JPS6245169B2 - - Google Patents

Info

Publication number
JPS6245169B2
JPS6245169B2 JP10210380A JP10210380A JPS6245169B2 JP S6245169 B2 JPS6245169 B2 JP S6245169B2 JP 10210380 A JP10210380 A JP 10210380A JP 10210380 A JP10210380 A JP 10210380A JP S6245169 B2 JPS6245169 B2 JP S6245169B2
Authority
JP
Japan
Prior art keywords
mixture
autoclave
sodium silicate
silica
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10210380A
Other languages
Japanese (ja)
Other versions
JPS5727922A (en
Inventor
Yoichi Nishimura
Noriaki Nakano
Jun Juki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP10210380A priority Critical patent/JPS5727922A/en
Publication of JPS5727922A publication Critical patent/JPS5727922A/en
Publication of JPS6245169B2 publication Critical patent/JPS6245169B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はケイ酸ソーダの湿式製造法の改良に関
するものであつて、さらに詳しくは、不純物含有
量が少なく、比較的珪曹比の高いケイ酸ソーダを
湿式法で製造するに際し、従来は不可避的であつ
たスケールの発生を実質的に防止することがで
き、従つて回分式操作に代えて連続式操作の採用
が可能なケイ酸ソーダの湿式製造法に係る。 水ガラスとも呼ばれるケイ酸ソーダは、ケイ砂
(石英)とソーダ灰とを1300〜1500℃の高温で加
熱溶融して無水ケイ酸ソーダを得た後、これを水
に溶解させる所謂乾式法で主に製造されている。
しかし、この乾式法はその実施に多大な熱エネル
ギーを必要とするばかりでなく、高価な設備を必
要とする関係で設備投資も多額に及び、またその
設備の保守管理にも困難を伴う欠点がある。これ
に加えて乾式法では、製品ケイ酸ソーダ中の不純
物を、殊に鉄及びアルミニウムを僅少量に抑える
うえで、原料ケイ砂の品質が限定される難点もあ
る。 これに対してケイ酸ソーダの湿式製造法は、反
応性の高い可溶性無定形シリカをシリカ源とし、
これに苛性ソーダ水溶液を加え常用のオートクレ
ーブ内にて比較的低温度で溶解させる方法であ
る。この湿式法では、通常のオートクレーブを用
いて、しかも80〜200℃という低温度でケイ酸ソ
ーダが製造できるため、上記の乾式法に見られる
ような問題はない。しかしながら、湿式法で製造
されるケイ酸ソーダは、乾式法のそれに比較して
一般に不純物の含有量が多いという欠点がある。 すなわち、湿式法に於てはそのシリカ源たる可
溶性無定形シリカとして、白土、ケイ藻土などの
ほか、フエロソルエン乃至メタリツクソルエンな
どの製造時に副生されるシリカダストなどが使用
される。
The present invention relates to an improvement in a wet method for manufacturing sodium silicate, and more specifically, when manufacturing sodium silicate with a low impurity content and a relatively high silicate ratio by a wet method, conventionally unavoidable The present invention relates to a wet method for producing sodium silicate, which can substantially prevent the formation of scales, and therefore allows continuous operation to be used instead of batchwise operation. Sodium silicate, also called water glass, is produced mainly by the so-called dry method in which silica sand (quartz) and soda ash are heated and melted at a high temperature of 1,300 to 1,500°C to obtain anhydrous sodium silicate, which is then dissolved in water. Manufactured in
However, this dry method not only requires a large amount of thermal energy to carry out, but also requires expensive equipment, which requires a large amount of capital investment, and also has the disadvantage that maintenance management of the equipment is difficult. be. In addition, the dry method has the disadvantage that the quality of the raw material silica sand is limited in order to suppress impurities, particularly iron and aluminum, in the sodium silicate product to a very small amount. In contrast, the wet manufacturing method for sodium silicate uses highly reactive soluble amorphous silica as the silica source.
This method involves adding an aqueous solution of caustic soda to the solution and dissolving it at a relatively low temperature in a conventional autoclave. In this wet method, sodium silicate can be produced using an ordinary autoclave at a low temperature of 80 to 200°C, so there are no problems seen in the dry method described above. However, sodium silicate produced by the wet method generally has a disadvantage in that it contains more impurities than that produced by the dry method. That is, in the wet method, as the soluble amorphous silica that is the silica source, in addition to clay, diatomaceous earth, etc., silica dust, etc., which are by-produced during the production of ferrosolene, metallic solene, etc., are used.

【表】 表−1は典型的な可溶性無定形シリカである白
土とシリカダストの代表的組成(湿量基準)を示
すものであるが、これからも明らかな通り、一般
に可溶性無定形シリカは各種の不純物を含んでい
る。このため、可溶性無定形シリカをシリカ源と
する湿式法では、乾式法に比較して製品ケイ酸ソ
ーダの不純物含有量がどうしても多くならざるを
得ない。それ故、従来の湿式法では可溶性無定形
シリカの苛性ソーダ水溶液による加熱溶解を比較
的高温度で行ない、製品への不純物の混入をでき
るだけ抑える方法が採られている。加熱溶解を比
較的高温度で行なうことはまた可溶性無定形シリ
カと苛性ソーダの利用率を高めるうえでも有利で
ある。何故なら、一定濃度の苛性ソーダ水溶液に
対する可溶性無定形シリカの溶解率は、温度と共
に増加するので、温度が高い程溶解処理液中の未
溶解分は減少し、その結果、溶解処理液から濾別
される未溶解分が減るので、これに同伴されるソ
ーダ量も少なくなるからである。 しかしながら、湿式法に於ける加熱溶解温度の
上昇は、好結果ばかりをもたらさないのが実情で
ある。すなわち、従来の湿式法に於ては、可溶性
無定形シリカと苛性ソーダとの混合物を予め適当
な加熱器で所望の温度迄加熱してから、オートク
レーブに供給するか、あるいはオートクレーブ自
体にスチームジヤケツトなどの適当な加熱手段を
設け、前記の混合物をオートクレーブ内で所望の
温度に加熱する方法が採用されるが、こうした加
熱方法ではどうしても加熱器乃至オートクレーブ
の内壁(伝熱面)にスケールが発生してしまうの
である。このスケール発生はシリカ源たる可溶性
無定形シリカの不純物含有量が多い場合、あるい
は可溶性無定形シリカと苛性ソーダ水溶液との混
合物に於けるSiO2/Na2Oのモル比(珪曹比)が
高い場合に特に著しい。そしてスケールの発生は
必然的に加熱器での熱効率の低下、加熱器配管な
どの閉塞、オートクレーブ内での処理液の撹拌不
能などを招くため、珪曹比が高く、不純物の少な
いケイ酸ソーダを従来の湿式法で製造せんとする
場合には、回分式操作の採用を余儀なくされてい
たのである。 本発明は上記した湿式法の改良を目差すもので
あつて、珪曹比が高く、不純物が少ないケイ酸ソ
ーダを製造せんとする場合でも、スケールの発生
が殆どなく、従つて連続式操作の採用が可能な新
しい湿式ケイ酸ソーダ製造法を提供するものであ
る。 すなわち、可溶性無定形シリカと苛性ソーダ水
溶液との混合物を加熱する場合、当該混合物の珪
曹比が低ければ、比較的高温度に前記の混合物を
加熱しても、伝熱面にスケールが発生することが
ない。本発明はこの性質を利用して、珪曹比が比
較的低い第1混合物と比較的高い第2混合物とを
用意し、前者を比較的高温度に、後者を比較的低
温度にそれぞれ加熱した後、両者を混合して外的
な熱の補給なしにケイ酸ソーダを生成ならしめる
ものである。 而して本発明に係るケイ酸ソーダの湿式製造法
は、オートクレーブ内で可溶性無定形シリカを苛
性ソーダ水溶液で加熱溶解させるケイ酸ソーダの
湿式製造法に於て、(a)可溶性無定形シリカと苛性
ソーダ水溶液との混合物であつて、SiO2/Na2O
のモル比が0.1〜3である第1混合物を80〜250℃
に加熱し、(b)可溶性無定形シリカと苛性ソーダ水
溶液との混合物であつて、SiO2/Na2Oのモル比
が0.5〜6である第2混合物を50〜200℃に加熱
し、(c)それぞれ加熱された前記の第1混合物と第
2混合物を混合し、得られた混合物をオートクレ
ーブ内で外的な熱の補給なしに処理することを特
徴とする。 本発明に於て、シリカ源として使用される可溶
性無定形シリカは、第1混合物を調製する場合及
び第2混合物を調製する場合とも、平均粒径が2
mm以下であることが好ましい。粒径が2mmを超え
る可溶性無定形シリカの使用は、混合物中に局部
的に珪曹比が高い部分が出現する虞れがあるため
好ましくない。 本発明の第1混合物及び第2混合物は、それぞ
れ可溶性無定形シリカと苛性ソーダ水溶液を混合
して調製されるが、第1混合物の珪曹比は0.1〜
3に、第2混合物の珪曹比は3.7〜6にそれぞれ
調整される。そして相対的に珪曹比の低い第1混
合物は80〜250℃に加熱され、珪曹比の高い第2
混合物は50〜200℃に加熱される。それぞれ所定
の温度に加熱された第1混合物と第2混合物と
は、次いで混合され、この混合物はこれに熱を補
給することなくオートクレーブ内で処理される。
本発明者らが得た知見によれば、オートクレーブ
内の混合物の温度が180℃以上であると、製品ケ
イ酸ソーダに含まれる不純物量は、とりわけ鉄の
量は温度の上昇と共に減少する。従つて不純物の
少ないケイ酸ソーダを得るためには、オートクレ
ーブ内の混合物の温度を180℃以上に保持しなけ
ればならない。本発明ではオートクレーブ内での
スケールの発生を防止する目的で、加熱手段を持
たないオートクレーブを使用する関係上、当該オ
ートクレーブに供給される第1混合物と第2混合
物のそれぞれの加熱温度と供給量は、オートクレ
ーブ内で上記の温度条件が満足されるよう選択さ
れる。そして第1混合物と第2混合物の混合比は
製造せんとするケイ酸ソーダの珪曹比を加味して
決定される。ちなみに、珪曹比が約3のケイ酸ソ
ーダを製造せんとする場合には、珪曹比約2.0の
第1混合物と珪曹比約3.7の第2混合物が前者対
後者の重量比約1:2で混合される。 オートクレーブ内に供給された第1混合物と第
2混合物は、外的な熱の補給を受けることなく
180℃以上の温度で6時間程度オートクレーブ内
に滞留し、これによつて可溶性無定形シリカは最
大限苛性ソーダ水溶液に溶解してケイ酸ソーダが
生成される。オートクレーブ内での処理を終つた
混合物は、製品ケイ酸ソーダ、不純物などからな
る未溶解分及び苛性ソーダを含有するが、この混
合物は従来の湿式法に準ずる手順で処理され、ま
ずフイルタープレスなどの濾過手段で製品ケイ酸
ソーダが回収される。フイルターケーキは水洗さ
れ、洗浄濾液はこれを濃縮して製品ケイ酸ソーダ
を得るか、あるいはこれを本発明の第1及び/又
は第2混合物に循環混合して再利用することもで
きる。 本発明に係る湿式法の利点の一つは、スケール
の発生を伴わないため、連続式操作でケイ酸ソー
ダが製造できることであつて、これを添付図面に
そつて説明すると次の通りである。 好ましくは平均粒径2mm以下に粉砕されたシリ
カ源たる可溶性無定形シリカと苛性ソーダ水溶液
は、原液供給槽11及び21に供給され、供給槽
11では珪曹比0.1〜3の第1混合物が、供給槽
21では珪曹比3.7〜6の第2混合物がそれぞれ
調製される。各供給槽内の混合物は熱交換器12
及び22でそれぞれ予熱された後、1次溶解槽1
3及び23に連続的に供給される。次いで1次溶
解槽13からは少なくとも一部の可溶性無定形シ
リカが苛性ソーダ水溶液に溶解した状態の第1混
合物が連続的に取り出され、熱交換器14でスチ
ームとの熱交換によつて80〜250℃に加熱された
後、連続的にオートクレーブ30に供給される。
一方、1次溶解槽23からは少なくとも一部の可
溶性無定形シリカが苛性ソーダ水溶液に溶解した
状態の第2混合物が連続的に取り出され、熱交換
器24でオートクレーブ流出物と熱交換して50〜
200℃に加熱された後、オートクレーブ30に連
続的に導入される。オートクレーブ30に供給さ
れた第1混合物と第2混合物は、合体して180℃
以上の温度を維持し、その温度で6時間程度滞留
する。製品ケイ酸ソーダを含むオートクレーブ流
出物は、ライン31に連続的に取り出され、熱交
換器24,12及び22でそれぞれ熱回収された
後、調圧器32を経てフイルタープレス33に供
給され、ここで製品ケイ酸ソーダがライン34に
回収される。未溶解分を含むフイルターケーキは
水洗され、未溶解残渣はライン35から系外に排
出され、ケイ酸ソーダの稀薄溶液たる洗浄濾液は
ライン36を経て原液供給槽11及び/又は21
に回送される。 既述した通り、従来の湿式ケイ酸ソーダ製造法
では連続式操作の採用が不可能なため、当然のこ
とながら、回分毎に原料の仕込み、昇温を繰り返
さなければならないので、装置の生産性は必然的
に低いものとならざるを得ない。また従来法では
オートクレーブ内及び/又は加熱器内の伝熱面に
成長したスケールを除去する必要から、定期的に
苛性ソーダによる装置洗浄が不可欠になるので、
このことも作業性と装置の生産性を低下させる。
さらに従来の湿式法ではオートクレーブ流出物が
保有する熱量を殆ど有効利用できない難点もあ
る。勿論、従来の湿式法でも例えばオートクレー
ブ内に管式熱交換器を設けるなどの手段により、
オートクレーブ流出物が保有する熱量で原液を加
熱することも不可能ではないが、回分式操作でこ
うした熱交換を行なうことは実際的でない。 然るに本発明によれば、湿式ケイ酸ソーダ製造
法に連続式操作が採用可能なため、作業性及び装
置の生産性は固より、エネルギー消費量を大幅に
改善することができる。ちなみに、ケイ砂をシリ
カ源とした乾式法、白土をシリカ源とした従来の
回分式湿式法及び本発明の連続式湿式法で、それ
ぞれ3号ケイ酸ソーダ(SiO2濃度29%、珪曹比
3.1〜3.3)を1トン製造する場合の必要エネルギ
ーを表−2に示す。
[Table] Table 1 shows the typical composition (wet basis) of clay and silica dust, which are typical soluble amorphous silicas. Contains impurities. Therefore, in the wet method using soluble amorphous silica as the silica source, the impurity content of the sodium silicate product inevitably increases compared to the dry method. Therefore, in the conventional wet method, soluble amorphous silica is heated and dissolved in an aqueous solution of caustic soda at a relatively high temperature to suppress contamination of the product with impurities as much as possible. Performing the heat melting at a relatively high temperature is also advantageous in increasing the utilization rate of soluble amorphous silica and caustic soda. This is because the dissolution rate of soluble amorphous silica in a caustic soda aqueous solution of a constant concentration increases with temperature, so the higher the temperature, the less undissolved matter in the dissolution treatment solution, and as a result, it is filtered out from the dissolution treatment solution. This is because the amount of undissolved matter is reduced, and the amount of soda accompanying this is also reduced. However, the reality is that increasing the heating melting temperature in the wet method does not bring about good results. That is, in the conventional wet method, a mixture of soluble amorphous silica and caustic soda is heated in advance to a desired temperature using an appropriate heater and then supplied to an autoclave, or the autoclave itself is heated with a steam jacket or the like. A method is adopted in which a suitable heating means is provided and the mixture is heated to a desired temperature in an autoclave, but such heating methods inevitably cause scale to form on the inner wall (heat transfer surface) of the heater or autoclave. It's put away. This scale occurs when the impurity content of soluble amorphous silica, which is the silica source, is high, or when the molar ratio of SiO 2 /Na 2 O (silica ratio) in the mixture of soluble amorphous silica and caustic soda aqueous solution is high. This is particularly noticeable. The generation of scale inevitably leads to a decrease in the thermal efficiency of the heater, blockage of the heater piping, etc., and the inability to stir the processing liquid in the autoclave. If conventional wet methods were used for production, batch operations had to be adopted. The present invention aims to improve the above-mentioned wet method, and even when producing sodium silicate with a high silica ratio and few impurities, there is almost no scale formation, and therefore continuous operation is adopted. The present invention provides a new wet method for producing sodium silicate that enables the following. That is, when heating a mixture of soluble amorphous silica and an aqueous caustic soda solution, if the silica ratio of the mixture is low, scale may occur on the heat transfer surface even if the mixture is heated to a relatively high temperature. There is no. The present invention takes advantage of this property by preparing a first mixture with a relatively low silica ratio and a second mixture with a relatively high silica ratio, and heating the former to a relatively high temperature and the latter to a relatively low temperature. Afterwards, the two are mixed to produce sodium silicate without external heat supply. Accordingly, the wet method for producing sodium silicate according to the present invention is a wet method for producing sodium silicate in which soluble amorphous silica is heated and dissolved in an aqueous solution of caustic soda in an autoclave.(a) soluble amorphous silica and caustic soda A mixture with an aqueous solution, SiO 2 /Na 2 O
The first mixture having a molar ratio of 0.1 to 3 is heated to 80 to 250°C.
(b) heating a second mixture of soluble amorphous silica and an aqueous caustic soda solution with a SiO 2 /Na 2 O molar ratio of 0.5 to 6 to 50 to 200°C; ) The first and second mixtures, respectively heated, are mixed and the resulting mixture is processed in an autoclave without external heat supplementation. In the present invention, the soluble amorphous silica used as the silica source has an average particle size of 2.
It is preferably less than mm. The use of soluble amorphous silica with a particle size exceeding 2 mm is not preferable because there is a possibility that a portion with a high silica ratio may appear locally in the mixture. The first mixture and the second mixture of the present invention are prepared by mixing soluble amorphous silica and a caustic soda aqueous solution, respectively, and the silica ratio of the first mixture is 0.1 to 0.1.
3, the silica ratio of the second mixture is adjusted to 3.7-6, respectively. The first mixture, which has a relatively low silica ratio, is heated to 80 to 250°C, and the second mixture, which has a relatively high silica ratio, is heated to 80 to 250°C.
The mixture is heated to 50-200 °C. The first mixture and the second mixture, each heated to a predetermined temperature, are then mixed and this mixture is processed in an autoclave without supplementing it with heat.
According to the knowledge obtained by the present inventors, when the temperature of the mixture in the autoclave is 180° C. or higher, the amount of impurities contained in the product sodium silicate, especially the amount of iron, decreases as the temperature increases. Therefore, in order to obtain sodium silicate with few impurities, the temperature of the mixture inside the autoclave must be maintained at 180°C or higher. In the present invention, in order to prevent scale formation within the autoclave, an autoclave without heating means is used, so the heating temperature and supply amount of each of the first mixture and second mixture supplied to the autoclave are , selected such that the above temperature conditions are satisfied in the autoclave. The mixing ratio of the first mixture and the second mixture is determined by taking into consideration the silica ratio of the sodium silicate to be produced. By the way, when it is desired to produce sodium silicate with a silicate ratio of about 3, a first mixture with a silicate ratio of about 2.0 and a second mixture with a silicate ratio of about 3.7 are prepared at a weight ratio of about 1:1: Mixed in 2. The first mixture and the second mixture supplied into the autoclave are heated without external heat supplementation.
The autoclave is kept at a temperature of 180°C or higher for about 6 hours, whereby the soluble amorphous silica is dissolved in the caustic soda aqueous solution to the maximum extent and sodium silicate is produced. The mixture that has been processed in the autoclave contains the product sodium silicate, undissolved components such as impurities, and caustic soda.This mixture is processed using a procedure similar to the conventional wet method, and is first filtered using a filter press or the like. The product sodium silicate is recovered by means. The filter cake is washed with water and the washed filtrate can be concentrated to obtain the sodium silicate product or recycled and mixed with the first and/or second mixture of the present invention for reuse. One of the advantages of the wet method according to the present invention is that it does not involve the generation of scale, so that sodium silicate can be produced in a continuous operation, and this will be explained below with reference to the accompanying drawings. Soluble amorphous silica, which is a silica source preferably ground to an average particle size of 2 mm or less, and a caustic soda aqueous solution are supplied to stock solution supply tanks 11 and 21, and in supply tank 11, a first mixture having a silica ratio of 0.1 to 3 is supplied. In the tank 21, a second mixture having a silica ratio of 3.7 to 6 is prepared. The mixture in each supply tank is transferred to a heat exchanger 12
and 22, respectively, the primary melting tank 1
3 and 23 continuously. Next, a first mixture in which at least a portion of soluble amorphous silica is dissolved in a caustic soda aqueous solution is continuously taken out from the primary dissolution tank 13, and is heated to a temperature of 80 to 250 ml by heat exchange with steam in a heat exchanger 14. After being heated to .degree. C., it is continuously supplied to the autoclave 30.
On the other hand, a second mixture in which at least a part of soluble amorphous silica is dissolved in a caustic soda aqueous solution is continuously taken out from the primary dissolution tank 23, and is heat-exchanged with the autoclave effluent in a heat exchanger 24.
After being heated to 200°C, it is continuously introduced into an autoclave 30. The first mixture and the second mixture supplied to the autoclave 30 are combined and heated to 180°C.
Maintain the above temperature and stay at that temperature for about 6 hours. The autoclave effluent containing the product sodium silicate is continuously taken out into line 31, and after heat recovery in heat exchangers 24, 12 and 22, respectively, it is fed via pressure regulator 32 to filter press 33, where it is Product sodium silicate is recovered in line 34. The filter cake containing undissolved matter is washed with water, the undissolved residue is discharged from the system through line 35, and the washing filtrate, which is a dilute solution of sodium silicate, is sent through line 36 to stock solution supply tank 11 and/or 21.
will be forwarded to. As mentioned above, in the conventional wet sodium silicate manufacturing method, it is not possible to adopt continuous operation, so it is natural that the raw materials must be prepared and heated repeatedly for each batch, which reduces the productivity of the equipment. must necessarily be low. In addition, in the conventional method, it is necessary to remove scale that has grown on the heat transfer surface inside the autoclave and/or the heater, which requires periodic cleaning of the equipment with caustic soda.
This also reduces work efficiency and productivity of the equipment.
Furthermore, the conventional wet method has the disadvantage that the heat contained in the autoclave effluent can hardly be used effectively. Of course, even with conventional wet methods, for example, by installing a tubular heat exchanger in an autoclave,
Although it is not impossible to heat the stock solution with the heat contained in the autoclave effluent, it is impractical to perform such heat exchange in a batch operation. However, according to the present invention, continuous operation can be employed in the wet sodium silicate manufacturing method, so that workability and productivity of the apparatus are improved, and energy consumption can be significantly improved. By the way, in the dry method using silica sand as the silica source, the conventional batch wet method using white clay as the silica source, and the continuous wet method of the present invention, No. 3 sodium silicate (SiO 2 concentration 29%, silica ratio) was used.
Table 2 shows the energy required to produce 1 ton of 3.1-3.3).

【表】 実施例 1 表−1に示した組成の白土をシリカ源とし、添
付図面に示した製造工程図に従つてケイ酸ソーダ
を連続式操作で製造した。 粒径1mm以下に粉砕した白土と苛性ソーダ水溶
液を原料供給槽11及び21に供給し、供給槽1
1では固形分濃度37%、珪曹比2.0の第1混合物
を、供給槽21では固形分濃度37%、珪曹比3.7
の第2混合物を調製した。次にそれぞれの混合物
を熱交換器12及び22で90℃に加熱し、それぞ
れ平均滞留時間6時間に相当する内容積を持つ保
温された1次溶解槽13及び23に供給した。そ
して1次溶解槽13から流出する第1混合物を高
圧ポンプで連続的に熱交換器14に送り、ここで
当該混合物を225℃に加熱した後、オートクレー
ブ30に供給した。一方、1次溶解槽23から流
出する第2混合物は、これを高圧ポンプで熱交換
器24に送り、ここで当該混合物を185℃に加熱
してオートクレーブ30に連続的に供給した。こ
れによりオートクレーブ内の混合物の液温は平均
して200℃に保持された。またオートクレーブ内
の平均滞留時間は3時間とし、高圧ポンプ−オー
トクレーブ間の液圧は34〜36Kg/cm2とした。 上記の操業条件で通算600時間の連続運転を行
なつたが、その間スケールの発生に原因する操業
上のトラブルは何んら生起せず、平均90.5%の白
土反応率で珪曹比平均3.01の製品ケイ酸ソーダを
得た。製品ケイ酸ソーダ中の不純物量(SiO2
度を29%とした場合の換算値)は、Fe2O3が平均
0.029wt%、Al2O3が平均0.20wt%であつた。ま
た、運転終了後、熱交換器及びオートクレーブの
壁面を観察した結果、スケールの付着は殆ど認め
られず、さらに長期の連続運転が可能であるとの
結論を得た。 実施例 2 実施例1と同様にして、粒径1mm以下に粉砕し
た白土と苛性ソーダ水溶液を原液供給槽11及び
21に供給し、供給槽11では固形分濃度30%、
珪曹比1.5の第1混合物を、供給槽21では固形
分濃度37%、珪曹比5.5の第2混合物を調製し
た。次にそれぞれの混合物を熱交換器12及び2
2で95℃に加熱し、それぞれ平均滞留時間6時間
に相当する内容積を持つ保温された1次溶解槽1
3及び23に供給した。そして1次溶解槽13か
ら流出する第1混合物を高圧ポンプで連続的に熱
交換器14に送り、ここで当該混合物を160℃に
加熱した後、オートクレーブ30に供給した。一
方、1次溶解槽23から流出する第2混合物は、
これを高圧ポンプで熱交換器24に送り、ここで
当該混合物を120℃に加熱してオートクレーブ3
0に連続的に供給した。これによりオートクレー
ブ内の混合物の液温は、平均して150℃に保持さ
れた。またオートクレーブ内の平均滞留時間は3
時間とし、高圧ポンプ−オートクレーブ間の液圧
は、23〜25Kg/cm2とした。 上記の操作条件で通算500時間の連続運転を行
なつたが、その間スケールの発生に原因する操作
上のトラブルは何んら生起せず、平均83.0%の白
土反応率で珪曹比平均3.01の製品ケイ酸ソーダを
得た。製品ケイ酸ソーダ中の不純物量(SiO2
度を29%とした場合の換算値)は、Fe2O3が平均
0.312wt%、Al2O3が平均0.53wt%であつた。ま
た、運転終了後、熱交換器及びオートクレーブの
壁面を観察した結果、スケールの付着は殆ど認め
られず、さらに長期の連続運転が可能であるとの
結論を得た。 実施例 3 実施例1と同様にして、粒径1mm以下に粉砕し
た白土と苛性ソーダ水溶液を原液供給槽11及び
21に供給し、供給槽11では固形分濃度37%、
珪曹比0.5の第1混合物を、供給槽21では固形
分濃度37%、珪曹比5.0の第2混合物を調製し
た。次にそれぞれの混合物を熱交換器12及び2
2で95℃に加熱し、それぞれ平均滞留時間6時間
に相当する内容積を持つ保温された1次溶解槽1
3及び23に供給した。そして1次溶解槽13か
ら流出する第1混合物を高圧ポンプで連続的に熱
交換器14に送り、ここで当該混合物を200℃に
加熱した後、オートクレーブ30に供給した。一
方、1次溶解槽23から流出する第2混合物は、
これを高圧ポンプで熱交換器24に送り、ここで
当該混合物を150℃に加熱してオートクレーブ3
0に連続的に供給した。これによりオートクレー
ブ内の混合物の液温は、平均して190℃に保持さ
れた。またオートクレーブ内の平均滞留時間は3
時間とし、高圧ポンプ−オートクレーブ間の液圧
は、32〜34Kg/cm2とした。 上記の操作条件で通算600時間の連続運転を行
なつたが、その間スケールの発生に原因する操作
上のトラブルは何んら生起せず、平均89.5%の白
土反応薬で珪曹比平均2.90の製品ケイ酸ソーダを
得た。製品ケイ酸ソーダ中の不純物量(SiO2
度を29%とした場合の換算値)は、Fe2O3が平均
0.025wt%、Al2O3が平均0.23wt%であつた。ま
た、運転終了後、熱交換器及びオートクレーブの
壁面を観擦した結果、スケールの付着は殆ど認め
られず、さらに長期の連続運転が可能であるとの
結論を得た。
[Table] Example 1 Using clay having the composition shown in Table 1 as a silica source, sodium silicate was manufactured in a continuous operation according to the manufacturing process diagram shown in the attached drawings. White clay crushed to a particle size of 1 mm or less and a caustic soda aqueous solution are supplied to raw material supply tanks 11 and 21, and supply tank 1
In supply tank 1, the first mixture with a solid content concentration of 37% and a silica ratio of 2.0 was supplied, and in the supply tank 21, a solid content concentration of 37% and a silica ratio of 3.7 was supplied.
A second mixture was prepared. Next, each mixture was heated to 90° C. in heat exchangers 12 and 22 and supplied to heated primary dissolution tanks 13 and 23, respectively, each having an internal volume corresponding to an average residence time of 6 hours. Then, the first mixture flowing out from the primary dissolution tank 13 was continuously sent to the heat exchanger 14 using a high-pressure pump, where the mixture was heated to 225° C. and then supplied to the autoclave 30. On the other hand, the second mixture flowing out from the primary dissolution tank 23 was sent to the heat exchanger 24 using a high-pressure pump, where the mixture was heated to 185° C. and continuously supplied to the autoclave 30. As a result, the temperature of the mixture inside the autoclave was maintained at an average of 200°C. The average residence time in the autoclave was 3 hours, and the hydraulic pressure between the high pressure pump and the autoclave was 34 to 36 Kg/cm 2 . A total of 600 hours of continuous operation was carried out under the above operating conditions, during which no operational troubles caused by scale formation occurred, with an average clay reaction rate of 90.5% and an average silica ratio of 3.01. The product sodium silicate was obtained. The amount of impurities in the product sodium silicate (converted value when the SiO 2 concentration is 29%) is Fe 2 O 3 on average.
0.029wt%, and Al 2 O 3 was 0.20wt% on average. Furthermore, after the operation was completed, the walls of the heat exchanger and autoclave were observed, and almost no scale was observed, and it was concluded that continuous operation for an even longer period of time was possible. Example 2 In the same manner as in Example 1, white clay crushed to a particle size of 1 mm or less and a caustic soda aqueous solution were supplied to the stock solution supply tanks 11 and 21, and in the supply tank 11, the solid content concentration was 30%,
A first mixture with a silica ratio of 1.5 was prepared in the supply tank 21, and a second mixture with a solid content concentration of 37% and a silica ratio of 5.5 was prepared in the supply tank 21. Next, each mixture is transferred to heat exchangers 12 and 2.
Primary dissolution tank 1 heated to 95℃ in 2 and each having an internal volume corresponding to an average residence time of 6 hours.
3 and 23. Then, the first mixture flowing out from the primary dissolution tank 13 was continuously sent to the heat exchanger 14 using a high-pressure pump, where the mixture was heated to 160° C. and then supplied to the autoclave 30. On the other hand, the second mixture flowing out from the primary dissolution tank 23 is
This is sent to the heat exchanger 24 using a high pressure pump, where the mixture is heated to 120°C and placed in the autoclave 3.
0 was continuously supplied. As a result, the liquid temperature of the mixture inside the autoclave was maintained at an average of 150°C. Also, the average residence time in the autoclave is 3
The liquid pressure between the high pressure pump and the autoclave was 23 to 25 Kg/cm 2 . A total of 500 hours of continuous operation was carried out under the above operating conditions, during which no operational troubles caused by scale formation occurred, with an average clay reaction rate of 83.0% and an average silica ratio of 3.01. The product sodium silicate was obtained. The amount of impurities in the product sodium silicate (converted value when the SiO 2 concentration is 29%) is Fe 2 O 3 on average.
0.312wt%, and Al 2 O 3 was 0.53wt% on average. Furthermore, after the operation was completed, the walls of the heat exchanger and autoclave were observed, and almost no scale was observed, and it was concluded that continuous operation for an even longer period of time was possible. Example 3 In the same manner as in Example 1, white clay crushed to a particle size of 1 mm or less and a caustic soda aqueous solution were supplied to the stock solution supply tanks 11 and 21, and in the supply tank 11, the solid content concentration was 37%,
A first mixture with a silica ratio of 0.5 was prepared in the supply tank 21, and a second mixture with a solid content concentration of 37% and a silica ratio of 5.0 was prepared in the supply tank 21. Next, each mixture is transferred to heat exchangers 12 and 2.
Primary dissolution tank 1 heated to 95℃ in 2 and each having an internal volume corresponding to an average residence time of 6 hours.
3 and 23. Then, the first mixture flowing out from the primary dissolution tank 13 was continuously sent to the heat exchanger 14 using a high-pressure pump, where the mixture was heated to 200° C. and then supplied to the autoclave 30. On the other hand, the second mixture flowing out from the primary dissolution tank 23 is
This is sent to the heat exchanger 24 using a high pressure pump, where the mixture is heated to 150°C and placed in the autoclave 3.
0 was continuously supplied. As a result, the liquid temperature of the mixture inside the autoclave was maintained at an average of 190°C. Also, the average residence time in the autoclave is 3
The liquid pressure between the high pressure pump and the autoclave was 32 to 34 Kg/cm 2 . A total of 600 hours of continuous operation was carried out under the above operating conditions, during which no operational troubles caused by scale formation occurred. The product sodium silicate was obtained. The amount of impurities in the product sodium silicate (converted value when the SiO 2 concentration is 29%) is Fe 2 O 3 on average.
0.025wt%, and Al 2 O 3 was 0.23wt% on average. Furthermore, after the operation was completed, the walls of the heat exchanger and autoclave were inspected, and as a result, almost no scale was observed, and it was concluded that continuous operation for an even longer period of time was possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の湿式ケイ酸ソーダ製造法を連続
式操作で実施する場合の工程図である。 11,21……原液供給槽、12,22,1
4,24……熱交換器、13,23……1次溶解
槽、30……オートクレーブ、32……調圧器、
33……フイルタープレス、P……高圧ポンプ。
The drawings are process diagrams for carrying out the wet sodium silicate manufacturing method of the present invention in a continuous operation. 11, 21... Raw solution supply tank, 12, 22, 1
4, 24... Heat exchanger, 13, 23... Primary melting tank, 30... Autoclave, 32... Pressure regulator,
33...Filter press, P...High pressure pump.

Claims (1)

【特許請求の範囲】 1 オートクレーブ内で可溶性無定形シリカを苛
性ソーダ水溶液で加熱溶解させるケイ酸ソーダの
湿式製造法に於て、 (a) 可溶性無定形シリカと苛性ソーダ水溶液との
混合物であつて、SiO2/Na2Oのモル比が0.1〜
3である第1混合物を80〜250℃に加熱し、 (b) 可溶性無定形シリカと苛性ソーダ水溶液との
混合物であつて、SiO2/Na2Oのモル比が3.7〜
6である第2混合物を50〜200℃に加熱し、 (c) それぞれ加熱された前記の第1混合物と第2
混合物を混合し、得られた混合物をオートクレ
ーブ内で外的な熱の補給なしに処理する、 ことを特徴とするケイ酸ソーダの湿式製造法。
[Claims] 1. In a wet method for producing sodium silicate in which soluble amorphous silica is heated and dissolved in a caustic soda aqueous solution in an autoclave, (a) a mixture of soluble amorphous silica and a caustic soda aqueous solution, wherein SiO 2 /Na 2 O molar ratio is 0.1~
(b) a mixture of soluble amorphous silica and an aqueous caustic soda solution with a SiO 2 /Na 2 O molar ratio of 3.7 to 250°C;
(c) the heated first mixture and the second mixture, respectively;
A wet method for producing sodium silicate, characterized in that a mixture is mixed and the resulting mixture is processed in an autoclave without external heat supplementation.
JP10210380A 1980-07-25 1980-07-25 Wet manufacture of sodium silicate Granted JPS5727922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10210380A JPS5727922A (en) 1980-07-25 1980-07-25 Wet manufacture of sodium silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10210380A JPS5727922A (en) 1980-07-25 1980-07-25 Wet manufacture of sodium silicate

Publications (2)

Publication Number Publication Date
JPS5727922A JPS5727922A (en) 1982-02-15
JPS6245169B2 true JPS6245169B2 (en) 1987-09-25

Family

ID=14318451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10210380A Granted JPS5727922A (en) 1980-07-25 1980-07-25 Wet manufacture of sodium silicate

Country Status (1)

Country Link
JP (1) JPS5727922A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424392A (en) * 2011-09-11 2012-04-25 中国科学院过程工程研究所 Method for preparing white carbon black cogeneration nanometer calcium carbonate by integrally utilizing micro silicon powder
CN102424394B (en) * 2011-09-11 2013-06-19 北京科技大学 Process for preparing water glass from silicon micropowder by using wet method
BR102020016451B1 (en) * 2020-08-12 2021-11-03 Pq Silicas Brazil Ltda STABLE SODIUM AND IRON SILICATE SOLUTION PROCESS TO PREPARE SUCH SOLUTION AND ITS USES

Also Published As

Publication number Publication date
JPS5727922A (en) 1982-02-15

Similar Documents

Publication Publication Date Title
US5000933A (en) Process for hydrothermal production of sodium silicate solutions
JPS6114119A (en) Continuous hot water manufacture for sodium silicate solution and facilities therefor
CN108911960A (en) A kind of preparation method of photoinitiator 1- hydroxycyclohexyl phenyl ketone
US4770866A (en) Hydrothermal production of clear sodium silicate solutions
JPH04503048A (en) Hydrothermal production method of potassium silicate solution having a high molar ratio of SiO↓2:K↓2O
US2887360A (en) Purification of sodium carbonate monohydrate
JPS6245169B2 (en)
JPH0336766B2 (en)
CN109437980B (en) Method for producing acid potassium dihydrogen phosphate
US2166917A (en) Process of producing alkoxyl de
GB2078701A (en) Hydrothermal Direct Synthesis of Alkali Metal Silicates
KR860000994B1 (en) Process for preparing alkalimetal silicate solution in a static solution
CN109180605A (en) The method of the direct synthetic rubber vulcanization accelerator TBBS of resin in waste water
US4128618A (en) Process for extracting alumina from alumina-containing ores
CN101891213A (en) Method for preparing water glass from byproduct silicon tetrachloride
CN1021570C (en) Preparing process for non-hydrate sodium metasilicate
CN1044634A (en) The method of hydrothermal producting solution of solidum silicate at high ratio of Si: Na
CN106809811B (en) A method of sodium pyrophosphate is prepared using crude product sodium pyrophosphate
US2100944A (en) Process of making alkali subsilicates
KR830001165B1 (en) Method of manufacturing sodium silicate
DE2118661A1 (en) Water glass from quartz and caustic alkali - in aq soln at moderate temp and press
CN221388094U (en) High-value utilization system of waste quartz crucible
CN110436504A (en) A method of aluminum sulfate is prepared using mould waste liquid is stewed
JPH0455309A (en) Production of granular sodium metasilicate hydrate crystal
CN105197949B (en) A kind of production method of metasilicate pentahydrate sodium