuel resulting from differences in the characteristics of fuel injection valves.

内燃機関用の電子制御式燃料噴射装置に使用さ
れている公知の燃料噴射弁においては、噴射燃料
量は噴孔の面積と、弁体のシート部をリフトする
コイルの通電時間と、噴孔の前後の燃料圧力と外
気の差圧とによつて主として決定されている。と
ころが、このうちコイルを通電する電気パルスに
対する燃料噴射弁の弁体の応答は個々の燃料噴射
弁によつてバラツキがあるため、同じパルス幅の
電気パルスが与えられても燃料噴射弁によつてそ
の噴射燃料量に差が生じてしまう。特にこの噴射
燃料量の差は電気パルスのパルス時間幅が短かい
程、すなわち所望噴射燃料量が少ないとき程影響
が大きくなり、噴射燃料量の誤差を大きくしてし
まう。
In known fuel injection valves used in electronically controlled fuel injection devices for internal combustion engines, the amount of injected fuel depends on the area of the nozzle hole, the energization time of the coil that lifts the seat of the valve body, and the length of the nozzle hole. It is mainly determined by the fuel pressure before and after and the pressure difference between the outside air. However, the response of the valve body of the fuel injector to the electric pulse that energizes the coil varies depending on the individual fuel injector, so even if an electric pulse of the same pulse width is applied, the response of the valve body of the fuel injector to the electric pulse that energizes the coil varies depending on the This results in a difference in the amount of fuel injected. In particular, this difference in the amount of injected fuel has a greater effect as the pulse time width of the electric pulse is shorter, that is, the smaller the desired amount of injected fuel is, increasing the error in the amount of injected fuel.

ところで燃料噴射弁の作動と噴射燃料量との相
関を調べたところ、噴射燃料量は、噴孔面積その
他が同じであれば、弁体をリフトするためのコイ
ルの通電時間と、弁体がリフト作動終了するまで
の時間との関数であることが分つた。すなわち、
この関係は概略次のような関係式で表わすことが
できる。
By the way, when we investigated the correlation between the operation of the fuel injection valve and the amount of injected fuel, we found that if the nozzle hole area and other factors are the same, the amount of injected fuel is determined by the amount of time the coil is energized to lift the valve body, and the amount of time the valve body lifts. It was found that it was a function of the time taken to complete the operation. That is,
This relationship can be roughly expressed by the following relational expression.

q=Q・(ti+a−bTp) ……(1) (1)式において、qは噴射燃料量、Qは燃料噴射
弁が開弁し続けているときの単位時間当りの燃料
流量、tiは第1図aに示すような燃料噴射弁の
コイルに印加する電気パルスのパルス時間幅、T
pは第1図bに示すような電気パルスの印加に応
答して噴射弁の弁体がリフトし終わるまでの時間
で燃料噴射弁個々の特性によつて値が異なる。
a、bは定数である。ここで、さらにパルス時間
幅tiを次のように設定する。
q=Q・(t i +a−bT p )...(1) In equation (1), q is the amount of injected fuel, Q is the fuel flow rate per unit time when the fuel injection valve continues to open, t i is the pulse time width of the electric pulse applied to the coil of the fuel injection valve as shown in FIG. 1a, T
p is the time required for the valve body of the injector to finish lifting in response to the application of an electric pulse as shown in FIG. 1b, and its value varies depending on the characteristics of each fuel injector.
a and b are constants. Here, the pulse time width t i is further set as follows.

i=tp+a′+bTp ……(2) (2)式において、tpは内燃機関の運転状態を検
知する各種センサの出力によつて決まるパルス時
間幅、a′は定数である。なお、ある燃料噴射弁で
はa′=0〔mSec〕、b=0.5であつた。(2)式を(1)
式に代入して整理すると、 q=Q・(tp+a″) ……(3) となる。(3)式においてa″はa″=a+a′の定数であ
る。(3)式にはTpが含まれていないから(2)式のよ
うに電気パルスのパルス時間幅tiを設定すれ
ば、噴射弁の弁体リフト作動遅れによる噴射燃料
量のバラツキが吸収できることが判る。すなわ
ち、内燃機関の運転状態を各種センサで検知し、
その出力から(tp+a′)に相当するパルス時間
幅を演算し、これにbTpに相当するパルス時間幅
を加えて、この時間(tp+a′+bTp)をパルス
時間幅tiとすれば噴射弁の作動遅れによるバラ
ツキが吸収できることになる。
t i =t p +a'+bT p (2) In equation (2), t p is a pulse time width determined by the outputs of various sensors that detect the operating state of the internal combustion engine, and a' is a constant. Note that for a certain fuel injection valve, a'=0 [mSec] and b=0.5. (2) to (1)
Substituting it into the equation and rearranging it, we get q=Q・(t p +a″) ……(3).In equation (3), a″ is a constant of a″=a+a′.In equation (3), Since T p is not included, it can be seen that by setting the pulse time width t i of the electric pulse as shown in equation (2), it is possible to absorb the variation in the amount of injected fuel due to the delay in the lift operation of the valve body of the injector. In other words, Detects the operating status of the internal combustion engine using various sensors,
The pulse time width corresponding to (t p +a') is calculated from the output, and the pulse time width corresponding to bT p is added to this, and this time (t p +a' + bT p ) is calculated as the pulse time width t i. In this way, variations due to delays in the operation of the injection valves can be absorbed.

ここでさらに電気パルス、弁体リフト作動およ
び噴射弁のコイルを流れる電流の相互関係を詳し
く調べてみると第1図にようになる。第1図aで
示すようなパルス時間幅tiの電気パルスを噴射
弁のコイルに印加すると、噴射弁の弁体のリフト
は第1図bで示すようにTpの時間遅れてリフト
し終る。また弁体は電気パルスがなくなつてから
cの時間遅れて閉弁する。前述のようにこの弁
体リフト作動は噴射弁個々のバラツキにより例え
ば破線で示すように異なる。噴射弁のコイルを流
れる電流はインダクタンスの影響で第1図cに示
すようになるが、ここで電流波形の上昇途中での
最初の落ち込み(特異点)が第1図bの弁体のリ
フト作動終了時に一致している。従つてこのコイ
ルを流れる電流波形から時間幅Tpを求めるか、
またはリフト作動終了時を直接検知することによ
り時間幅Tpを求め、前述の計算式からパルス時
間幅tiを演算すれば噴射弁個々のバラツキによ
る影響をうけない噴射燃料量が得られることにな
る。
If we further examine in detail the interrelationships between the electric pulse, the valve body lift operation, and the current flowing through the coil of the injection valve, we will find the relationship shown in FIG. 1. When an electric pulse with a pulse duration t i as shown in Fig. 1a is applied to the coil of the injector, the lift of the valve body of the injector ends with a delay of T p as shown in Fig. 1b. . Further, the valve body closes with a delay of Tc after the electric pulse disappears. As mentioned above, this valve body lift operation differs depending on the individual variations of the injection valves, for example, as shown by the broken line. The current flowing through the coil of the injection valve becomes as shown in Figure 1c due to the influence of inductance, but the first drop (singular point) in the middle of the rise of the current waveform is the lift operation of the valve body shown in Figure 1b. Match at the end. Therefore, find the time width T p from the current waveform flowing through this coil, or
Alternatively, by directly detecting the end of lift operation to find the time width T p and then calculating the pulse time width t i from the above calculation formula, it is possible to obtain an injected fuel amount that is not affected by variations in individual injection valves. Become.

本発明は、上記の点に鑑みてなされたもので、
噴射弁のコイルへ印加する電気パルスの通電開始
から弁体のリフト作動終了までの時間幅を補正要
素として噴射弁のコイルの通電時間を補正する燃
料噴射装置を提供することを目的とする。
The present invention has been made in view of the above points, and
It is an object of the present invention to provide a fuel injection device that corrects the energization time of the injector coil using the time width from the start of energization of the electric pulse applied to the injector coil to the end of the lift operation of the valve body as a correction factor.

以下本発明の実施例について付図を参照しなが
ら説明する。第2図は本発明の概略構成を示すブ
ロツク図である。図において、10は内燃機関
で、この内燃機関10の運転状態を各種センサ群
20で検知し、この出力をもとにして噴射パルス
幅演算回路30で前述のパルス時間幅(tp
a′)を演算する。40は本発明の特徴となる噴射
パルス幅補正回路で、前述の弁体リフト作動終了
までの時間Tpを演算し、パルス時間幅(tp
a′)に補正を加えti=(tp+a′+bTp)なるパル
ス時間幅を得るものである。50は電磁噴射弁で
補正回路40からの時間幅tiなる電気パルスに
応じた量の燃料を噴射する。なお内燃機関10、
センサ群20、演算回路30および燃料噴射弁5
0は公知のものでよいので構成の詳細な説明は省
略する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 2 is a block diagram showing a schematic configuration of the present invention. In the figure, reference numeral 10 denotes an internal combustion engine, and the operating state of the internal combustion engine 10 is detected by a group of various sensors 20. Based on this output, an injection pulse width calculation circuit 30 calculates the pulse time width (t p +
a′). 40 is an injection pulse width correction circuit which is a feature of the present invention, and calculates the time T p until the end of the valve body lift operation described above, and calculates the pulse time width (t p +
a') to obtain a pulse time width of t i =(t p +a' + bT p ). Reference numeral 50 denotes an electromagnetic injection valve that injects fuel in an amount corresponding to an electric pulse having a time width t i from the correction circuit 40 . Note that the internal combustion engine 10,
Sensor group 20, arithmetic circuit 30, and fuel injection valve 5
Since 0 may be a known one, a detailed explanation of the configuration will be omitted.

第3図は噴射パルス幅補正回路40の具体例を
示す概略電気回路図である。以下第3図の回路の
構成および作動を第4図の各部波形を参照しなが
ら説明する。第3図において前述のように内燃機
関10の動作状態を検知するセンサ群20からの
出力により噴射パルス幅演算回路30は機関10
の運転状態に適合し且つ機関回転に同期したパル
ス時間幅(tp+a′)のパルスを出力する。演算
回路30からの出力を受けてタイマ回路41は一
定期間(例えば1.5〜2mSec)だけ定電圧回路4
2を作動させてその出力端子(ouT)に電源電圧
Bより低い定電圧を出力させ、一定期間経過後
は電源電圧VBを出力させる。43はパルス幅補
正部で内燃機関10が必要とする噴射弁の数だけ
設けられるが、図では簡略にするため一つだけ示
している。
FIG. 3 is a schematic electrical circuit diagram showing a specific example of the injection pulse width correction circuit 40. The configuration and operation of the circuit shown in FIG. 3 will be explained below with reference to the waveforms of each part shown in FIG. In FIG. 3, as described above, the injection pulse width calculation circuit 30 operates the engine 10 based on the output from the sensor group 20 that detects the operating state of the internal combustion engine 10.
It outputs a pulse with a pulse time width (t p +a') that is compatible with the operating condition of the engine and synchronized with the engine rotation. In response to the output from the arithmetic circuit 30, the timer circuit 41 activates the constant voltage circuit 4 for a certain period (for example, 1.5 to 2 mSec).
2 is activated to output a constant voltage lower than the power supply voltage V B to its output terminal (ouT), and after a certain period of time has elapsed, the power supply voltage V B is output. Reference numeral 43 denotes a pulse width correction unit, which is provided as many as the number of injection valves required by the internal combustion engine 10, but only one is shown in the figure for the sake of simplicity.

一方、演算回路30の出力端はパルス幅ti
算回路44にも接続されている。演算回路30か
らの時間幅(tp+a′)のパルスの立上りに応答
して、トランジスタTr1のベースに接続された
パルス幅ti演算回路44の出力が高レベルにな
り、トランジスタTr1を導通させる。トランジ
スタTr1が導通すると定電圧回路42から抵抗
R1,R2を通して対応する噴射弁50のコイル
51に電流が流れ噴射弁50を開弁させる。抵抗
R1の両端電圧を差動演算増幅器Q1の入力端に
加えて、その出力端Aに第4図aに示すようなコ
イル51を流れる電流に対応した波形の電圧を得
る。演算増幅器Q1の出力電圧はコンデンサCと
抵抗R3で構成される微分回路を通る。従つてB
点の電圧は第4図bに示すような時間幅Tpの時
点で立下る波形となる。この波形は増幅器Q2で
増幅されてゲート回路45のフリツプフロツプ回
路Q3のリセツト入力端子Rに加えられる。なお
増幅器Q2をシユミツト回路のようなヒステリシ
ス特性をもたせたものでもよい。フリツプフロツ
プ回路Q3のセツト入力端子Sには演算増幅器Q
1の出力端が接続されているので、フリツプフロ
ツプ回路Q3の出力端子Q(すなわちC点)には
演算増幅器Q1の出力電圧の立上りで高レベルと
なり増幅器Q2の立下りで低レベルとなる。こう
して、パルスtpの立上り時点から噴射弁駆動電
流の最初の落ち込み点(特異点)Gまでのパルス
時間幅Tpの第4図cで示すようなパルスが発生
する。ゲート回路45のANDゲートQ4は、例
えば水晶発振器のような所定周波数で発振するク
ロツクパルス発生回路46からのクロツクパルス
をフリツプフロツプ回路Q3の出力端子Qが高レ
ベルのときのみ、すなわち、パルス時間幅Tp
間のみ通過させる。従つてANDゲートQ4の出
力を分周する分周回路48のD点の電圧は第4図
dに示すようになる。なおクロツクパルス発生回
路46のクロツクパルスは時間幅Tpの計測の基
準となり必要とする最小計測精度でその周波数が
決定される。時間幅Tpの間発生するD点のクロ
ツクパルスは、パルス幅Tpカウンタ47でカウ
ントされ、2進数で表わされたその内容が前述の
プリセツトカウンタからなるパルス幅ti演算回
路44のプリセツトデータ入力端子に加えられ
る。噴射パルス幅演算回路30からの時間幅(t
p+a′)の出力パルスが立下ると、パルス幅ti
算回路44は、パルス幅Tpカウンタ47から与
えられたプリセツトデータ値から、クロツクパル
ス発生回路46からのクロツクパルスを受取るた
びにダウンカウントする。なお、分周回路48は
クロツクパルス発生回路46のクロツクを前述の
計算式(1),(2)の定数bに応じて分周するもので、
本実施例の場合はb=0.5として1/2分周回路を用
いているが、bの値により分周比を適当に変更す
る必要がある。パルス幅ti演算回路44がゼロ
までダウンカウントすると出力端Eの電圧が第4
図eに示すように低レベルとなりトランジスタ
Tr1を非導通にする。このようにして噴射弁5
0のコイル51はti=(tp+a′+bTp)の期間通
電されることになり、噴射弁毎に弁体のリフト作
動終了時間Tpが異なつても夫々適正な電気パル
スの通電時間tiを演算し噴射弁50のバラツキ
による影響を吸収することができて、エンジンに
正確な量の燃料が噴射供給される。
On the other hand, the output end of the arithmetic circuit 30 is also connected to a pulse width t i arithmetic circuit 44 . In response to the rise of the pulse with a time width (t p +a') from the arithmetic circuit 30, the output of the pulse width t i arithmetic circuit 44 connected to the base of the transistor Tr1 becomes high level, making the transistor Tr1 conductive. . When the transistor Tr1 becomes conductive, current flows from the constant voltage circuit 42 to the coil 51 of the corresponding injection valve 50 through the resistors R1 and R2, causing the injection valve 50 to open. The voltage across the resistor R1 is applied to the input terminal of the differential operational amplifier Q1, and a voltage having a waveform corresponding to the current flowing through the coil 51 as shown in FIG. 4a is obtained at the output terminal A of the differential operational amplifier Q1. The output voltage of the operational amplifier Q1 passes through a differentiator circuit composed of a capacitor C and a resistor R3. Therefore B
The voltage at the point has a waveform that falls at the time width T p as shown in FIG. 4b. This waveform is amplified by amplifier Q2 and applied to the reset input terminal R of flip-flop circuit Q3 of gate circuit 45. Note that the amplifier Q2 may be provided with hysteresis characteristics such as a Schmitt circuit. An operational amplifier Q is connected to the set input terminal S of the flip-flop circuit Q3.
Since the output terminal of the flip-flop circuit Q3 is connected to the output terminal Q of the flip-flop circuit Q3 (that is, the point C), it becomes high level when the output voltage of the operational amplifier Q1 rises, and becomes low level when the output voltage of the amplifier Q2 falls. In this way, a pulse as shown in FIG. 4c is generated with a pulse time width T p from the rising point of the pulse t p to the first drop point (singular point) G of the injector drive current. The AND gate Q4 of the gate circuit 45 receives the clock pulse from the clock pulse generating circuit 46, which oscillates at a predetermined frequency, such as a crystal oscillator, only when the output terminal Q of the flip-flop circuit Q3 is at a high level, that is, the pulse time width Tp. Allow only the interval to pass. Therefore, the voltage at point D of the frequency divider circuit 48 which divides the output of the AND gate Q4 becomes as shown in FIG. 4d. Note that the clock pulse of the clock pulse generating circuit 46 serves as a reference for measuring the time width T p and its frequency is determined with the required minimum measurement accuracy. The clock pulse at point D that occurs during the time width T p is counted by the pulse width T p counter 47, and its contents expressed in binary numbers are preset by the pulse width t i arithmetic circuit 44 consisting of the aforementioned preset counter. Added to the set data input terminal. The time width (t
p + a') falls, the pulse width t i calculation circuit 44 counts down from the preset data value given from the pulse width T p counter 47 every time it receives a clock pulse from the clock pulse generation circuit 46. do. Note that the frequency dividing circuit 48 divides the frequency of the clock of the clock pulse generating circuit 46 according to the constant b of the above-mentioned calculation formulas (1) and (2).
In this embodiment, a 1/2 frequency divider circuit is used with b=0.5, but it is necessary to appropriately change the frequency division ratio depending on the value of b. When the pulse width t i arithmetic circuit 44 counts down to zero, the voltage at the output terminal E becomes the fourth
As shown in Figure e, the level becomes low and the transistor
Make Tr1 non-conductive. In this way, the injection valve 5
0 coil 51 is energized for a period of t i =(t p +a'+bT p ), and even if the lift operation end time T p of the valve body differs for each injection valve, the energization time of the electric pulse is appropriate for each injection valve. By calculating t i , the influence of variations in the injection valves 50 can be absorbed, and an accurate amount of fuel can be injected and supplied to the engine.

次に第5図に噴射弁の弁体リフト作動終了まで
の時間Tpを検出する他の実施例を示す。図から
明らかなように公知の燃料噴射弁に加速度センサ
(Gセンサ)52を取りつけたものである。電気
パルスが印加され、弁体(ニードル)53のリフ
トが終了したときストツパ54にあたる衝撃によ
り、圧電素子55、ウエイト56、スプリング5
7、端子58で構成されるGセンサ52の圧電素
子55に大きな出力電圧を発生することを利用す
る。この場合、圧電素子55はニードル53のリ
フト方向の振動を効率良く検知できるように配置
することが望ましい。
Next, FIG. 5 shows another embodiment for detecting the time T p until the end of the lift operation of the valve body of the injection valve. As is clear from the figure, an acceleration sensor (G sensor) 52 is attached to a known fuel injection valve. When the electric pulse is applied and the lift of the valve body (needle) 53 is completed, the impact that hits the stopper 54 causes the piezoelectric element 55, the weight 56, and the spring 5 to
7. Utilizes the fact that a large output voltage is generated in the piezoelectric element 55 of the G sensor 52 constituted by the terminal 58. In this case, it is desirable that the piezoelectric element 55 be arranged so that vibrations of the needle 53 in the lift direction can be detected efficiently.

なお、本実施例においては各燃料噴射弁ごとに
パルス幅補正部43を設けているが、例えば演算
増幅器Q1、抵抗R1,R2、トランジスタTr
1を各噴射弁ごとに設け、他の部分を共通とし、
別にセレクタ回路を用いて入出力信号を選択する
ようにしてもよい。
In this embodiment, a pulse width correction section 43 is provided for each fuel injection valve, but for example, an operational amplifier Q1, resistors R1 and R2, and a transistor Tr.
1 is provided for each injection valve, and the other parts are common,
A separate selector circuit may be used to select input/output signals.

以上述べたように本発明によれば噴射弁の個々
の特性の違いからくる噴射燃料量のバラツキを小
さくすることができ、特にその影響の大きい、噴
射弁の開弁時間が短かいときにも適正な噴射燃料
量が得られるという優れた効果がある。
As described above, according to the present invention, it is possible to reduce the variation in the amount of injected fuel caused by differences in the individual characteristics of the injection valve, and even when the valve opening time of the injection valve is short, which is particularly affected by the variation, This has the excellent effect of providing an appropriate amount of injected fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は噴射弁の動作特性を示す波形図であ
る。第2図は本発明の燃料噴射装置の概略構成を
示すブロツク図である。第3図は本発明になる装
置の要部の一実施例を示す概略電気回路図であ
る。第4図は第3図図示の回路の各部波形図であ
る。第5図は本発明の装置の他の実施例を示す縦
断面図である。 20……センサ群、30……噴射パルス幅演算
回路、44……パルス幅ti演算回路、45……
ゲート回路、46……クロツクパルス発生回路、
47……パルス幅Tpカウンタ、50……燃料噴
射弁、52……Gセンサ。
FIG. 1 is a waveform diagram showing the operating characteristics of the injection valve. FIG. 2 is a block diagram showing a schematic configuration of the fuel injection device of the present invention. FIG. 3 is a schematic electrical circuit diagram showing an embodiment of the main part of the device according to the present invention. FIG. 4 is a waveform diagram of each part of the circuit shown in FIG. 3. FIG. 5 is a longitudinal sectional view showing another embodiment of the device of the present invention. 20... Sensor group, 30... Injection pulse width calculation circuit, 44... Pulse width t i calculation circuit, 45...
Gate circuit, 46... clock pulse generation circuit,
47... Pulse width T p counter, 50... Fuel injection valve, 52... G sensor.

Claims (1)

【特許請求の範囲】 1 電気的なパルスの印加によつて開弁駆動され
る電磁式燃料噴射弁を備える燃料噴射装置におい
て、該噴射弁の弁体のリフト作動終了を検出する
検出装置を有し、前記電気的なパルスの印加開始
時点から前記弁体のリフト作動終了までの時間に
より前記電気的なパルスのパルス時間幅を補正す
るよう構成したことを特徴とする燃料噴射装置。 2 特許請求の範囲第1項記載の装置において、
前記検出装置が前記噴射弁の電磁コイルを流れる
電流波形の特異点を検出することにより前記弁体
のリフト作動終了を検出することを特徴とする燃
料噴射装置。 3 特許請求の範囲第1項記載の装置において、
前記検出装置は前記弁体のリフト作動終了時に発
生する衝撃を検出する加速度センサからなること
を特徴とする燃料噴射装置。
[Scope of Claims] 1. A fuel injection device including an electromagnetic fuel injection valve that is driven to open by the application of an electric pulse, which includes a detection device that detects the end of lift operation of the valve body of the injection valve. The fuel injection device is characterized in that the pulse time width of the electrical pulse is corrected based on the time from the start of application of the electrical pulse to the end of lift operation of the valve body. 2. In the device according to claim 1,
A fuel injection device characterized in that the detection device detects the end of lift operation of the valve body by detecting a singular point in a current waveform flowing through an electromagnetic coil of the injection valve. 3. In the device according to claim 1,
The fuel injection device is characterized in that the detection device includes an acceleration sensor that detects an impact that occurs when the lift operation of the valve body ends.
JP8403579A 1979-07-04 1979-07-04 Fuel injection device Granted JPS569626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8403579A JPS569626A (en) 1979-07-04 1979-07-04 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8403579A JPS569626A (en) 1979-07-04 1979-07-04 Fuel injection device

Publications (2)

Publication Number Publication Date
JPS569626A JPS569626A (en) 1981-01-31
JPS624543B2 true JPS624543B2 (en) 1987-01-30

Family

ID=13819261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8403579A Granted JPS569626A (en) 1979-07-04 1979-07-04 Fuel injection device

Country Status (1)

Country Link
JP (1) JPS569626A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152133A (en) * 1982-03-04 1983-09-09 Nippon Denso Co Ltd Drive circuit for electromagnetic fuel injection valve
JPS58211538A (en) * 1982-06-03 1983-12-09 Aisan Ind Co Ltd Drive method for electromagnetic fuel injector
JPS6036739A (en) * 1983-08-09 1985-02-25 Kawasaki Heavy Ind Ltd Control apparatus for internal-combustion engine
JPS60119338A (en) * 1983-11-30 1985-06-26 Mazda Motor Corp Electronic fuel injection device in engine
JPS60135646A (en) * 1983-12-21 1985-07-19 Ngk Spark Plug Co Ltd Apparatus for generating signal for controlling fuel injection starting timing of fuel injection apparatus with valve operation controlling solenoid
DE3426799A1 (en) * 1984-07-20 1986-01-23 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR CONTROLLING THE AMOUNT OF FUEL TO BE INJECTED INTO AN INTERNAL COMBUSTION ENGINE
JPS61258949A (en) * 1985-05-13 1986-11-17 Honda Motor Co Ltd Solenoid valve drive unit for internal-combustion engine
JP5790611B2 (en) * 2012-09-13 2015-10-07 株式会社デンソー Fuel injection control device
JP6169404B2 (en) 2013-04-26 2017-07-26 日立オートモティブシステムズ株式会社 Control device for solenoid valve and control device for internal combustion engine using the same

Also Published As

Publication number Publication date
JPS569626A (en) 1981-01-31

Similar Documents

Publication Publication Date Title
US4048964A (en) Fuel metering apparatus and method
JPS597017B2 (en) Electronically controlled fuel injection internal combustion engine
JPS624543B2 (en)
US4450719A (en) Air flow meter
JPH06288290A (en) Engine control device and air flow meter used therein
US7389680B2 (en) Method and device for analyzing a sensor element
US4633168A (en) Measuring system for determining the reactance ratio of a pair of reactive devices
JPS6360219B2 (en)
US3435809A (en) Device for the control of fuel injection
EP0078427B1 (en) Air flow meter
US4190022A (en) Fuel injection system with correction for incidental system variables
US2983868A (en) Electronic tachometer
JPS6137451B2 (en)
US4174626A (en) Fuel gauge
JPS6336422B2 (en)
JPS637259B2 (en)
US4665745A (en) Heat wire type air flowrate measuring apparatus
JP2510151B2 (en) Thermal air flow measuring device for engine
JPH09317618A (en) Driving state detection device of internal combustion engine
JPS614925A (en) Fuel consumption measuring instrument
JPS6051044B2 (en) Gas flow measuring device
JPH0441293Y2 (en)
SU1787203A3 (en) Method of diesel engine fuel feed equipment diagnostics
JPS5982541A (en) Electronic control type fuel injector for internal- combustion engine
JPH0441292Y2 (en)