JPS6245030B2 - - Google Patents

Info

Publication number
JPS6245030B2
JPS6245030B2 JP54151841A JP15184179A JPS6245030B2 JP S6245030 B2 JPS6245030 B2 JP S6245030B2 JP 54151841 A JP54151841 A JP 54151841A JP 15184179 A JP15184179 A JP 15184179A JP S6245030 B2 JPS6245030 B2 JP S6245030B2
Authority
JP
Japan
Prior art keywords
cutting
nozzle
axis
opening surface
nozzle opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54151841A
Other languages
Japanese (ja)
Other versions
JPS5674389A (en
Inventor
Wataru Shimada
Megumi Oomine
Minoru Kobayashi
Takeshi Morita
Yoshio Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15184179A priority Critical patent/JPS5674389A/en
Publication of JPS5674389A publication Critical patent/JPS5674389A/en
Publication of JPS6245030B2 publication Critical patent/JPS6245030B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 この発明は、荷電粒子、レーザなどのエネルギ
ビームとガスとを併用する切断装置の切断用ノズ
ルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cutting nozzle for a cutting device that uses gas and an energy beam such as charged particles or a laser.

以下、大気中での電子ビームによる切断装置を
例として、第1図、第2図a,bおよび第3図
a,bに基き、従来のものについて説明する。第
1図において、1は電子ビーム、2は加工ヘツ
ド、3は加工ヘツド2に取り付けられた電磁レン
ズ、4は加工ヘツド2に設けられたガス流入口、
5は加工ヘツド2の先端に装着された切断用ノズ
ル、6は切断用ノズル5先端のノズル開口面、7
はノズル開口面6から噴出する補助ガス、8は被
切断材料である。また、第2図aおよびbは第1
図の切断用ノズル5の平面図および側面図で、1
9は円形のノズル開口面6の中心を示す。第3図
aおよびbは第1図、第2図a,bに示す切断装
置を用いて切断する状態の概略を示す切断線に沿
う方向の断面図および切断線と直交する方向の断
面図である。第3図a,bにおいて、9は切断進
行方向、10は未切断部と既切断部との境界を示
す切断進行面、11は被切断材料8の裏面両側縁
部に付着した切断滓すなわちドロス、12は切断
面を示す。
Hereinafter, a conventional cutting device using an electron beam in the atmosphere will be described with reference to FIGS. In FIG. 1, 1 is an electron beam, 2 is a processing head, 3 is an electromagnetic lens attached to the processing head 2, 4 is a gas inlet provided in the processing head 2,
5 is a cutting nozzle attached to the tip of the processing head 2; 6 is a nozzle opening surface at the tip of the cutting nozzle 5; 7
is an auxiliary gas ejected from the nozzle opening surface 6, and 8 is the material to be cut. Also, Figure 2 a and b are the first
In the plan view and side view of the cutting nozzle 5 in the figure, 1
9 indicates the center of the circular nozzle opening surface 6. Figures 3a and 3b are cross-sectional views along the cutting line and cross-sectional views perpendicular to the cutting line, showing the outline of the state of cutting using the cutting device shown in Figures 1 and 2 a and b. be. In FIGS. 3a and 3b, reference numeral 9 indicates the direction in which the cutting progresses, 10 indicates the cutting progress plane indicating the boundary between the uncut part and the already cut part, and 11 indicates the cutting slag or dross attached to both edges of the back surface of the material 8 to be cut. , 12 indicates a cut surface.

一般に、大気中での電子ビームによる切断は、
次の要領で行われる。すなわち、電子ビーム1を
被切断材料8の表面に集中させ、かつ電子ビーム
1の軸と円形のノズル開口面6の中心19とが一
致するように、加工ヘツド2、電磁レンズ3およ
び切断用ノズル5を調整する。その後、被切断材
料8への電子ビーム1の照射と同時に、ガス流入
口4から酸素などの補助ガス7を導いてノズル開
口面6から噴出させ、被切断材料8あるいは加工
ヘツド2を移動させることにより、大気中での電
子ビーム切断を達成させる。ここで、補助ガス7
は切断進行面10での被切断材料8との酸化発熱
反応および切断面12下部の側縁部に付着するド
ロス11の除去の役割を果す。
Generally, cutting with an electron beam in the atmosphere is
It is carried out in the following manner. That is, the processing head 2, the electromagnetic lens 3, and the cutting nozzle are arranged so that the electron beam 1 is concentrated on the surface of the material 8 to be cut, and the axis of the electron beam 1 is aligned with the center 19 of the circular nozzle opening surface 6. Adjust 5. Thereafter, at the same time as the material to be cut 8 is irradiated with the electron beam 1, an auxiliary gas 7 such as oxygen is introduced from the gas inlet 4 and ejected from the nozzle opening surface 6, thereby moving the material to be cut 8 or the processing head 2. This allows electron beam cutting to be achieved in the atmosphere. Here, auxiliary gas 7
serves to perform an oxidative exothermic reaction with the material to be cut 8 on the cutting surface 10 and to remove dross 11 adhering to the lower side edge of the cutting surface 12.

前述のような従来の大気中での電子ビーム切断
装置では、円形のノズル開口面6の中心19と電
子ビーム1の軸とが一致するように設定していた
ので、第3図a,bに示すように、被切断材料8
裏側の切断面12の両側縁部にドロス11が付着
し易く、また切断面の品質が補助ガス7の圧力の
影響を受け易いという欠点があつた。さらに、第
3図に示すように、被切断材料8の両側切断面1
2がほぼ同等な品質になるため、被切断材料8の
片側が不要な捨材となる場合には、不要な側が過
剰品質となるか、あるいは切断条件の変動によつ
て両側とも粗悪品質になるかのいずれかであり、
切断条件が変動しても必要な使用材側だけを常に
良好な品質とすることが不可能であるという欠点
があつた。
In the conventional atmospheric electron beam cutting device as described above, the center 19 of the circular nozzle opening surface 6 was set to coincide with the axis of the electron beam 1, so that As shown, the material to be cut 8
Dross 11 tends to adhere to both side edges of the cut surface 12 on the back side, and the quality of the cut surface is easily influenced by the pressure of the auxiliary gas 7. Furthermore, as shown in FIG.
2 have almost the same quality, so if one side of the material to be cut 8 becomes unnecessary scrap material, the unnecessary side will be of excessive quality, or both sides will be of inferior quality due to variations in cutting conditions. Either
A drawback is that it is impossible to always maintain good quality only on the necessary material side even if the cutting conditions change.

この発明は、前述したような従来のものの欠点
を除去するためになされたもので、ノズル開口面
を線対称な非円形状とすることにより、補助ガス
の圧力が変動しても良好な切断面が得られ、必要
な場合には被切断材料の切断面に対して片側だけ
を良好な品質とすることができる切断用ノズルを
提供することを目的とするものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by making the nozzle opening surface a line-symmetrical non-circular shape, it is possible to maintain a good cutting surface even when the pressure of the auxiliary gas fluctuates. It is an object of the present invention to provide a cutting nozzle which is capable of achieving good quality on only one side of the cut surface of a material to be cut, if necessary.

以下、この発明の一実施例を図に基いて説明す
る。第4図aおよびbは切断用ノズルの平面図お
よび側面図であり、これらの図において、13は
切断用ノズルで、この切断用ノズル13は少なく
とも先端のノズル開口面14部が横断面楕円形に形
成されている。20はノズル開口面14の長、短
対称軸が交差するこれらの中心(図心)である。
第5図は電子ビームの軸方向から切断用ノズルの
開口部を見た図であり、同図において、15はノ
ズル開口面14での電子ビームの断面、16,1
7,18は切断進行方向を示す矢印であり、電子
ビームの光軸がノズル開口面14の対称軸上にあ
り、この対称軸の中心20より偏倚している。
An embodiment of the present invention will be described below with reference to the drawings. 4a and 4b are a plan view and a side view of the cutting nozzle, and in these figures, 13 is a cutting nozzle, and at least the nozzle opening surface 14 at the tip of the cutting nozzle 13 has an elliptical cross section. is formed. 20 is the center (centroid) where the long and short axes of symmetry of the nozzle opening surface 14 intersect.
FIG. 5 is a view of the opening of the cutting nozzle viewed from the axial direction of the electron beam.
Reference numerals 7 and 18 are arrows indicating the direction of cutting progress, and the optical axis of the electron beam is on the axis of symmetry of the nozzle opening surface 14 and is offset from the center 20 of this axis of symmetry.

第6図aおよびbは楕円形のノズル開口面14
をもつ切断用ノズル13を用いて大気中で電子ビ
ーム切断する状態の概略を示す断面図で、第6図
aは第5図の切断進行方向16の場合、第6図b
は第5図の切断進行方向18の場合である。
Figures 6a and 6b show the oval nozzle opening surface 14.
FIG. 6a is a cross-sectional view schematically showing a state in which electron beam cutting is performed in the atmosphere using a cutting nozzle 13 having a cutting nozzle 13, in which FIG.
This is the case in the cutting progress direction 18 in FIG.

第6図aに示すように、第5図の切断進行方向
16の場合、すなわち切断線とノズル開口面の長
軸の対称軸とを一致させ、かつ電子ビーム1の光
軸をこの対称軸中心よりも切断進行方向前方に偏
倚させた場合には、電子ビーム1を包囲する補助
ガス7の最大圧力点が電子ビーム1の光軸より後
方に位置し、また切断進行面10の下部も電子ビ
ーム1の光軸よりも後方にずれているので、切断
進行面に対して補助ガスが効率よく供給される。
このため、電子ビームの光軸と切断用ノズルのノ
ズル開口面中心軸線とが同軸の前述した従来の場
合に比べて、ドロス11が被切断材料8の裏面に
付着し難く、切断面の品質が向上する。
As shown in FIG. 6a, in the case of the cutting direction 16 in FIG. When the cutting direction is shifted further forward in the cutting progress direction, the maximum pressure point of the auxiliary gas 7 surrounding the electron beam 1 is located behind the optical axis of the electron beam 1, and the lower part of the cutting progress surface 10 is also displaced by the electron beam. 1, the auxiliary gas is efficiently supplied to the cutting surface.
Therefore, compared to the above-mentioned conventional case in which the optical axis of the electron beam and the central axis of the nozzle opening surface of the cutting nozzle are coaxial, the dross 11 is less likely to adhere to the back surface of the material to be cut 8, and the quality of the cut surface is improved. improves.

第6図bに示すように、第5図の切断進行方向
18の場合、すなわち切断線と直交する線とノズ
ル開口面の長軸の対称軸とを一致させ、かつ電子
ビーム1の光軸をこの対称軸の中心20よりも切
断進行方向に対し右側に偏倚させた場合には、切
断面12の左右で補助ガス7の速度勾配が生じ、
左側切断面よりも右側切断面の方がガス速度が速
く、被切断材料8の裏側では、切断部近傍におい
て左向きの力が加わるので、右側切断面のドロス
が左側に移動し、右側切断面12の側縁部はドロ
スがほとんど付着せず、清浄で良品質となり、左
側切断面の裏面側縁部にだけドロス11が付着す
ることになる。なお、第6図bについて前述した
のは第5図の切断進行方向18の場合であるが、
第5図の切断進向方向17の場合には、前述した
とは逆に左側の切断面がドロスがほとんど付着せ
ず良品質となる。
As shown in FIG. 6b, in the case of the cutting progress direction 18 in FIG. If the center 20 of the axis of symmetry is shifted to the right in the direction of cutting progress, a velocity gradient of the auxiliary gas 7 will occur on the left and right sides of the cutting surface 12.
The gas velocity is higher on the right side of the cut surface than on the left side of the cut surface, and on the back side of the material to be cut 8, a leftward force is applied near the cut portion, so the dross on the right side of the cut surface moves to the left, and the right side of the cut surface 12 Almost no dross adheres to the side edges of , resulting in clean and good quality, and dross 11 adheres only to the back side edge of the left cut surface. Note that what has been described above with respect to FIG. 6b is the case of the cutting progress direction 18 in FIG.
In the case of the cutting direction 17 in FIG. 5, contrary to the above, the cut surface on the left side has almost no dross and is of good quality.

前述した実施例では切断用ノズルのノズル開口
面の形状が楕円形の場合について説明したが、こ
の発明は、多角形、流滴形、扇形その他の線対称
な非円形状のノズル開口面のものでも実質的に同
様な効果を有する。また、前述の実施例では大気
中での電子ビーム切断を例にして説明したが、こ
の発明はプラズマ、レーザなど他のエネルギビー
ムによる切断でも同様な効果を奏することができ
る。
In the above-mentioned embodiments, the case where the nozzle opening surface of the cutting nozzle is elliptical has been described, but the present invention is applicable to a case where the nozzle opening surface of the cutting nozzle has a polygonal, droplet-shaped, sector-shaped, or other line-symmetrical non-circular shape. However, it has substantially the same effect. Furthermore, although the above-mentioned embodiments have been described using electron beam cutting in the atmosphere as an example, the present invention can produce similar effects when cutting with other energy beams such as plasma or laser.

以上説明したようにこの発明によれば、ノズル
開口面の形状を線対称の非円形状としたので、ド
ロスの付着を少なくでき、また劣悪な条件下の切
断でも切断面の片側だけは良品質にできる切断ノ
ズルを提供できるという効果が得られる。
As explained above, according to this invention, the shape of the nozzle opening surface is line-symmetrical and non-circular, so it is possible to reduce the adhesion of dross, and even when cutting under poor conditions, only one side of the cut surface has good quality. This has the advantage of being able to provide a cutting nozzle that can

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の大気中で電子ビームによつて切
断する装置の一例を示す側断面図、第2図aおよ
びbは従来の切断用ノズルの平面図および側面
図、第3図aおよびbは従来の装置による切断状
態を示す切断線に沿う方向の断面図および切断線
と直交する方向の断面図であり、第4図aおよび
bはこの発明の一実施例による切断用ノズルを示
す平面図および側面図、第5図はこの発明の一実
施例によるノズル開口面部の平面説明図、第6図
aおよびbはこの発明の切断用ノズルによる互に
異なつた切断状態を説明するための切断線に沿う
方向の断面図および切断線と直交する方向の断面
図である。 1…電子ビーム、7…補助ガス、8…被切断材
料、13…切断用ノズル、14…ノズル開口面、
20…対称軸の号心。なお、図中同一符号は同一
または相当部分を示す。
Fig. 1 is a side sectional view showing an example of a conventional cutting device using an electron beam in the atmosphere, Figs. 2 a and b are plan and side views of a conventional cutting nozzle, and Figs. 3 a and b. 4A and 4B are a cross-sectional view in a direction along a cutting line and a cross-sectional view in a direction perpendicular to the cutting line showing a state of cutting by a conventional device, and FIGS. 4a and 4b are plane views showing a cutting nozzle according to an embodiment of the present invention. FIG. 5 is a plan view of a nozzle opening according to an embodiment of the present invention, and FIG. They are a cross-sectional view in a direction along the line and a cross-sectional view in a direction perpendicular to the cutting line. DESCRIPTION OF SYMBOLS 1... Electron beam, 7... Auxiliary gas, 8... Material to be cut, 13... Cutting nozzle, 14... Nozzle opening surface,
20... Center of symmetry axis. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 荷電粒子、レーザなどのエネルギビームと気
体とを併用する切断装置の切断用ノズルであつ
て、前記エネルギビームを照射し且つ前記気体を
噴出する線対称な非円形状のノズル開口面を有
し、前記エネルギビームの光軸が前記ノズル開口
面内においてその対称軸線上に位置し且つ該対称
軸の中心より偏倚していることを特徴とする切断
用ノズル。 2 前記ノズル開口面がその対称軸を切断線と一
致させて配置されていることを特徴とする特許請
求の範囲第1項に記載の切断用ノズル。 3 前記ノズル開口面が長軸および短軸の2本の
対称軸をもつた線対称な形状であることを特徴と
する特許請求の範囲第1項に記載の切断用ノズ
ル。 4 前記ノズル開口面が楕円形であることを特徴
とする特許請求の範囲第3項に記載の切断用ノズ
ル。 5 前記エネルギビームの光軸が前記ノズル開口
面の対称軸中心より切断進行方向前方に偏倚して
いることを特徴とする特許請求の範囲第1項、第
2項、第3項又は第4項に記載の切断用ノズル。 6 前記ノズル開口面がその対称軸を切断線と直
交する線と一致させて配置され、且つ前記エネル
ギビームの光軸が前記ノズル開口面の対称軸中心
の一側方に偏倚されていることを特徴とする特許
請求の範囲第1項、第3項又は第4項に記載の切
断用ノズル。
[Scope of Claims] 1. A cutting nozzle for a cutting device that uses gas and an energy beam such as a charged particle or laser, which has a line-symmetrical non-circular shape that irradiates the energy beam and spouts out the gas. A cutting nozzle having a nozzle opening surface, wherein the optical axis of the energy beam is located within the nozzle opening surface on an axis of symmetry thereof, and is offset from the center of the axis of symmetry. 2. The cutting nozzle according to claim 1, wherein the nozzle opening surface is arranged so that its axis of symmetry coincides with the cutting line. 3. The cutting nozzle according to claim 1, wherein the nozzle opening surface has a line-symmetrical shape with two axes of symmetry, a long axis and a short axis. 4. The cutting nozzle according to claim 3, wherein the nozzle opening surface is elliptical. 5. Claims 1, 2, 3, or 4, characterized in that the optical axis of the energy beam is deviated forward in the cutting progress direction from the center of the axis of symmetry of the nozzle opening surface. The cutting nozzle described in . 6. The nozzle opening surface is arranged with its axis of symmetry aligned with a line perpendicular to the cutting line, and the optical axis of the energy beam is offset to one side of the center of the symmetry axis of the nozzle opening surface. A cutting nozzle according to claim 1, 3, or 4.
JP15184179A 1979-11-22 1979-11-22 Cutting nozzle Granted JPS5674389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15184179A JPS5674389A (en) 1979-11-22 1979-11-22 Cutting nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15184179A JPS5674389A (en) 1979-11-22 1979-11-22 Cutting nozzle

Publications (2)

Publication Number Publication Date
JPS5674389A JPS5674389A (en) 1981-06-19
JPS6245030B2 true JPS6245030B2 (en) 1987-09-24

Family

ID=15527454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15184179A Granted JPS5674389A (en) 1979-11-22 1979-11-22 Cutting nozzle

Country Status (1)

Country Link
JP (1) JPS5674389A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100599A (en) * 1978-01-24 1979-08-08 Mitsubishi Electric Corp Laser machining device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465499U (en) * 1977-10-19 1979-05-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100599A (en) * 1978-01-24 1979-08-08 Mitsubishi Electric Corp Laser machining device

Also Published As

Publication number Publication date
JPS5674389A (en) 1981-06-19

Similar Documents

Publication Publication Date Title
JP3686317B2 (en) Laser processing head and laser processing apparatus provided with the same
WO1996038257A3 (en) Laser beam apparatus and workpiece machining process
US4871897A (en) Nozzle for laser processing
GB2191434A (en) Methods of cutting metallic workpieces by laser
CA2091512A1 (en) Laser irradiation nozzle and laser apparatus using the same
JPH09103895A (en) Cutting device for machined article
JP4896274B2 (en) Laser processing apparatus and laser processing method
JPH08264491A (en) Chip isolation of semiconductor device and expand seat for fixing semiconductor device
JPS6245030B2 (en)
JPS61229491A (en) Processing head for laser welding
JP2009166080A (en) Laser beam welding method
JPS6243792B2 (en)
JP2798223B2 (en) Laser cutting method
JPS6243793B2 (en)
JPH0450105B2 (en)
JP4775699B2 (en) Laser double-sided groove processing apparatus and double-sided groove processing method
JPH11285882A (en) Double structure nozzle with control function
JPH1190670A (en) Method for removing fused material sticking to work surface in piercing
JPH1110375A (en) Cutting method
US3539760A (en) Electron beam forge welding
JPS6249153B2 (en)
JPH02224886A (en) Double laser cutting nozzle and dross-free cutting method
JPH09216081A (en) Laser beam cutting machine
JPH0117430Y2 (en)
JPS63268585A (en) Cutting method by laser beam