JPS624524B2 - - Google Patents

Info

Publication number
JPS624524B2
JPS624524B2 JP54132397A JP13239779A JPS624524B2 JP S624524 B2 JPS624524 B2 JP S624524B2 JP 54132397 A JP54132397 A JP 54132397A JP 13239779 A JP13239779 A JP 13239779A JP S624524 B2 JPS624524 B2 JP S624524B2
Authority
JP
Japan
Prior art keywords
steam
pipe
solid particles
fine solid
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54132397A
Other languages
Japanese (ja)
Other versions
JPS5656908A (en
Inventor
Minoru Matsumoto
Jiro Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13239779A priority Critical patent/JPS5656908A/en
Publication of JPS5656908A publication Critical patent/JPS5656908A/en
Publication of JPS624524B2 publication Critical patent/JPS624524B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 本発明は、蒸気又はガスの流体タービンの流体
導入管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid inlet pipe for a steam or gas fluid turbine.

本発明の流体導入管が適用される蒸気タービン
について説明する。第1図は火力発電用プラント
の概略系統図であり、符号1aはボイラー、1b
は再熱器、2は高圧タービン、3は中圧タービ
ン、4aは第1の低圧タービン、4bは第2の低
圧タービン、5は発電機、6は復水器を示し、蒸
気の流れは矢印で示している。ボイラー1aで発
生した蒸気は高圧タービン2、中圧タービン3、
第1及び第2の低圧タービン4a,4bにおい
て、それぞれ蒸気の持つ熱エネルギーを運動エネ
ルギーに変換されて発電機5を駆動するための原
動力となる。蒸気は高圧蒸気導入管7a、中圧蒸
気導入管7b及びクロスオーバー管8によつてそ
れぞれのタービンに流入し、エネルギー変換後は
低圧タービン4a及び4bより排出され、復水器
6によつて水となり、ボイラー1aに戻されて再
び蒸気となつてプラント内を循環する。しかしな
がら蒸気中には非常に多くの微細固体粒子が含ま
れており、各タービンの構成部品に損傷を与え
る。特にダイヤフラムノズル翼の侵触が著しい。
この微細固体粒子はボイラー1a及び再熱器1b
に一般に用いられるオーステナイト系ステンレス
鋼管が、高温高圧の蒸気に長期間さらされること
により、その内面に生成した酸化スケールであ
り、ボイラーの起動停止に伴なう温度変化等によ
り剥離し飛散したものである。酸化スケールの生
成及び剥離の研究は種々行われているが、未だ効
果的な防止法は明らかにされていない。そればか
りか酸化スケールの生成を完全に防止することは
不可能に近いとも考えられている。
A steam turbine to which the fluid introduction pipe of the present invention is applied will be explained. Figure 1 is a schematic system diagram of a thermal power generation plant, where 1a is a boiler and 1b is a boiler.
is a reheater, 2 is a high-pressure turbine, 3 is an intermediate-pressure turbine, 4a is a first low-pressure turbine, 4b is a second low-pressure turbine, 5 is a generator, 6 is a condenser, and the steam flow is indicated by an arrow. It is shown in The steam generated in the boiler 1a is sent to a high pressure turbine 2, an intermediate pressure turbine 3,
In the first and second low-pressure turbines 4a and 4b, the thermal energy of the steam is converted into kinetic energy, which becomes the driving force for driving the generator 5. Steam flows into each turbine through a high-pressure steam introduction pipe 7a, an intermediate-pressure steam introduction pipe 7b, and a crossover pipe 8, and after energy conversion, it is discharged from low-pressure turbines 4a and 4b, and is converted into water by a condenser 6. The steam is then returned to the boiler 1a, where it becomes steam again and circulates within the plant. However, the steam contains a large number of fine solid particles that can damage the components of each turbine. In particular, the attack on the diaphragm nozzle blades is significant.
These fine solid particles are contained in the boiler 1a and the reheater 1b.
This is oxidized scale that has formed on the inner surface of austenitic stainless steel pipes commonly used for boilers when exposed to high-temperature, high-pressure steam for a long period of time, and has peeled off and scattered due to temperature changes caused by boiler startup and shutdown. be. Although various studies have been conducted on the formation and peeling of oxide scale, no effective method for preventing it has yet been revealed. Furthermore, it is considered that it is almost impossible to completely prevent the formation of oxide scale.

第2図に従来の高圧蒸気導入管及び中圧導入管
の曲管部を示す。すなわち同図において、曲管部
は直管9とエルボ10とが溶接によつて連結され
たものであり、内面は蒸気の流れが乱流を生じな
いように滑らかに仕上げられている。蒸気導入管
における蒸気流速は第1図に示す発電プラントに
おいて約55m/秒に達しており、ボイラー及び再
熱器より蒸気と共に飛来したスケール11は蒸気
よりも比重が大きい為に、エルボ10を通過する
際の蒸気12の流れに沿いきれず、エルボ10に
衝突し、砕けて微細固体粒子13となつてタービ
ン内に流れ込み、内部の構成部品に損傷を与え
る。
FIG. 2 shows the curved pipe portions of a conventional high-pressure steam introduction pipe and an intermediate-pressure introduction pipe. That is, in the figure, the bent pipe section is a straight pipe 9 and an elbow 10 connected by welding, and the inner surface is finished smoothly to prevent turbulence in the flow of steam. The steam flow velocity in the steam introduction pipe reaches approximately 55 m/sec in the power plant shown in Figure 1, and the scale 11 that comes from the boiler and reheater with the steam has a higher specific gravity than the steam, so it passes through the elbow 10. It cannot follow the flow of the steam 12 when the steam 12 is moving, collides with the elbow 10, breaks into fine solid particles 13, flows into the turbine, and damages internal components.

第3図は中圧タービンと低圧各タービンとを連
結するクロスオーバー管を示す。クロスオーバー
管は、管14a,14b,14c、エルボ15、
バランス管16がそれぞれ中間にベロー17a,
17b,17c,17dを挾んで溶接またはボル
トによる締付けにより連結されたものである。そ
して中圧タービン3より排出した微細固体粒子1
3を含んだ蒸気12は、管14aと管14cとの
管内面積が略2:1の割合になつているため、第
1の低圧タービン4aと第2の低圧タービン4b
とに等しい割合で流入する。管内の蒸気流速は約
45m/秒に達している。しかしながら蒸気より遥
かに比重の大きな微細固体粒子13は、管14b
において第1の低圧タービン4aに蒸気が流入す
る際に、蒸気の流れについていけずに、大多数は
第2の低圧タービン4b内に流れ込んでしまう。
このことは第1の低圧タービン4a内のダイヤフ
ラムノズル翼よりも、第2の低圧タービン4b内
のダイヤフラムノズル翼の侵触量の方が多いとい
う現象からも明らかである。
FIG. 3 shows a crossover pipe connecting the intermediate pressure turbine and each low pressure turbine. The crossover pipe includes pipes 14a, 14b, 14c, elbow 15,
The balance tubes 16 each have bellows 17a in the middle,
17b, 17c, and 17d are sandwiched and connected by welding or tightening with bolts. Fine solid particles 1 discharged from the intermediate pressure turbine 3
Since the internal area of the pipe 14a and the pipe 14c is approximately 2:1, the steam 12 containing the
will flow in at a rate equal to. The steam flow rate in the pipe is approximately
The speed has reached 45m/sec. However, the fine solid particles 13, which have a much larger specific gravity than the steam,
When steam flows into the first low-pressure turbine 4a, the majority of the steam cannot keep up with the flow of steam and ends up flowing into the second low-pressure turbine 4b.
This is also clear from the phenomenon that the diaphragm nozzle blades in the second low-pressure turbine 4b have a greater amount of contact than the diaphragm nozzle blades in the first low-pressure turbine 4a.

第4図において、ダイヤフラムノズル翼19に
蒸気12に含まれる微細固体粒子13が衝突して
いる状態を示しており、第5図は、微細固体粒子
13が衝突してノズル翼19に発生した侵触部2
0を示している。
FIG. 4 shows a state in which fine solid particles 13 contained in steam 12 are colliding with the diaphragm nozzle blade 19, and FIG. Part 2
It shows 0.

このように、従来は高・中圧蒸気導入管及びク
ロスオーバー管においては、蒸気中に含まれる微
細固体粒子を何ら制限せず。蒸気と共に各タービ
ン内に流入させてダイヤフラムノズル翼に代表さ
れる内部構成部材に損傷を与え、そのことによつ
と不測の大事故をひき起すおそれがあつた。
As described above, conventionally, in high/medium pressure steam introduction pipes and crossover pipes, fine solid particles contained in steam are not restricted in any way. There was a risk that the steam would flow into each turbine, damaging internal components such as the diaphragm nozzle blades, and possibly causing a major accident.

以上蒸気タービンを例示して説明したが、ガス
タービンにおいても同様であり、また多段タービ
ンについては、高・中・低の各段圧タービンの入
口に接続される流体導入管の何れにも、同様なこ
とが云える。
Although the above explanation has been given using a steam turbine as an example, the same applies to gas turbines, and in the case of multistage turbines, the same applies to any of the fluid introduction pipes connected to the inlets of high, medium, and low stage pressure turbines. I can say something.

本発明の目的は、前記しそ従来の欠点である微
細固体粒子の各タービン内への流入を防止して、
安全かつ信頼性の高い流体導入管を提供すること
にある。
An object of the present invention is to prevent fine solid particles from flowing into each turbine, which is a drawback of the conventional method.
The objective is to provide a safe and reliable fluid introduction pipe.

この目的を達成するために、本発明は、曲管部
の最大曲率半径を有する部分を含む管壁に設けた
開口部と、該開口部を介して前記曲管部に連通し
ていて、流体中の微細固体粒子を分離して収容す
る分離室を具備し、かつ、前記の開口部は前記曲
管部の上流側管入口中心点よりも下流側に位置さ
せたことを特徴とするものである。
In order to achieve this object, the present invention provides an opening provided in a tube wall including a portion having the maximum radius of curvature of a curved tube section, and communicating with the curved tube section through the opening, and a fluid The pipe is characterized in that it is equipped with a separation chamber for separating and storing fine solid particles therein, and that the opening is located downstream of the center point of the upstream pipe entrance of the curved pipe part. be.

以下、本発明の詳細を図面に従つて説明する。 The details of the present invention will be explained below with reference to the drawings.

第6図及び第7図は、本発明による微細固体粒
子を分離・収容する分離室を有する流体導入管を
示しており、蒸気タービン入口に接続する場合に
ついて例示する。
6 and 7 show a fluid introduction pipe having a separation chamber for separating and storing fine solid particles according to the present invention, and exemplify the case where the pipe is connected to a steam turbine inlet.

第6図は、高・中圧蒸気導入管の微細固定粒子
の分離・収容する構造を示している。互いに直交
する向きに配置された直管9aと直管9bとの間
を、曲管部なるエルボ10aがボルト22によつ
て連結、固定されている。エルボ10aは例えば
鋳造で成形され、開口部21が上流側部(図中上
方)から流れる蒸気を呑み賢む態様で管壁、すな
わち、エルボ10aの最大曲率半径を有する部
分、別言すれば蒸気通路の最も長い所謂外壁側に
あり、かつ、蒸気の流れる向きに直交して互いに
対向する側縁21a,21bが上流側管入口中心
から下流側へ距離Aだけ寄せられて位置してい
る。微細固体粒子分離室23は、略円筒状を形成
していて、上流側蒸気の流入方向に沿つて配置さ
れ、微細固体粒子13を分離室の奥へ案内する役
目を持つた螺旋状舌様体を有する内管24が挿入
されている。分離室13はエルボ10aにボルト
25を介して固定されている。また分離室23の
端部には、定期検査時などの内部点検、微細固体
粒子の排出を目的としたマンホール蓋26がボル
ト27を介して固定されており、通常は完全密閉
の状態を保つている。
FIG. 6 shows a structure for separating and storing fine fixed particles in a high/medium pressure steam introduction pipe. An elbow 10a, which is a bent pipe portion, is connected and fixed by a bolt 22 between a straight pipe 9a and a straight pipe 9b that are arranged perpendicularly to each other. The elbow 10a is formed, for example, by casting, and the opening 21 absorbs the steam flowing from the upstream side (upper side in the figure) of the tube wall, that is, the part of the elbow 10a having the maximum radius of curvature, in other words, the steam. Side edges 21a and 21b, which are located on the longest so-called outer wall side of the passage and are opposed to each other perpendicular to the direction of steam flow, are located a distance A toward the downstream from the center of the upstream pipe inlet. The fine solid particle separation chamber 23 has a substantially cylindrical shape, is arranged along the upstream steam inflow direction, and has a spiral tongue-like body that has the role of guiding the fine solid particles 13 to the back of the separation chamber. An inner tube 24 having a diameter is inserted. Separation chamber 13 is fixed to elbow 10a via bolt 25. Furthermore, a manhole cover 26 is fixed to the end of the separation chamber 23 via bolts 27 for the purpose of internal inspection during periodic inspections and for evacuation of fine solid particles, and is normally kept completely sealed. There is.

微細固体粒子13を含んだ蒸気12は、管9a
側(上流側)から管9b側(下流側)に向つて約
55m/秒の流速をもつて流れている。しかしなが
ら、前記したように、蒸気12よりも遥かに比重
の大きい微細固体粒子13は、エルボ10aを通
過する際はエルボ10aの外壁に沿つて流れてい
るため、開口部21を通り微細固体粒子分離室2
3内に飛散しつつ収容される。しかも、エルボ1
0a内の蒸気圧力と微細固体粒子分離室23内の
蒸気圧力とは等しいことから、分離室内に入りこ
もうとする蒸気と、これを押し戻そうとする分離
室内の蒸気の圧力が、開口部21近傍においてバ
ランスするため、渦28が発生しこれが一種のカ
ーテンの役目を果すから、一旦分離室23内に収
容された微細固体粒子13の逆流を防止する効果
を生み、微細固体粒子13は分離室23内に堆積
することになる。また微細固体粒子13を蒸気1
2の流れを防げないで効果的に収集するために、
開口部21が上流側管入口中心より距離Aだけ下
流側に偏倚して配置されるのが好ましい。本実施
例では距離Aはエルボ10aの半径に等しくして
あり、直管9a内を浮遊する微細固体粒子13の
大半がエルボ外壁に衝突したとき開口部21に集
まるようになつている。また開口部21の一側縁
21aがエルボ10aの下流側管中心より距離B
だけ偏倚しているが、この距離Bが小さすぎると
蒸気12の流れを防げることになるので好ましく
ない。
Steam 12 containing fine solid particles 13 is passed through pipe 9a.
Approximately from the side (upstream side) to the pipe 9b side (downstream side)
It is flowing with a velocity of 55 m/s. However, as described above, the fine solid particles 13, which have a much higher specific gravity than the steam 12, flow along the outer wall of the elbow 10a when passing through the elbow 10a, so they pass through the opening 21 and are separated into fine solid particles. room 2
It is contained while scattering inside 3. Moreover, elbow 1
Since the steam pressure in 0a and the steam pressure in the fine solid particle separation chamber 23 are equal, the pressure of the steam trying to enter the separation chamber and the pressure of the steam inside the separation chamber trying to push it back is Due to the balance near 21, a vortex 28 is generated and this acts as a kind of curtain, which has the effect of preventing the backflow of the fine solid particles 13 once accommodated in the separation chamber 23, and the fine solid particles 13 are separated. It will be deposited in the chamber 23. In addition, the fine solid particles 13 are transferred to the steam 1
In order to collect effectively without preventing the flow of 2.
Preferably, the opening 21 is offset downstream by a distance A from the center of the upstream pipe inlet. In this embodiment, the distance A is set equal to the radius of the elbow 10a, so that most of the fine solid particles 13 floating in the straight pipe 9a gather at the opening 21 when they collide with the outer wall of the elbow. Also, one side edge 21a of the opening 21 is a distance B from the center of the downstream pipe of the elbow 10a.
However, if this distance B is too small, the flow of steam 12 will be prevented, which is not preferable.

第7図は微細固体粒子分離・収容する構造をク
ロスオーバー管において適用した状態を示してお
り、第8図は第7図のX部の拡大図である。第3
図に示した従来のクロスオーバー管に比し異なる
ところは、第2の低圧タービン4b入口に接続す
るエルボ15に開口部21が外壁を切欠いた態様
で設けてあり、その切欠き部分に截頭円錐状の空
穂29が形成している点である。また開口部21
の低圧タービン入口側の側縁に空穂29の頭部側
へ向けて傾けて突設させたそらせ板30が形成し
てある。
FIG. 7 shows a state in which the structure for separating and housing fine solid particles is applied to a crossover pipe, and FIG. 8 is an enlarged view of the X section in FIG. 7. Third
The difference from the conventional crossover pipe shown in the figure is that the elbow 15 connected to the inlet of the second low pressure turbine 4b is provided with an opening 21 in the form of a notch in the outer wall, and the notch has a truncated part. This is the point where a conical empty spike 29 is formed. Also, the opening 21
A deflector plate 30 is formed on the side edge of the low-pressure turbine inlet side to project toward the head side of the empty spike 29.

従つて、クロスオーバー管内を蒸気12と共に
流れてきた微構固体粒子13は、開口部21より
空穂29の外壁に沿つてバランス管16内に飛散
しつつ収容される。しかもそらせ板30により、
微細固体粒子は円滑にバランス管内へ飛び込み、
かつ逆流することがないようになつている。また
バランス管16の下部にマンホール31を設けて
タービン運転休止時の内部点検及び内部に堆積し
た微細固体粒子の排出を図るようにすることがの
ぞましい。
Therefore, the microstructured solid particles 13 that have flowed together with the steam 12 through the crossover tube are scattered and accommodated in the balance tube 16 from the opening 21 along the outer wall of the spike 29. Moreover, with the deflection plate 30,
Fine solid particles smoothly fly into the balance tube,
And it is designed to prevent backflow. It is also desirable to provide a manhole 31 in the lower part of the balance pipe 16 to enable internal inspection and discharge of fine solid particles accumulated inside the turbine when the turbine is not operating.

この場合も、開口部21は上流側管中より下流
側へ偏倚した位置に穿設されていることが、図に
よつて明らかに示されている(図中符号C)。
In this case as well, the diagram clearly shows that the opening 21 is formed at a position offset toward the downstream side from the inside of the upstream pipe (reference numeral C in the diagram).

本発明によれば、多くの微細固体粒子を効果的
に確実に分離・収容することができるので、ター
ビン内の構成部材の損傷を低減することができ、
タービンの信頼性を向上さすことができる。
According to the present invention, many fine solid particles can be effectively and reliably separated and contained, so damage to components within the turbine can be reduced.
Turbine reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は火力発電プラントの概略系統図、第2
図は従来の高中圧蒸気導入管を示す断面図、第3
図は従来のクロスオーバー管を示す断面図、第4
図及び第5図はノズル翼の腐触を説明する図、第
6図及び第7図は本発明の高中圧蒸気導入管及び
クロスオーバー管を示す断面図、第8図は第7図
のX部の拡大断面図である。 10a……エルボ、12……蒸気、13……微
細固体粒子、21……開口部、23……微細固体
粒子分離室。
Figure 1 is a schematic diagram of a thermal power plant;
The figure is a cross-sectional view showing a conventional high-medium pressure steam introduction pipe.
The figure is a cross-sectional view showing a conventional crossover pipe.
5 and 5 are views for explaining corrosion of nozzle blades, FIGS. 6 and 7 are cross-sectional views showing the high and intermediate pressure steam introduction pipe and crossover pipe of the present invention, and FIG. FIG. 10a...Elbow, 12...Steam, 13...Fine solid particles, 21...Opening, 23...Fine solid particle separation chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 流体タービン入口に接続されていて、途中に
曲管部を有する流体導入管において、曲管部の最
大曲率半径を有する部分を含む管壁に設けた開口
部と、該開口部を介して前記曲管部に連通してい
て、流体中の微細固体粒子を分離して収容する分
離室を具備し、かつ、前記の開口部は前記曲管部
の上流側管入口中心点よりも下流側に位置させた
ことを特徴とする流体導入管。
1. In a fluid introduction pipe that is connected to the fluid turbine inlet and has a curved pipe part in the middle, an opening provided in the pipe wall including the part having the maximum radius of curvature of the curved pipe part, and the a separation chamber that communicates with the curved pipe section and separates and accommodates fine solid particles in the fluid, and the opening is located downstream of the center point of the upstream pipe inlet of the curved pipe section. A fluid introduction tube characterized in that:
JP13239779A 1979-10-16 1979-10-16 Fluid introducing pipe Granted JPS5656908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13239779A JPS5656908A (en) 1979-10-16 1979-10-16 Fluid introducing pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13239779A JPS5656908A (en) 1979-10-16 1979-10-16 Fluid introducing pipe

Publications (2)

Publication Number Publication Date
JPS5656908A JPS5656908A (en) 1981-05-19
JPS624524B2 true JPS624524B2 (en) 1987-01-30

Family

ID=15080426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13239779A Granted JPS5656908A (en) 1979-10-16 1979-10-16 Fluid introducing pipe

Country Status (1)

Country Link
JP (1) JPS5656908A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185033U (en) * 1984-05-17 1985-12-07 日産自動車株式会社 Turbine foreign matter inflow prevention device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859206A (en) * 1971-11-23 1973-08-20
JPS5013702A (en) * 1973-06-08 1975-02-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859206A (en) * 1971-11-23 1973-08-20
JPS5013702A (en) * 1973-06-08 1975-02-13

Also Published As

Publication number Publication date
JPS5656908A (en) 1981-05-19

Similar Documents

Publication Publication Date Title
US5588799A (en) Diffusor for a turbo-machine with outwardly curved guided plate
EP0018840B1 (en) Separator for removing entrained moisture from saturated steam in a nuclear steam generator
US4602925A (en) Moisture separator
EP2156094B1 (en) Blow-off tank for heat recovery steam generators
JPS61183484A (en) Apparatus for preventing corrosion of fluid feed pipe
US3670479A (en) Momentum slot centrifugal type separator
JP3095734B2 (en) Boiler steam pipe scale collection device
US4803841A (en) Moisture separator for steam turbine exhaust
JPS624524B2 (en)
US4673426A (en) Moisture pre-separator for a steam turbine exhaust
Wang et al. Structure modification and numerical study of the moisture-separation performance of special crossunder pipe separators for nuclear power steam turbines
JPS6250643B2 (en)
JP2000153118A (en) Gas-water separation system
CN220815773U (en) Steam pipeline system of steam turbine and power generation system of steam turbine
JP5602096B2 (en) Liquid membrane separator for steam piping system
JP2005140711A (en) Nuclear power plant
JP2573197B2 (en) Steam turbine
JPH04347400A (en) Steam injector system
Khaimov et al. Erosion wear caused by coarse particles in the flow-through part of the medium-pressure stage of T-250/300-240 turbines
JP2883757B2 (en) Steam turbine nozzle
JPH02223703A (en) Rotating type separator
JPS58178186A (en) Condenser
CN113217901A (en) Particulate matter clearing device
JPS599491A (en) Condenser
JPH01168314A (en) Moisture separator