JPS6245002B2 - - Google Patents

Info

Publication number
JPS6245002B2
JPS6245002B2 JP56011065A JP1106581A JPS6245002B2 JP S6245002 B2 JPS6245002 B2 JP S6245002B2 JP 56011065 A JP56011065 A JP 56011065A JP 1106581 A JP1106581 A JP 1106581A JP S6245002 B2 JPS6245002 B2 JP S6245002B2
Authority
JP
Japan
Prior art keywords
change
roll
plate thickness
rolling load
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56011065A
Other languages
Japanese (ja)
Other versions
JPS57124515A (en
Inventor
Ryoichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP56011065A priority Critical patent/JPS57124515A/en
Publication of JPS57124515A publication Critical patent/JPS57124515A/en
Publication of JPS6245002B2 publication Critical patent/JPS6245002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明はロールベンダを備えて圧延機を用いて
圧延を行う場合の被圧延材に対する板厚及び平坦
度の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the thickness and flatness of a rolled material when rolling is performed using a rolling mill equipped with a roll bender.

一般に鋼板にはその長手方向、幅方向におい
て、その素材内の冶金的性質にばらつきが有り、
また圧延に先立つ加熱炉内での加熱温度にも例え
ば加熱炉内でスキツドと当接していた部分に形成
される、所謂スキツドマーク部分とスキツドマー
クが形成されていない部分とで40〜80℃程度のば
らつきの発生を避けられないので現状である。こ
のような温度のばらつき等は鋼板素材の変化抵抗
のばらつきとなり、もし圧延荷重を一定とした圧
延を行つた場合には鋼板の長手方向にその変形抵
抗の不均一さと等価な板厚変動が生じてしまうこ
ととなる。また上述した如き板厚変動要因は鋼板
自体に依る場合ばかりでなく、例えば圧延ロール
それ自体のたわみ、偏心等によつて鋼板の幅方向
に所謂板クラウンと称され板厚のばらつきが生じ
てしまう。
In general, steel plates have variations in metallurgical properties within the material in the longitudinal and width directions.
In addition, the heating temperature in the heating furnace prior to rolling varies by about 40 to 80°C between the so-called skid marks formed in the part that was in contact with the skid in the heating furnace and the parts where skid marks are not formed. This is the current situation because the occurrence of this cannot be avoided. Such temperature variations cause variations in the change resistance of the steel plate material, and if rolling is performed with a constant rolling load, the plate thickness will vary in the longitudinal direction of the steel plate, which is equivalent to the non-uniformity of the deformation resistance. This will result in In addition, the above-mentioned factors for variation in plate thickness do not only depend on the steel plate itself; for example, due to deflection or eccentricity of the rolling roll itself, variations in plate thickness occur in the width direction of the steel plate, called a plate crown. .

このような長手方向、幅方向における板厚のば
らつきは鋼板それ自体の品質を低下させることは
勿論、鋼板を素材とする各種加工品自体の品質に
与える影響も大きく、また素材自体の歩留低下の
大きな要因ともなつている。このため従来にあつ
ては厚板等の被圧延材の長手方向に生ずる板厚変
動を制御すべく、ゲージメータ方式による板厚制
御が、また被圧延材の幅方向に生ずる板厚変動を
制御すべくロールベンダを用いた板厚制御が広く
採用されている。
Such variations in plate thickness in the longitudinal and width directions not only reduce the quality of the steel plate itself, but also have a significant impact on the quality of various processed products made from steel plate, and also reduce the yield of the material itself. It is also a major factor. For this reason, in the past, in order to control plate thickness fluctuations that occur in the longitudinal direction of rolled materials such as thick plates, plate thickness control using a gauge meter method was used to control plate thickness fluctuations that occur in the width direction of rolled materials. Therefore, sheet thickness control using a roll bender is widely adopted.

前者のゲージメータ方式による板厚制御は、圧
延後の板厚が圧延中における圧延ロール間隔、即
ちロールギヤツプによつて定まり、圧延中におけ
るロールギヤツプは無負荷時のロールギヤツプと
負荷時の圧延機の変形量、即ちミルスプリング量
とによつて、換言すれば下記(1)式で表わされる所
謂ゲージメータ方式に基づいて行なわれる。
In the former method of controlling plate thickness using a gauge meter, the plate thickness after rolling is determined by the distance between rolling rolls during rolling, that is, the roll gap, and the roll gap during rolling is determined by the roll gap under no load and the amount of deformation of the rolling mill under load. , that is, the amount of mill spring, in other words, based on the so-called gauge meter method expressed by the following equation (1).

h=S+P/M …(1) 但し、h:出側板厚(mm) S:無負荷時の圧延ロール間隔(mm) P:圧延荷重(ton) M:圧延機のミル定数 そしてこのための具体的な制御系は第2図の如
く構成される。図中1は被圧延材、2,2はワー
クロール、3,3はバツクアツプロール、4はロ
ードセル、15は無負荷時の圧延ロール位置検出
用のセンサである。いま例えば被圧延材1にスキ
ツドマークが存在したため、変形抵抗が異なり、
圧延荷重がΔPdだけ変化したとすると、ロード
セル4からの信号を制御部16に取り込み、この
圧延荷重変化に依る板厚変化量ΔPd/Mを算出
し、次いでこの板厚変化量を解消するため、ロー
ルギヤツプ変化量ΔSをΔS+ΔP/M=0が成
立するよう調節すべく圧下量調節部18に制御信
号を発するようにしてある。ロールギヤツプをΔ
Sだけ変更せしめると、被圧延材1の塑性系数を
Qとした場合再び圧延荷重は−MQ/M+Q・Δ
Sだけ変化することとなり、結局ロールギヤツプ
は−M+Q/M・ΔPd/Mだけ変化し、圧延荷
重の変化量は下記(2)式の如くになり、 ΔP=ΔPd−MQ/M+Q・ΔS =ΔPd+MQ/M+Q・M+Q/M・ΔPd/M =M+Q/M・ΔPd …(2) 従つて板厚変化量Δhは(3)式の如く零となつて板
厚変化が解消されることとなる。
h=S+P/M...(1) However, h: Output plate thickness (mm) S: Roll spacing at no load (mm) P: Rolling load (ton) M: Mill constant of the rolling mill And specifics for this The control system is constructed as shown in FIG. In the figure, 1 is a material to be rolled, 2 and 2 are work rolls, 3 and 3 are backup rolls, 4 is a load cell, and 15 is a sensor for detecting the position of the rolling rolls when no load is applied. For example, because there was a skid mark on the rolled material 1, the deformation resistance was different,
Assuming that the rolling load changes by ΔPd, the signal from the load cell 4 is input to the control unit 16, the plate thickness change amount ΔPd/M due to this rolling load change is calculated, and then, in order to eliminate this plate thickness change amount, In order to adjust the roll gap change amount ΔS so that ΔS+ΔP/M=0, a control signal is issued to the rolling reduction amount adjusting section 18. Roll gap Δ
If only S is changed, if the plasticity system of rolled material 1 is Q, the rolling load will be -MQ/M+Q・Δ
The roll gap will change by -M+Q/M・ΔPd/M, and the amount of change in rolling load will be as shown in equation (2) below, ΔP=ΔPd−MQ/M+Q・ΔS =ΔPd+MQ/ M+Q・M+Q/M・ΔPd/M =M+Q/M・ΔPd (2) Therefore, the plate thickness change amount Δh becomes zero as shown in equation (3), and the plate thickness change is eliminated.

Δh=ΔS+ΔP/M=−M+Q/M ・ΔPd/M+1/M・M+Q/M・ΔPd=0
…(3) 一方ロールベンダを用いる幅方向の板厚制御は
ワークロールに外力を加えてこれを曲げ、ワーク
ロールの摩耗、たわみを補償しつつ圧延するもの
であつて、型式的にはワークロールベンダとバツ
クアツプロールベンダとがある。ワークロールベ
ンダについてその具体的構成を示すと第3図の如
く構成される。図中1は被圧延材、2,2はワー
クロール、3,3はバツクアツプロールを示して
おり、両ワークロール2,2の軸受筐2l,2l
と2r,2rとの間又は各ワークロール2,2の
軸受筐2l,2rとバツクアツプロール3,3の
軸受筐3l,3rとの間を油圧シリンダ(図示せ
ず)によつて連結し、各軸受筐2l,2l,2
r,2r間又は2l,3l,2r,3r間に夫々
矢符で示す如きロールベンド力Fを加え、ワーク
ロール2,2を凸又は凹状に曲げることによつて
被圧延材1の幅方向における板厚を制御する。
Δh=ΔS+ΔP/M=-M+Q/M ・ΔPd/M+1/M・M+Q/M・ΔPd=0
...(3) On the other hand, widthwise thickness control using a roll bender involves applying an external force to the work roll to bend it and rolling while compensating for wear and deflection of the work roll. There are vendors and back-up vendors. The specific structure of the work roll vendor is shown in FIG. 3. In the figure, 1 shows the material to be rolled, 2 and 2 show the work rolls, and 3 and 3 show the back-up rolls.
and 2r, 2r or between the bearing casings 2l, 2r of each work roll 2, 2 and the bearing casings 3l, 3r of the backup rolls 3, 3 by a hydraulic cylinder (not shown), Each bearing housing 2l, 2l, 2
By applying a roll bending force F as shown by arrows between r and 2r or between 2l, 3l, 2r, and 3r, and bending the work rolls 2 and 2 into a convex or concave shape, the work rolls 1 are bent in the width direction of the rolled material 1. Control plate thickness.

ところが例えば上述した如きゲージメータ方式
によつて被圧延材の長手方向における板厚を制御
すると、この板厚制御を行なわない場合に比較し
て平坦度が著しく悪化し、換言すれば下記(4)式で
定義される板クラウン比率が著しく変動してしま
う。
However, if the thickness of the rolled material in the longitudinal direction is controlled using the gauge meter method described above, the flatness will be significantly worse than when this thickness control is not performed.In other words, the following (4) The plate crown ratio defined by the formula changes significantly.

/h=h−h/h …(4) 但し、CR/h:板クラウン比率 hc:被圧延材の幅方向における中央部
の板厚 he:被圧延材の幅方向におけるエツジ
部の板厚 h:被圧延材の幅方向の板厚平均値 (=2h+h/3) CR:板クラウン(=hc−he) 板クラウンCRは特開昭51−93768に示されるよ
うに下記(5)式で与えられる。
C R /h=h c -h e /h (4) However, C R /h: plate crown ratio h c : plate thickness at the center in the width direction of the rolled material h e : width direction of the rolled material Plate thickness at the edge part h: Average plate thickness in the width direction of the rolled material (=2h c +h e /3) C R : Plate crown (=h c - h e ) Plate crown C R is the thickness of JP-A-51 −93768, which is given by the following equation (5).

R=αpP−αBB−αCCB −{αC+(B/W)}RCB …(5) 但し、αp,αB,αC:圧延機の寸法及び板幅
によつて決まる係数 RCB:バツクアツプロールのクラウン量 RCW:ワークロールのクラウン量 P:圧延荷重 PB:ロールベンド力 W:ワークロールの胴長 B:板幅 例えば既述した如く、被圧延材1に存在するス
キツドマークのために圧延荷重がΔPdだけ変動
した際、これによる板厚変化量ΔPd/Mを解消
すべく、ロールギヤツプを変更する場合におい
て、ロールギヤツプの変化量を既述した如くに−
M+Q/M・ΔPd/Mとし、圧延荷重ΔPをM
+Q/M・ΔPdに制御したとすると、これに伴
う板クラウン比率の変化量Δ(CR/h)は(5)式
においてRCB,RCW,PBを零として下記(6)式だ
け変化することとなる。
C R = α p P - α B P B - α C R CB - {α C + (B/W) 2 } R CB ... (5) However, α p , α B , α C : dimensions of the rolling mill and Coefficient determined by the strip width R CB : Crown amount of back-up roll R CW : Crown amount of work roll P: Rolling load P B : Roll bending force W: Body length of work roll B: Strip width For example, as mentioned above. , when the rolling load fluctuates by ΔPd due to skid marks existing in the rolled material 1, when the roll gap is changed in order to eliminate the plate thickness change ΔPd/M caused by this, the amount of change in the roll gap has already been described. Like-
M+Q/M・ΔPd/M, rolling load ΔP is M
Assuming that control is performed to +Q/M・ΔPd, the accompanying change in plate crown ratio Δ(C R /h) can be calculated using the following equation (6) with R CB , R CW , and P B set to zero in equation (5). Things will change.

これに対してゲージメータ方式による板厚制御
を行なわなかつた場合には、当然圧延荷重がΔ
Pd変化したことによつて板厚はΔPd/Mだけ変
化することとなるから下記(8)式の如く与えられ
る。先ずΔ(CR/h)を(7)式の如く書き変え、
各ΔCR,Δhに上記条件 Δ(C/h)=ΔC・h−C・Δh/h =ΔC/h−C/h−Δh/h …(7) を代入すると Δ(C/h)=α・ΔPd/h−C/h・ΔP
d/M/h =(αp−C/h・1/M)・ΔPd/h
…(8) (6),(8)式を直接比較しても両者の差を具体的に
把握しがたいから、各式に夫々具体的な数値例を
代入してみる。即ち係数αp:0.13×10-3(mm/
ton)(但し、圧延ロール胴長W:2030mm、板幅:
1250mm、ワークロール径:700mm、バツクアツプ
ロール径:1370mm)ミル剛性係数M:500ton/
mm、被圧延材の塑性係数Q:2000ton/mm、出口
板厚h:3.2mm、板クラウンCR:0.030mmとす
る。而して(6)式は下記(6′)式の如く、また(8)式
は下記(8′)式の如くになる。
On the other hand, if the plate thickness is not controlled using the gauge meter method, the rolling load will naturally be Δ
Since the plate thickness changes by ΔPd/M due to the change in Pd, it is given by the following equation (8). First, rewrite Δ(C R /h) as in equation (7),
Substituting the above condition Δ(C R /h)=ΔC R・h−C R・Δh/h 2 =ΔC R /h−C R /h−Δh/h (7) into each ΔC R and Δh gives Δ (C R /h)=α p・ΔPd/h−C R /h・ΔP
d/M/h = (α p −C R /h・1/M)・ΔPd/h
...(8) Since it is difficult to understand the difference between the two directly by directly comparing equations (6) and (8), we will substitute concrete numerical examples into each equation. That is, coefficient α p : 0.13×10 -3 (mm/
ton) (However, rolling roll body length W: 2030mm, plate width:
1250mm, Work roll diameter: 700mm, Backup roll diameter: 1370mm) Mill rigidity coefficient M: 500ton/
mm, plasticity coefficient Q of rolled material: 2000 ton/mm, exit plate thickness h: 3.2 mm, plate crown CR : 0.030 mm. Therefore, equation (6) becomes equation (6') below, and equation (8) becomes equation (8') below.

Δ(C/h)=0.65×10-3・ΔPd/h …(6′) Δ(C/h)=0.11×10-3・ΔPd/h …(8′) (6′),(8′)式を比較してみると、ゲージメー
タ方式の板厚制御を実施した場合には実施しない
場合に比較して板クラウン比率Δ(CR/h)の
変化量が略6倍にも達していることが解る。
Δ(C R /h) = 0.65× 10 -3・ΔPd/h …(6′) Δ(C R /h)=0.11×10 −3・ΔPd/h …(8′) (6′), ( Comparing Equation 8'), it is found that the amount of change in plate crown ratio Δ(C R /h) is approximately six times greater when gauge meter type plate thickness control is implemented than when it is not implemented. I understand that I have reached it.

そこで従来にあつては、平坦度を確保するため
板厚制御を断念することが多かつた。
Therefore, in the past, thickness control was often abandoned in order to ensure flatness.

本発明はかかる事情に鑑みなされたものであつ
て、その目的とするところは板厚制御と平坦度、
換言すれば板クラウン比率の制御とを1スタンド
において同時的に行うことにより、板厚寸法精度
は勿論大幅な平坦度の向上が図れるようにした板
厚平坦度の制御方法を提供するにある。
The present invention was made in view of the above circumstances, and its purpose is to control plate thickness, improve flatness,
In other words, the object of the present invention is to provide a method for controlling plate thickness flatness, which can significantly improve not only plate thickness dimensional accuracy but also flatness by simultaneously controlling the plate crown ratio in one stand.

本発明に係る板厚及び平坦度の制御方法は被圧
延材に対する圧延荷重の変化に伴う板厚変化量を
解消すべくロールギヤツプを制御する過程で、こ
れと同期して下式に基きロールベンド力を制御す
ることを特徴とする。
The method for controlling plate thickness and flatness according to the present invention is performed in the process of controlling the roll gap in order to eliminate the amount of change in plate thickness due to changes in the rolling load on the rolled material, and in synchronization with this, the roll bending force is It is characterized by controlling.

但し、ΔPB:ロールベンド力変更量 CR0:基準板クラウン h0:基準出口板厚 M:圧延荷重変化に基くロールギヤツプ
変化の大きさを示す係数 αp:圧延荷重変化に基く板クラウン変
化の大きさを示す係数 αB:ロールベンド変化に基く板クラウ
ン変化の大きさを示す係数 ΔP:圧延荷重変化量 ΔS:ロールギヤツプ変化量 以下先ず本発明に係る被圧延材の板厚及び平坦
度の制御方法(以下本発明方法という)の理論に
ついて説明する。先ず上述した如くゲージメータ
方式による長手方向板厚制御と、ロールベンダに
よる幅方向板厚制御を同時的に行うものとする
と、被圧延材には材料の変形に際して発生する
力、即ち圧延荷重Pの外に、ロールベンダによる
ロールベンド力PBが作用するから、ロールベン
ダに対する剛性係数をMB、ロールギヤツプ変化
量をΔS、圧延荷重変化量をΔPとして被圧延材
の板厚抵抗Δhは下記(9)式で与えることができ
る。
However, ΔP B : Amount of change in roll bending force C R0 : Reference plate crown h 0 : Reference exit plate thickness M : Coefficient indicating the magnitude of roll gap change based on rolling load change α p : Coefficient of plate crown change based on rolling load change Coefficient that indicates the magnitude α B : Coefficient that indicates the magnitude of plate crown change based on roll bend change ΔP: Rolling load variation ΔS: Roll gap variation Below, first, control of plate thickness and flatness of rolled material according to the present invention The theory of the method (hereinafter referred to as the method of the present invention) will be explained. First, as mentioned above, if the longitudinal plate thickness control using the gauge meter method and the width direction plate thickness control using the roll bender are performed simultaneously, the rolled material is subject to the force generated when the material deforms, that is, the rolling load P. Since the roll bending force P B by the roll bender acts on the outside, the plate thickness resistance Δh of the rolled material is calculated as follows ( 9 ) can be given by the formula.

Δh=ΔS+ΔP/M+ΔPB/MB …(9) 一コイルを圧延する間のワークロールのクラウ
ン量RCW,バツクアツプロールのクラウン量RCB
の変化量ΔRCW,ΔRCBは共に小さいのでこれを
共に零として、(5)式より被圧延材のクラウン変化
量ΔCRは下記(10)式で与えられる。
Δh=ΔS+ΔP/M+ΔP B /M B …(9) Crown amount of work roll R CW during rolling one coil, Crown amount of back up roll R CB
Since the amounts of change ΔR CW and ΔR CB are both small, they are both set to zero, and the amount of change in the crown of the rolled material ΔC R is given by the following equation (10) from equation (5).

ΔCR=αp・ΔP−αB・ΔPB …(10) いまパススケジユールにおいて設定した目標
値、換言すれば基準値としての出口板厚をh0、板
クラウンをCR0とし、この状態で良好な平坦度を
得るため、換言すれば板クラウン比率CR0/h0
一定の被圧延材を得るためには、板クラウン比率
の変化量Δ(CR/h)=0、即ち(7)式においてC
R,hを夫々CR0,h0に置き換えて下記(11)式の関
係が成立するようにすればよいこととなる。
ΔC Rp・ΔP−α B・ΔP B …(10) The target value set in the pass schedule, in other words, the reference value, is the exit plate thickness as h 0 and the plate crown as C R0 , and in this state, In order to obtain good flatness, in other words, to obtain a rolled material with a constant plate crown ratio C R0 /h 0 , the amount of change in plate crown ratio Δ(C R /h) = 0, that is, (7 ), C
What is necessary is to replace R and h with C R0 and h 0, respectively, so that the relationship of equation (11) below holds true.

ΔCR=CR0/h0・Δh …(11) 上記(9),(10)式の各Δh,ΔCRを(11)式に代入
し、ΔPBについて整理すると、(11)式を満足する
ために必要とされるロールベンダによりワークロ
ール又はバツクアツプロールに付与すべきベンド
力は下記(12)式の如く与えられる。
ΔC R =C R0 /h 0・Δh …(11) By substituting each Δh and ΔC R in equations (9) and (10) above into equation (11) and rearranging for ΔP B , equation (11) is satisfied. The bending force required to be applied to the work roll or backup roll by the roll bender to achieve this is given as shown in equation (12) below.

逆にベンド力を上記(12)式で与えられる如く変化
させた場合における被圧延材の板厚変化量Δh、
板クラウン変化量ΔCRを求めてみるとこれらは
上記ΔPBを夫々(9),(10)式に代入することによ
り、下記(9′),(10′)式の如く与えられる。
Conversely, when the bending force is changed as given by the above equation (12), the thickness change Δh of the rolled material,
When the plate crown change amount ΔC R is determined, these can be obtained as shown in the following equations (9') and (10') by substituting the above-mentioned ΔP B into equations (9) and (10), respectively.

(9′),(10′)式のΔh,ΔCR間には前記(11)式
の関係が成立しており、板クラウン比率は一定に
保持されることが解る。
It can be seen that the relationship of equation (11) above holds between Δh and ΔC R in equations (9') and (10'), and the plate crown ratio is maintained constant.

従つて、上記(9′)式のΔh→0とするロール
ギヤツプ変更量と、(12)式に基いて求めたロールベ
ンド力変更量を実現すべくゲージメータ方式の板
厚制御と、ロールベンダに対するロールベンド力
調節とを同時的に行うことによつて、被圧延材を
板厚精度が高く、しかも平坦度にも優れた製品に
圧延し得ることとなる。
Therefore, in order to realize the roll gap change amount to make Δh → 0 in the above equation (9') and the roll bending force change amount obtained based on the equation (12), we need to control the plate thickness using a gauge meter and adjust the roll bender to By simultaneously adjusting the roll bending force, the material to be rolled can be rolled into a product with high plate thickness accuracy and excellent flatness.

次に本発明方法をこれを実施する装置及びその
制御系を示す第1図に基いて具体的に説明する。
第1図において、1は被圧延材、2,2はワーク
ロール、3,3はバツクアツプロール、4は圧延
荷重を検出するロードセル、5はワークロール
2,2間のロールギヤツプを調節する圧下調節
器、6はロールギヤツプセンサである。そして前
記ワークロール2,2の軸受筐2a,2a間には
ワークロール2,2のクラウン量を調節するため
のロールベンダ7及びロールベンダ7からワーク
ロール2,2に付与するロールベンド力センサ8
が配設されている。ロードセル4から出力された
圧延荷重Pとロールベンド力PBとの和である全
圧延荷重信号及びベンド力センサ8から出力され
たベンド力PBの信号は減算器9に取り込まれ、
その差から圧延荷重Pが算出され、この圧延荷重
Pの信号が減算器10に出力される。減算器10
には予め基準圧延荷重P0が入力されており、この
基準圧延荷重P0と圧延荷重Pとの差から圧延荷重
変化量ΔPが算出され、夫々制御部11,12に
出力される。一方ロールギヤツプセンサ6から出
力されたロールギヤツプSの信号は減算器13に
取込まれ、該減算器13に予め入力されている基
準ロールギヤツプS0との差であるロールギヤツプ
変化量ΔSが夫々前記制御部11,12に出力さ
れる。制御部11は前記各減算器10,13から
入力された圧延荷重変化量ΔP、ロールギヤツプ
変化量ΔS及び予め入力されているαB,αp,C
R0,h0,M等に基いて(12)式に従いベンド力変更量
ΔPBを算出しベンド力をΔPBだけ変更すべくロ
ールベンダ7に指令信号を出力する。
Next, the method of the present invention will be explained in detail with reference to FIG. 1, which shows an apparatus for carrying out the method and its control system.
In Fig. 1, 1 is a material to be rolled, 2 and 2 are work rolls, 3 and 3 are back-up rolls, 4 is a load cell that detects the rolling load, and 5 is a rolling adjustment that adjusts the roll gap between the work rolls 2 and 2. 6 is a roll gap sensor. Between the bearing casings 2a, 2a of the work rolls 2, 2 is a roll bender 7 for adjusting the crown amount of the work rolls 2, 2, and a roll bending force sensor 8 applied from the roll bender 7 to the work rolls 2, 2.
is installed. The total rolling load signal which is the sum of the rolling load P outputted from the load cell 4 and the roll bending force P B and the signal of the bending force P B outputted from the bending force sensor 8 are taken into a subtracter 9,
A rolling load P is calculated from the difference, and a signal of this rolling load P is output to the subtracter 10. Subtractor 10
A reference rolling load P 0 is input in advance to the rolling load P 0 , and a rolling load change amount ΔP is calculated from the difference between the reference rolling load P 0 and the rolling load P, and is output to the control units 11 and 12, respectively. On the other hand, the roll gap S signal output from the roll gap sensor 6 is taken into a subtracter 13, and the roll gap change amount ΔS, which is the difference from the reference roll gap S0 inputted in advance to the subtracter 13, is It is output to the control sections 11 and 12. The control unit 11 receives the rolling load change amount ΔP, the roll gap change amount ΔS input from each of the subtractors 10 and 13, and α B , α p , C input in advance.
Based on R0 , h0 , M, etc., the bending force change amount ΔP B is calculated according to equation (12), and a command signal is output to the roll bender 7 to change the bending force by ΔP B.

一方制御部12は同じく各減算器10,13か
ら入力された圧延荷重変化量ΔP、ロールギヤツ
プ変化量ΔS及び予め入力されているαB,αp
R0,h0,M,MBに基いて(9′)式のΔh→0
とするに必要な関係、即ち(αB/M+αp/M
B)ΔP+αBΔS→0、換言すればΔS+(1/
M+αp/αB・1/MB)ΔP→0とするに必要
なロールギヤツプ変更量ΔS′を算出し、ロールギ
ヤツプをΔS′だけ変更すべく圧下量設定器5に指
令信号を発する。
On the other hand, the control unit 12 similarly receives the rolling load change amount ΔP, the roll gap change amount ΔS input from each subtractor 10 and 13, and α B , α p ,
Based on C R0 , h 0 , M, and M B , Δh→0 in equation (9')
The necessary relationship is (α B /M + α p /M
B ) ΔP+α B ΔS→0, in other words, ΔS+(1/
M+α pB ·1/M B ) Calculate the roll gap change amount ΔS' necessary to make ΔP → 0, and issue a command signal to the reduction amount setter 5 to change the roll gap by ΔS'.

これによつて被圧延材1はその長手方向の板厚
及び幅方向の板厚、換言すれば板クラウン比率を
一定とする制御が同時的に実施されることとな
り、長手方向に板厚が一定でしかも板クラウン比
率が一定、換言すれば平坦度の高い被圧延材1が
得られることとなる。
As a result, the rolled material 1 is simultaneously controlled to have a constant plate thickness in the longitudinal direction and a plate thickness in the width direction, in other words, the plate crown ratio is constant, so that the plate thickness is constant in the longitudinal direction. Moreover, the plate crown ratio is constant, in other words, the rolled material 1 with high flatness can be obtained.

以上の如く本発明方法にあつては板厚及び平坦
度が同時的に制御されることとなるので、板厚制
御に伴う平坦度の悪化を単1スタンドにて解消す
ることが出来て板厚は勿論、平坦度も大幅に向上
し得るなど、本発明は優れた効果を奏するもので
ある。
As described above, in the method of the present invention, the plate thickness and flatness are controlled simultaneously, so the deterioration of flatness accompanying plate thickness control can be resolved with a single stand, and the plate thickness Of course, the present invention has excellent effects such as significantly improving the flatness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる装置及び制
御系を示す模式図、第2図はゲージメータ方式の
板厚制御方法に用いる装置及び制御系を示す模式
図、第3図はロールベンダの原理を現す説明図で
ある。 1……被圧延材、2……ワークロール、3……
バツクアツプロール、4……ロードセル、5……
圧下量設定器、6……ロールギヤツプセンサ、7
……ロールベンダ、9,10……減算器、11,
12……制御部、13……減算器。
Fig. 1 is a schematic diagram showing the equipment and control system used to implement the method of the present invention, Fig. 2 is a schematic diagram showing the equipment and control system used in the gauge meter type plate thickness control method, and Fig. 3 is a schematic diagram showing the equipment and control system used in the method of controlling plate thickness using a gauge meter. FIG. 2 is an explanatory diagram showing the principle. 1... Rolled material, 2... Work roll, 3...
Backup roll, 4...Load cell, 5...
Rolling amount setting device, 6...Roll gap sensor, 7
...Roll bender, 9,10...Subtractor, 11,
12...Control unit, 13...Subtractor.

Claims (1)

【特許請求の範囲】 1 被圧延材に対する圧延荷重の変化に伴う板厚
変化量を解消すべくロールギヤツプを制御する過
程で、これと同期して下式に基きロールベンド力
を制御することを特徴とする板厚及び平坦度の制
御方法。 但し、ΔPB:ロールベンド力変更量 CR0:基準板クラウン h0:基準出口板厚 M:圧延荷重変化に基くロールギヤツプ
変化の大きさを示す係数 MB:ロールベンド力変化に基くロール
ギヤツプ変化の大きさを示す係数 αp:圧延荷重変化に基く板クラウン変
化の大きさを示す係数 αB:ロールベンド変化に基く板クラウ
ン変化の大きさを示す係数 ΔP:圧延荷重変化量 ΔS:ロールギヤツプ変化量
[Claims] 1. In the process of controlling the roll gap in order to eliminate the amount of change in plate thickness due to changes in the rolling load on the rolled material, the roll bending force is controlled based on the following formula in synchronization with this process. Method for controlling plate thickness and flatness. However, ΔP B : Amount of change in roll bending force C R0 : Reference plate crown h 0 : Standard exit plate thickness M : Coefficient indicating the magnitude of roll gap change based on change in rolling load M B : Coefficient indicating the magnitude of roll gap change based on change in roll bending force Coefficient showing the magnitude α p : Coefficient showing the magnitude of plate crown change based on rolling load change α B : Coefficient showing the size of plate crown change based on roll bend change ΔP: Rolling load change ΔS: Roll gap change
JP56011065A 1981-01-27 1981-01-27 Controlling method for sheet thickness and surface evenness Granted JPS57124515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56011065A JPS57124515A (en) 1981-01-27 1981-01-27 Controlling method for sheet thickness and surface evenness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56011065A JPS57124515A (en) 1981-01-27 1981-01-27 Controlling method for sheet thickness and surface evenness

Publications (2)

Publication Number Publication Date
JPS57124515A JPS57124515A (en) 1982-08-03
JPS6245002B2 true JPS6245002B2 (en) 1987-09-24

Family

ID=11767584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56011065A Granted JPS57124515A (en) 1981-01-27 1981-01-27 Controlling method for sheet thickness and surface evenness

Country Status (1)

Country Link
JP (1) JPS57124515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101505U (en) * 1985-12-16 1987-06-27
JPH02246924A (en) * 1989-03-22 1990-10-02 Morito Kk Arm band for measuring blood pressure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153512A (en) * 1983-02-22 1984-09-01 Kawasaki Steel Corp Sheet thickness controlling method
KR100638834B1 (en) 2006-03-03 2006-10-27 태창기계공업(주) Active crown controllable leveller
DE102006024101A1 (en) 2006-05-23 2007-11-29 Sms Demag Ag Roll stand and method for rolling a rolled strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101505U (en) * 1985-12-16 1987-06-27
JPH02246924A (en) * 1989-03-22 1990-10-02 Morito Kk Arm band for measuring blood pressure

Also Published As

Publication number Publication date
JPS57124515A (en) 1982-08-03

Similar Documents

Publication Publication Date Title
US4033165A (en) Apparatus for controlling flatness of metal sheet during rolling
US5406817A (en) Rolling mill and rolling method
EP1607149B1 (en) Method and apparatus for rolling metallic plate material
JPH0626723B2 (en) Plate shape control method
JPS6245002B2 (en)
CN113909308B (en) Symmetrical adjustment method for roll gap of hot continuous rolling mill
US4483165A (en) Gauge control method and apparatus for multi-roll rolling mill
JPH0724849B2 (en) Shape control method in strip rolling
JP4568164B2 (en) Rolling straightening method for differential thickness steel plate
KR20010112335A (en) Control of surface evenness for obtaining even cold strip
US3404550A (en) Workpiece shape and thickness control
JP2826167B2 (en) Method and apparatus for correcting plate shape asymmetry
JPS649086B2 (en)
JP2993414B2 (en) Plate Profile Control Method in Hot Rolling
KR100349158B1 (en) Manufacturing method of tapered thick plate
JPH11123457A (en) Crowning device of roller leveler and lateral deflection correcting method using the device
JP2550267B2 (en) Camber control method in plate rolling
JPH067824A (en) Method for controlling plate thickness in rolling mill
JP2719212B2 (en) Strip shape and strip crown control method in strip rolling
RU2204451C2 (en) Method for determining initial interroll gap at tuning rolling stand
JP2500133B2 (en) Rolling mill edge drop control method
JPS61154709A (en) Device for controlling thickness profile of sheet stock
JPH0234241B2 (en)
JP3003496B2 (en) Preset method of rolling mill
JPS62244513A (en) Control method for plate thickness in continuous rolling mill