JPS6244633B2 - - Google Patents

Info

Publication number
JPS6244633B2
JPS6244633B2 JP54060447A JP6044779A JPS6244633B2 JP S6244633 B2 JPS6244633 B2 JP S6244633B2 JP 54060447 A JP54060447 A JP 54060447A JP 6044779 A JP6044779 A JP 6044779A JP S6244633 B2 JPS6244633 B2 JP S6244633B2
Authority
JP
Japan
Prior art keywords
heavy water
reactor
poison
control
void coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54060447A
Other languages
Japanese (ja)
Other versions
JPS55152495A (en
Inventor
Hiroyuki Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6044779A priority Critical patent/JPS55152495A/en
Publication of JPS55152495A publication Critical patent/JPS55152495A/en
Publication of JPS6244633B2 publication Critical patent/JPS6244633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は多数本の制御棒と重水中の液体ポイズ
ン濃度の制御装置を備えた重水を減速材として使
用する重水減速型原子炉に係り、低出力時の原子
炉自己制御特性を改善するために冷却材ボイド反
応度係数をある値以下とするような低出力時の制
御棒および液体ポイズン濃度の操作法およびその
装置に関する。
Detailed Description of the Invention The present invention relates to a heavy water-moderated nuclear reactor that uses heavy water as a moderator and is equipped with a large number of control rods and a device for controlling the concentration of liquid poison in heavy water. This paper relates to a control rod and a method for controlling liquid poison concentration at low power to keep the coolant void reactivity coefficient below a certain value in order to improve control characteristics, and a device therefor.

従来の重水炉の運転法、特に低出力時の制御棒
の操作法および液体ポイズン濃度の操作法につい
て述べる。
We will discuss conventional methods of operating a heavy water reactor, especially how to operate the control rods at low power and how to control the liquid poison concentration.

重水減速沸騰軽水冷却型原子炉では炉の制御特
性に冷却材のボイド体積率の変化にともなう反応
度変化すなわち冷却材ボイド係数の値が大きな影
響を与える。例えば、ボイド係数が正の値を示す
場合を考えると、炉の出力を上昇させた場合、冷
却材中のボイド体積率を増加し、正の反応度が投
入され、原子炉の出力はますます上昇するという
悪循環を生じる。これを抑えるために、制御棒を
うまく操作しなければならない。しかし、炉出力
で5%〜20%の領域は特に運転操作に注意を要す
る。この原因は2つあり、第1は低出力ほど冷却
材ボイド係数の正の度合が大きいことである。第
1図は60MWeクラスの重水減速沸騰軽水冷却型
原子炉の平衡炉心における代表的な冷却材ボイド
反応度の変化である。この曲線の傾き、すなわち
1%ボイド率変化当りの反応度変化(%ΔK/
K)が冷却材ボイド係数である。この曲線の傾き
の変化から、ボイド体積率が小さいほど、すなわ
ち、炉の出力が低いほどボイド係数は正側の大き
な値を示す。したがつて、低出力ほどボイド係数
は正であり、炉の制御特性は悪化する。
In a heavy water-moderated boiling light water-cooled nuclear reactor, the change in reactivity associated with the change in the void volume fraction of the coolant, that is, the value of the coolant void coefficient, has a large influence on the control characteristics of the reactor. For example, if we consider the case where the void coefficient shows a positive value, if we increase the reactor power, we will increase the void volume fraction in the coolant, positive reactivity will be introduced, and the reactor power will become more and more This creates a vicious cycle of rising prices. In order to suppress this, the control rods must be operated skillfully. However, in the range of 5% to 20% of the furnace output, special care must be taken in operation. There are two reasons for this; the first is that the lower the output, the more positive the coolant void coefficient becomes. Figure 1 shows typical changes in coolant void reactivity in the equilibrium core of a 60 MWe class heavy water-moderated boiling light water-cooled reactor. The slope of this curve, that is, the change in reactivity per 1% change in void ratio (%ΔK/
K) is the coolant void coefficient. From the change in the slope of this curve, the smaller the void volume fraction, that is, the lower the furnace output, the larger the positive value of the void coefficient becomes. Therefore, the lower the power, the more positive the void coefficient, and the worse the control characteristics of the furnace.

第2は低出力ほど出力変化当りのボイド体積率
の変化が大きいことである。第2図は冷却材の蒸
気重量率とボイド体積率の関係を示す図である。
蒸気重量率と原子炉出力は正比例することから、
第2図から、炉出力が低いほど出力変化当りのボ
イド体積率の変化が大きくなる。この結果、ボイ
ド係数が正であるため、低出力ほど正の反応度が
大きく投入され、炉の制御特性は悪化する。
Second, the lower the output, the greater the change in void volume fraction per change in output. FIG. 2 is a diagram showing the relationship between the steam weight fraction of the coolant and the void volume fraction.
Since steam weight rate and reactor power are directly proportional,
From FIG. 2, the lower the furnace power, the larger the change in void volume fraction per change in power. As a result, since the void coefficient is positive, the lower the power, the greater the positive reactivity is input, and the control characteristics of the furnace deteriorate.

以上説明した2つの理由により、低出力領域で
の運転操作は十分な注意が必要であり、炉出力を
十分監視しながら制御棒の挿入、引抜を実施する
必要があつた。それゆえ、低出力ではスクラムす
る可能性が高く、原子炉稼動率の低下をまねい
た。
For the two reasons explained above, it was necessary to be very careful when operating the reactor in the low power range, and it was necessary to insert and withdraw the control rods while monitoring the reactor power sufficiently. Therefore, at low power, there was a high possibility of scram, leading to a decrease in reactor operating efficiency.

従来技術における原水炉の運転法、特に原子炉
出力上昇時の制御棒操作法、重水中ポイズン法を
簡単に説明する。第3図が従来例における出力上
昇時の制御棒挿入本数及び重水中ポイズン濃度の
変化である。この方法では、〜50%出力までは制
御棒引抜きによつて出力を上昇させ、〜50%出力
から100%出力までは重水中ポイズン(ボロン)
濃度の除去によつて出力を上昇させる。しかし、
この方法では低出力時(0%〜50%)までの重水
中ボロン濃度が高く、この結果、第4図に示すよ
うにボロン濃度が高いほどボイド係数は正側へ大
きな値を示すことから、低出力のボイド係数はま
すます、正の大きな値を示す結果となり、低出力
時の制御特性は悪化し、炉の稼動率の低下、およ
び、炉の安全性の低下をまねいていた。
The operating method of a raw water reactor in the prior art, especially the control rod operation method when increasing the reactor output, and the heavy water poison method will be briefly explained. FIG. 3 shows changes in the number of inserted control rods and the poison concentration in heavy water when the output increases in the conventional example. In this method, the output is increased by withdrawing the control rods until ~50% output, and from ~50% output to 100% output, heavy water poison (boron) is used to increase the output.
Increase output by removing concentration. but,
In this method, the boron concentration in heavy water is high up to low output (0% to 50%), and as a result, as shown in Figure 4, the higher the boron concentration, the larger the void coefficient becomes on the positive side. The void coefficient at low power increasingly shows a large positive value, and the control characteristics at low power deteriorate, leading to a decrease in the operating rate of the furnace and a decrease in the safety of the furnace.

本発明の目的は上記した従来技術の欠点をなく
し、低出力時の原子炉自己制御特性を改善するこ
とによつて、原子炉の稼動率および安全性を向上
させることを可能とする原子炉の運転法およびそ
の装置を提供するにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above and to provide a nuclear reactor capable of improving the reactor's operating rate and safety by improving the reactor self-control characteristics at low power. To provide driving methods and equipment.

本発明は低出力時の原子炉自己制御特性を改善
するために、次のような原子炉運転を採用するこ
とを特徴とする。低出力時の自己制御特性を悪く
している原因は正のボイド係数にあるため、ボイ
ド係数を負にするような運転法を考えてみる。
The present invention is characterized by adopting the following reactor operation in order to improve the reactor self-control characteristics at low power. Since the cause of poor self-control characteristics at low output is the positive void coefficient, let's consider an operating method that makes the void coefficient negative.

ボイド係数の性質をコンピユータによる炉物理
解析により調べてみると、第4図に示す如く、重
水中のボロン濃度が増加するにつれてボイド係数
がより大きな値の正側へ寄り付こうとし、一方第
5図に示す如く、制御棒挿入本数(制御棒反応度
価値)がすくなくなるほどボイド係数はより正側
へ寄り付こうとする性質があります。尚、第4図
のグラフは、制御棒挿入本数一定のもとでボロン
濃度0をボイド係数0,0に座標原点を設定して
表示したものであり、第5図のグラフはボロン濃
度一定のもとで挿入制御棒反応度価値0を相対ボ
イド反応度係数0,0に座標を規整して表示した
ものであり、特に第5図にあつては、その反応度
価値と制御棒挿入本数とは、第5図中のグラフ横
軸表示で併記した如くに比例的に対応する関係に
ある。この為に、低出力時(0%〜50%出力時)
にボロン濃度を第3図に示す如く高濃度に維持し
た状態のままで制御棒挿入本数を約7本程度まで
にすくなくすることは、極低出力時にボイド係数
が負になるようあらかじめ設定したとしてもより
正側に寄り付こうとする性質を生じて危険となり
ます上、前述のあらかじめ設定したボイド係数が
正負境界に近い場合は正側へ大きく移行してしま
う。例えば第7図中の〇印を結ぶ線の従来例の如
く、(+5〜+2)×10-5ΔK/K/%ボイド(低出力 0%〜50%出力時)となつて、炉の安全性に好ま
しくない。この為、低出力時にボロン濃度を低く
し、これとともに制御棒挿入本数を出来るだけ増
やした状態とすることが炉安全性から見て好まし
いことがわかる。以上より、低出力時のボイド係
数をより負の値で運転するためには、出来るだけ
重水中のボロン濃度は小さくし、代りに出来るだ
け多数本の制御棒を挿入する運転法が望ましいと
結論できる。
When examining the properties of the void coefficient using a computer-based reactor physical analysis, we found that as the boron concentration in heavy water increases, the void coefficient tends to move toward a larger positive value, as shown in Figure 4. As shown in the figure, the void coefficient tends to move more toward the positive side as the number of control rods inserted (control rod reactivity value) decreases. The graph in Figure 4 is displayed with a boron concentration of 0 and the coordinate origin set to a void coefficient of 0,0 with a constant number of inserted control rods, and the graph in Figure 5 is displayed with a constant boron concentration. In this figure, the inserted control rod reactivity value 0 is displayed with the coordinates adjusted to the relative void reactivity coefficient 0,0, and especially in Figure 5, the reactivity value and the number of control rods inserted are shown. are in a proportionally corresponding relationship as shown on the horizontal axis of the graph in FIG. For this reason, at low output (0% to 50% output)
As shown in Figure 3, reducing the number of inserted control rods to about 7 while maintaining a high boron concentration as shown in Figure 3 is possible if the void coefficient is set in advance to be negative at extremely low output. This is dangerous because the void coefficient tends to move more towards the positive side, and if the void coefficient set in advance is close to the positive/negative boundary, it will shift significantly towards the positive side. For example, as in the conventional example of the line connecting the circles in Figure 7, ( +5 to +2) Sexually unfavorable. For this reason, it is clear from the standpoint of reactor safety that it is preferable to lower the boron concentration during low power and to increase the number of control rods inserted as much as possible. From the above, we conclude that in order to operate with a more negative void coefficient at low output, it is desirable to reduce the boron concentration in heavy water as much as possible and instead insert as many control rods as possible. can.

この本発明における原子炉起動から100%出力
までの運転法を第6図に示す。第6図からわかる
ように従来の運転法第3図と異なり、冷却材中に
ボイドが発生する直前の〜5%出力(高温待機状
態)で重水中のボロン濃度を降去し、代りに、多
数本の制御棒を挿入する。以後、自己制御性が良
くなる適当な高出力(〜50%出力)までは、制御
棒を徐々に引抜いて出力を上昇させる。この運転
法を採用することにより、5%〜40%出力までの
ボイド係数は第7図に示すように従来例と比べ大
幅に負となり、低出力時の原子炉自己制御特性は
改善される。この結果、原子炉の稼動率および安
全性は向上する。
FIG. 6 shows the operating method from reactor startup to 100% output according to the present invention. As can be seen from Figure 6, unlike the conventional operation method in Figure 3, the boron concentration in heavy water is removed at ~5% output (high temperature standby state) just before voids occur in the coolant, and instead, Insert multiple control rods. Thereafter, the control rods are gradually withdrawn and the output is increased until a suitable high output (~50% output) where self-control becomes better. By adopting this operating method, the void coefficient from 5% to 40% power becomes significantly negative compared to the conventional example, as shown in FIG. 7, and the reactor self-control characteristics at low power are improved. As a result, the availability and safety of the reactor are improved.

次に具体的な一実施例について説明する。 Next, a specific example will be described.

第8図は本発明の重水減速型原子炉の断面図で
ある。第9図は本発明の重水減速型原子炉の低出
力時の重水中ポイズン濃度制御装置および制御棒
挿入装置の一実施例である。まず、原子炉起動で
あるが第9図の起動用制御棒2を引抜いて起動
し、出力〜5%程度で高温待機状態に達し、冷却
材の圧力は運転圧力、運転温度となる。この状態
から上の出力では冷却材中にボイドが発生し、ボ
イド係数が正の場合には低出力領域の出力上昇は
炉の安定性に十分注意を必要とする。本発明によ
る方法ではこのボイド発生開始点以上の出力上昇
を第6図に示す制御棒操作及び重水中ボロン濃度
操作によつてボイド係数を負とすることによつて
安定な出力上昇を行なうことを特徴としている
が、この制御棒操作及び重水中ボロン濃度操作を
容易に実施するために第9図に示す構成をもつ原
子炉制御装置を考案した。第9図を使用して、本
発明の制御装置の作動原理を説明する。
FIG. 8 is a sectional view of the heavy water-moderated nuclear reactor of the present invention. FIG. 9 is an embodiment of a heavy water poison concentration control device and a control rod insertion device at low output of a heavy water moderated nuclear reactor according to the present invention. First, the reactor is started by pulling out the starting control rod 2 shown in FIG. 9, and reaches a high temperature standby state at about 5% output, and the pressure of the coolant becomes the operating pressure and operating temperature. At outputs above this state, voids occur in the coolant, and if the void coefficient is positive, increasing the output in the low output range requires careful attention to the stability of the furnace. In the method according to the present invention, a stable increase in output is achieved by making the void coefficient negative by controlling the control rods and controlling the boron concentration in heavy water as shown in FIG. In order to easily operate the control rods and the boron concentration in heavy water, we devised a reactor control system having the configuration shown in Figure 9. The operating principle of the control device of the present invention will be explained using FIG.

低出力領域の出力上昇ではボイド係数が正の場
合、炉の出力変動などによつて第9図に示す如
く、ポンプ10で炉心5内の圧力管6を通つて、
圧力管内の燃料集合体7に接して蒸気ドラム11
に入り、再度ポンプ10で炉心側へ循環する蒸気
ドラム11の水位が変動し、安全設計などから設
定されたドラム水位の変動巾を超える可能性があ
り、それによつて原子炉停止系が作動し、炉が停
止することになり、炉の稼動率を低下させること
になる。そこで、本発明の装置では、許容される
蒸気ドラム水位変動巾(水位高LHと水位低LL
2つの設定点を与える)を蒸気ドラム水位変動巾
設定器22に入力し、蒸気ドラム11内の水位を
検出する蒸気ドラム水位信号発生器21から送ら
れてくるボイド発生開始直前(高温待機状態)の
蒸気ドラム水位LNとから次式によつて許容ボイ
ド係数を許容ボイド係数算出器23によつて算出
する。
When the void coefficient is positive in the power increase in the low power region, as shown in FIG.
A steam drum 11 is placed in contact with the fuel assembly 7 in the pressure pipe.
The water level in the steam drum 11, which is circulated to the reactor core side again by the pump 10, may fluctuate and exceed the drum water level fluctuation range set based on safety design etc., which may cause the reactor shutdown system to operate. , the furnace will stop, reducing the operating rate of the furnace. Therefore, in the apparatus of the present invention, the allowable steam drum water level fluctuation range (gives two set points of high water level L H and low water level L L ) is input to the steam drum water level fluctuation range setter 22, and the steam drum The allowable void coefficient calculator 23 calculates the allowable void coefficient using the following formula from the steam drum water level L N just before the start of void generation (high temperature standby state) sent from the steam drum water level signal generator 21 that detects the water level in the steam drum. Calculated by.

(∂k/∂v)L=α×Max (|LN−LH|or|LN−LL|) ……(1) ここで、αはプラント動特性解析によつて、ド
ラム水位変動巾とボイド係数の関係を算出し、整
理することによつて容易に求められる。又
(∂k/∂v)Lは許容ボイド係数を意味する。
(∂k/∂v) L = α×Max (|L N −L H |or|L N −L L |) ...(1) Here, α is the drum water level fluctuation according to the plant dynamic characteristic analysis. It can be easily obtained by calculating and arranging the relationship between the width and the void coefficient. Also, (∂k/∂v) L means the allowable void coefficient.

この許容ボイド係数は制御棒挿入量算出器24
に送られ、第4図及び第5図及び21の信号LN1
及びLN2をもとにして (∂k/∂v)N=β|(LN1−LH2)| ……(2) で算出されたボイド係数実測値(∂k/∂v)Nをもと
に して許容ボイド係数(∂k/∂v)Lとなるような制御
棒 本数、ポイズン濃度を算出する。
This allowable void coefficient is determined by the control rod insertion amount calculator 24.
and the signal L N1 of FIGS. 4 and 5 and 21
and L N2 , (∂k/∂v) N = β | (L N1 −L H2 ) | ...(2) Also calculate the void coefficient actual value (∂k/∂v) N Calculate the number of control rods and poison concentration so that the allowable void coefficient (∂k/∂v) L is obtained.

ここで、βはプラント動特性解析によつて算出
される定数であり、LN1,LN2は異なる出力での
蒸気ドラム水位である。また、制御棒の挿入本
数、ポイズン濃度を求めるに当つては制御棒挿入
位置信号発生器19から送られてきた現在の制御
棒本数及びポイズン濃度測定器30から送られて
きた現在のポイズン濃度が第4図及び第5図の使
用に当つて利用される。求められた制御棒挿入本
数は制御棒駆動信号発生器25に送られ、そこで
記憶されている挿入順序にしたがつて制御棒を挿
入する指示が制御棒駆動装置20に送られ、所定
の挿入本数まで制御棒が炉内に挿入される。一
方、24からは求められたポイズン濃度もポイズ
ン除去信号発生器26に送られる。そして、炉心
5内の重水8をポンプ15で循環する流路に備わ
るポイズン除去塔13へ、その濃度になる為に通
す重水8の通過重水量を算出し、そこから除去塔
操作時間を算出し、その信号をポイズン除去塔流
量調節器27に送り、必要時間のみポイズン除去
弁28を開くことで、重水8をポイズン除去塔1
3に通してポイズンを除却し、除却作業済の重水
を炉心5内へ合流させる。
Here, β is a constant calculated by plant dynamic characteristic analysis, and L N1 and L N2 are steam drum water levels at different outputs. In addition, when calculating the number of inserted control rods and the poison concentration, the current number of control rods sent from the control rod insertion position signal generator 19 and the current poison concentration sent from the poison concentration measuring device 30 are used. It is used when using FIGS. 4 and 5. The determined number of control rods to be inserted is sent to the control rod drive signal generator 25, which sends an instruction to insert the control rods according to the memorized insertion order to the control rod drive device 20, and the predetermined number of control rods to be inserted is sent to the control rod drive device 20. The control rod is inserted into the reactor until the end. On the other hand, the determined poison concentration is also sent from 24 to the poison removal signal generator 26. Then, the amount of heavy water that passes through the poison removal tower 13 provided in the flow path in which the heavy water 8 in the reactor core 5 is circulated by the pump 15 to reach the concentration is calculated, and the removal tower operation time is calculated from there. , by sending the signal to the poison removal tower flow rate regulator 27 and opening the poison removal valve 28 only for the necessary time, the heavy water 8 is transferred to the poison removal tower 1.
3 to remove poison, and the removed heavy water flows into the reactor core 5.

次に出力約50%以後100%出力にいたる間の高
出力運転に入るに際しては、第6図のグラフ曲線
に沿うように、制御棒2,3を抜いて制御棒挿入
本数を以前の低出力時よりも格段に低減し、代り
にポイズン注入弁29を開いてポイズンを溶解し
た液体をポイズン溶解槽から重水8の循環する流
路中に注入し、ポイズン濃度を上昇させる。そし
て、さらにその後に100%出力の推移するにした
がつて、従来通り重水中のポイズン濃度をポイズ
ン除去塔13を利用して徐々に減少させること
で、100%出力に至る。
Next, when entering high-output operation from approximately 50% output to 100% output, control rods 2 and 3 are removed and the number of control rods inserted is reduced from the previous low output, following the graph curve in Figure 6. Instead, the poison injection valve 29 is opened and a liquid containing dissolved poison is injected from the poison dissolution tank into the flow path where the heavy water 8 circulates, increasing the poison concentration. Thereafter, as the output changes to 100%, the poison concentration in the heavy water is gradually reduced using the poison removal tower 13 as in the conventional manner, and the output reaches 100%.

以上のような作動原理にもとづく本発明の制御
装置を使用することにより、第6図に示すような
運転は可能となる。
By using the control device of the present invention based on the operating principle as described above, operation as shown in FIG. 6 becomes possible.

ここで、従来運転法である第3図で運転した場
合と本発明の運転法である第6図を採用した場合
とで、40%出力で再循環流量を〜2倍変動させた
場合の出力変動と蒸気ドラム水位の変動を計算し
てみると第10図のごとくなり、本発明による運
転法を採用した場合の方が明らかに炉出力変動も
蒸気ドラム水位の変動も小さくなつていることが
わかる。
Here, the output when the recirculation flow rate is varied by ~2 times at 40% output when operating according to the conventional operation method shown in Figure 3 and when using the operation method according to the present invention shown in Figure 6. Calculating the fluctuations and the fluctuations in the steam drum water level, the results are shown in Figure 10, and it is clear that the fluctuations in the furnace output and the fluctuations in the steam drum water level are smaller when the operating method according to the present invention is adopted. Recognize.

以上のごとく、本発明の運転法及びその装置を
採用することにより、ボイド係数は改善され、そ
の結果、出力上昇時の炉出力の変動、蒸気ドラム
水位の変動は小さくなり、安定した原子炉の制御
が可能となり、炉の稼動率、安全性が向上する。
As described above, by adopting the operating method and device of the present invention, the void coefficient is improved, and as a result, fluctuations in reactor output when power increases and fluctuations in steam drum water level are reduced, resulting in a stable nuclear reactor. Control becomes possible, improving furnace operation rate and safety.

本発明の重水炉の運転法によつて生じる効果を
以下に要約する。
The effects produced by the heavy water reactor operating method of the present invention are summarized below.

(1) ボイド係数を改善することによつて、出力変
動が小さくなり、炉の制御が容易となり、炉の
稼動率が向上する。
(1) By improving the void coefficient, output fluctuations become smaller, furnace control becomes easier, and furnace operation rate improves.

(2) ボイド係数を改善することによつて、蒸気ド
ラム水位の変動が小さくなり、炉の安全性が向
上する。
(2) By improving the void coefficient, fluctuations in the steam drum water level will be reduced and the safety of the furnace will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は重水減速沸騰軽水冷却型原子炉の冷却
材ボイド反応度の変化を示す一般例、第2図は冷
却材の蒸気重量率とボイド体積率の関係を示す
図、第3図は従来の重水炉の一般的な出力上昇時
の重水中ボロン濃度と制御棒挿入本数の操作法を
示す図、第4図は重水中ボロン濃度とボイド係数
の関係を示す図、第5図は挿入制御棒本数とボイ
ド係数の関係を示す図、第6図は本発明の重水炉
の出力上昇時の重水中ボロン濃度と制御棒挿入本
数の操作法を示す図、第7図は従来と本発明の運
転法によるボイド係数と出力との関係の比較を示
す図、第8図は本発明の重水炉の運転法を説明す
るための原子炉々心断面図、第9図は本発明の運
転法を実現するための制御装置の作動原理を説明
するための図、第10図は従来法と本発明の方法
で運転し、再循環流量を変動させた場合の原子炉
出力と蒸気ドラム水位の変動を示す図である。 2……起動用制御棒、11……蒸気ドラム、1
3……ポイズン除去塔、17……制御棒駆動信号
発生器、19……制御棒挿入位置信号発生器、2
0……制御棒駆動装置、21……蒸気ドラム水位
信号発生器、22……蒸気ドラム水位動巾設定
器、23……許容ボイド係数算出器、24……制
御棒挿入量算出器、25……制御棒駆動信号発生
器、26……ポイズン除去信号発生器、27……
ポイズン除去塔流量調節器、28…ポイズン除去
弁、30……ポイズン濃度測定器、31……ポイ
ド係数算出器。
Figure 1 is a general example showing the change in coolant void reactivity in a heavy water-moderated boiling light water-cooled reactor, Figure 2 is a diagram showing the relationship between the steam weight fraction of the coolant and the void volume fraction, and Figure 3 is a conventional example. Fig. 4 shows the relationship between the boron concentration in heavy water and the void coefficient, and Fig. 5 shows how to control the insertion control Figure 6 is a diagram showing the relationship between the number of rods and the void coefficient. Figure 6 is a diagram showing the method of controlling the boron concentration in heavy water and the number of control rods inserted when increasing the output of the heavy water reactor of the present invention. Figure 7 is a diagram showing the relationship between the conventional and the present invention. A diagram showing a comparison of the relationship between void coefficient and output depending on the operating method, Figure 8 is a cross-sectional view of the reactor core to explain the operating method of the heavy water reactor of the present invention, and Figure 9 is a diagram showing the operating method of the present invention. Figure 10 is a diagram for explaining the operating principle of the control device to achieve this, and shows the fluctuations in the reactor output and steam drum water level when operating with the conventional method and the method of the present invention and varying the recirculation flow rate. FIG. 2... Starting control rod, 11... Steam drum, 1
3... Poison removal tower, 17... Control rod drive signal generator, 19... Control rod insertion position signal generator, 2
0...Control rod drive device, 21...Steam drum water level signal generator, 22...Steam drum water level dynamic range setting device, 23...Allowable void coefficient calculator, 24...Control rod insertion amount calculator, 25... ...Control rod drive signal generator, 26...Poison removal signal generator, 27...
Poison removal tower flow rate regulator, 28...Poison removal valve, 30...Poison concentration measuring device, 31...Poid coefficient calculator.

Claims (1)

【特許請求の範囲】 1 重水炉を起動して高温待機状態から低出力運
転状態を経過して高出力運転状態に入るととも
に、前記高出力運転状態は前記重水炉の重水中の
ポイズン濃度を前記重水をポイズン除去塔に通し
て徐々に低減するとともに前記重水炉の制御棒の
挿入本数を前記低出力運転状態での挿入本数より
も少なくした状態の運転である重水炉の運転方法
において、前記高温待機状態で前記重水を前記ポ
イズン除去塔に通して前記重水中のポイズン濃度
を低減し、代りに前記重水炉の制御棒を炉心に挿
入して前記低出力運転時の原子炉冷却材ボイド反
応度係数を負の状態にし、その低出力運転時期の
後に前記重水中にポイズンを注入して一旦前記重
水中のポイズン濃度を高めて前記高出力運転状態
に入ることを特徴とした重水炉の運転方法。 2 原子炉の冷却水を蒸気ドラムを経由して炉心
に循環する冷却水循環流路と、前記原子炉の重水
を循環する重水循環流路と、前記重水循環流路へ
流量調整弁を介して接続されたポイズン除去塔
と、前記重水循環流路へ接続されたポイズン注入
手段と、前記原子炉の炉心へ複数の制御棒駆動装
置で挿入自在に備わる複数の制御棒とから成る重
水炉において、前記蒸気ドラムの水位を検出する
蒸気ドラム水位信号発生器と、前記蒸気ドラム水
位信号発生器からの出力信号を受け入れて許容ボ
イド係数を算出する許容ボイド係数算出器と、前
記蒸気ドラム水位信号発生器からの出力信号に基
づきボイド係数実測値を算出するボイド係数算出
器と、前記許容ボイド係数算出器と前記ボイド係
数算出器との出力結果を受け入れて許容ボイド係
数となる制御棒挿入本数とポイズン濃度を算出す
る制御棒挿入量算出器と、前記制御棒挿入量算出
器からの前記制御棒挿入本数の信号を受け入れて
前記制御棒を前記制御棒挿入本数炉心に挿入する
指示信号を出力する制御棒駆動信号発生器と、前
記制御棒挿入量算出器からの前記ポイズン濃度の
信号を受け入れて前記ポイズン濃度に成るために
必要な前記流量調整弁の開動作時間を算出するポ
イズン除去信号発生器と、前記制御棒駆動信号発
生器の出力結果を受け入れて前記制御棒を前記制
御棒挿入本数に見合つて炉心に挿入する前記制御
棒駆動装置と、前記ポイズン除去信号発生器から
の出力結果を受け入れて前記開動作時間前記流量
調整弁を開かせるポイズン除去塔流量調節器とを
有する原子炉制御装置を備えた重水炉の運転装
置。
[Scope of Claims] 1. When the heavy water reactor is started and passes from a high temperature standby state to a low power operating state and enters a high power operating state, the high power operating state lowers the poison concentration in the heavy water of the heavy water reactor to the above level. In the method of operating a heavy water reactor, the heavy water reactor is operated in a state in which heavy water is gradually reduced by passing through a poison removal tower and the number of control rods inserted in the heavy water reactor is smaller than the number inserted in the low power operating state. In a standby state, the heavy water is passed through the poison removal tower to reduce the poison concentration in the heavy water, and instead, the control rods of the heavy water reactor are inserted into the reactor core to reduce reactor coolant void reactivity during low power operation. A method for operating a heavy water reactor, characterized in that the coefficient is set to a negative state, and after the low power operation period, poison is injected into the heavy water to once increase the poison concentration in the heavy water and the high power operation state is entered. . 2. A cooling water circulation channel that circulates reactor cooling water to the reactor core via a steam drum, a heavy water circulation channel that circulates heavy water in the reactor, and a connection to the heavy water circulation channel via a flow rate adjustment valve. In the heavy water reactor, the heavy water reactor is composed of a poison removal tower having a structure including a poison removal tower, a poison injection means connected to the heavy water circulation flow path, and a plurality of control rods that are freely insertable into the core of the nuclear reactor by a plurality of control rod drive devices. a steam drum water level signal generator that detects the water level of the steam drum; an allowable void coefficient calculator that receives an output signal from the steam drum water level signal generator to calculate an allowable void coefficient; a void coefficient calculator that calculates the measured value of the void coefficient based on the output signal of the above-mentioned void coefficient calculator, and receives the output results of the allowable void coefficient calculator and the void coefficient calculator to determine the number of inserted control rods and the poison concentration that become the allowable void coefficient. a control rod insertion amount calculator for calculating, and a control rod drive that receives a signal of the number of control rods to be inserted from the control rod insertion amount calculator and outputs an instruction signal for inserting the control rods into the control rod insertion number core. a signal generator; a poison removal signal generator that receives the poison concentration signal from the control rod insertion amount calculator and calculates the opening operation time of the flow rate adjustment valve necessary to reach the poison concentration; The control rod drive device accepts the output result of the control rod drive signal generator and inserts the control rods into the reactor core in proportion to the number of control rods to be inserted; An operating device for a heavy water reactor, comprising a reactor control device having a poison removal tower flow rate regulator that opens the flow rate regulating valve for operating time.
JP6044779A 1979-05-18 1979-05-18 Heavy water reactor operation method and device Granted JPS55152495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6044779A JPS55152495A (en) 1979-05-18 1979-05-18 Heavy water reactor operation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6044779A JPS55152495A (en) 1979-05-18 1979-05-18 Heavy water reactor operation method and device

Publications (2)

Publication Number Publication Date
JPS55152495A JPS55152495A (en) 1980-11-27
JPS6244633B2 true JPS6244633B2 (en) 1987-09-21

Family

ID=13142530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6044779A Granted JPS55152495A (en) 1979-05-18 1979-05-18 Heavy water reactor operation method and device

Country Status (1)

Country Link
JP (1) JPS55152495A (en)

Also Published As

Publication number Publication date
JPS55152495A (en) 1980-11-27

Similar Documents

Publication Publication Date Title
EP2421005B1 (en) Nuclear reactor
US4337118A (en) Nuclear reactor power monitoring system
JP2008216242A (en) Nuclear reactor start-up monitoring system
JPS6244633B2 (en)
JP3133812B2 (en) Boiling water reactor and start-up method thereof
JPH0894793A (en) Start up method for natural circulation boiling water reactor
US4632803A (en) Operating method of boiling water reactor
JPS6225290A (en) Method of lowering output from nuclear reactor
JPH0152719B2 (en)
JP4369772B2 (en) Reactor power control method and apparatus
JP2005207944A (en) Reactor output control method and its system
JP2007225511A (en) Nuclear reactor monitoring device and output controller
JPH04258791A (en) Nuclear reactor output control method and device thereof
JP2522500B2 (en) Reactor operation control method
JPS61193098A (en) Nuclear power plant and operation method thereof
GB2573608A (en) Load following and frequency control system and nuclear power plant having such system
JPS58636B2 (en) Nuclear reactor power increase control device
JPH01244393A (en) Control rod driving/controlling device
JP2023163787A (en) Water supply controller and water supply control method
JPH04208899A (en) Reactor scram device
JPS6150278B2 (en)
CN115390444A (en) LADRC design method based on small-sized integrated pressurized water reactor power T-S fuzzy model
Rustagi et al. The reactivity control requirements in view of D 2 O during elimination in 200 MW modified reactor
JP2005331290A (en) Operation control system of bwr plant
JPH07225296A (en) Nuclear reactor power controller