JPS6244614B2 - - Google Patents

Info

Publication number
JPS6244614B2
JPS6244614B2 JP54169979A JP16997979A JPS6244614B2 JP S6244614 B2 JPS6244614 B2 JP S6244614B2 JP 54169979 A JP54169979 A JP 54169979A JP 16997979 A JP16997979 A JP 16997979A JP S6244614 B2 JPS6244614 B2 JP S6244614B2
Authority
JP
Japan
Prior art keywords
electrode
solid
powder
solid electrolyte
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54169979A
Other languages
Japanese (ja)
Other versions
JPS5692449A (en
Inventor
Hiroshi Shinohara
Yasuhiro Ootsuka
Hideo Kamya
Hiroshi Wakizaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16997979A priority Critical patent/JPS5692449A/en
Publication of JPS5692449A publication Critical patent/JPS5692449A/en
Publication of JPS6244614B2 publication Critical patent/JPS6244614B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 本発明は、酸素濃度を測定するための酸素セン
サ素子の製造方法、特に車両のエンジンから排出
される排気ガス中の酸素濃度を測定し、その結果
をフイードバツクして空気燃料比を適正に調整し
て排気ガス中の有害成分を除去するための触媒の
使用効果を高めるように構成した排気ガス浄化シ
ステムに有利に用いられる酸素センサ素子の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an oxygen sensor element for measuring oxygen concentration, and in particular, to measuring the oxygen concentration in exhaust gas discharged from a vehicle engine, and feeding back the results. The present invention relates to a method of manufacturing an oxygen sensor element that can be advantageously used in an exhaust gas purification system configured to appropriately adjust the fuel ratio to enhance the effectiveness of using a catalyst for removing harmful components in exhaust gas.

酸素センサは、酸素イオン伝導性をもつセラミ
ツク材料、例えば、少量のイツトリヤ(Y2O3)、
カルシヤ(CaO)またはマグネシヤ(MgO)を
添加したジルコニヤ(ZrO2)からなる固体電解質
焼結体を隔壁として酸素濃淡電池を構成し、隔壁
の各両側における被測定ガス部分と基準ガス部分
(基準酸素分圧付与手段)との酸素分圧の相異に
より発生する起電力を測定することにより被測定
ガス部分の酸素濃度を検出するものである。
The oxygen sensor is made of a ceramic material with oxygen ion conductivity, such as a small amount of yttriya (Y 2 O 3 ),
An oxygen concentration cell is constructed using a solid electrolyte sintered body made of zirconia (ZrO 2 ) doped with calcia (CaO) or magnesia (MgO) as a partition wall, and a measured gas portion and a reference gas portion (reference oxygen The oxygen concentration in the gas to be measured portion is detected by measuring the electromotive force generated due to the difference in oxygen partial pressure with the oxygen partial pressure (partial pressure applying means).

そしてこの種の酸素センサとしては一般に、試
験管状の固体電解質焼結体の内面と外面とに多孔
質の電極を設け、固体電解質焼結体の内側には基
準酸素濃度を付与するガス、例えば大気を導入
し、外側を排気ガスにさらし、内側と外側の酸素
分圧に応じて発生する起電力を上記電極間から取
り出すようになしたものが知られている。また、
固体電解質焼結体内に金属または金属とその金属
の酸化物の混合物の焼結体よりなる固体極(基準
酸素分圧付与手段)を埋設し、固体極自体の電気
伝導性を利用して内側電極を兼ねるようになした
酸素センサが提案されている。
This type of oxygen sensor generally has porous electrodes on the inner and outer surfaces of a test tube-shaped solid electrolyte sintered body, and a gas that provides a reference oxygen concentration, such as atmospheric air, is placed inside the solid electrolyte sintered body. It is known that the outside is exposed to exhaust gas, and the electromotive force generated according to the partial pressure of oxygen between the inside and outside is extracted from between the electrodes. Also,
A solid electrode (reference oxygen partial pressure imparting means) made of a sintered body of a metal or a mixture of metal and metal oxide is embedded in the solid electrolyte sintered body, and the inner electrode is formed using the electrical conductivity of the solid electrode itself. Oxygen sensors have been proposed that also serve as an oxygen sensor.

本発明は上記酸素センサ素子のうち固体極セン
サ素子、特に長期使用において起電力の低下がな
く耐久性にすぐれた固体極センサ素子を、作業性
良好に、かつ製品間の品質のバラツキなく製造す
る方法を提供するものである。
The present invention manufactures a solid electrode sensor element among the above oxygen sensor elements, particularly a solid electrode sensor element which has excellent durability without a decrease in electromotive force even during long-term use, with good workability and without variation in quality between products. The present invention provides a method.

本発明の製造方法は下記の(イ),(ロ),(ハ),(ニ)お

び(ホ)の工程を含むことを特徴とするものである。
The manufacturing method of the present invention is characterized by including the following steps (a), (b), (c), (d), and (e).

(イ) 固体電解質粉体を加圧成形して固体極を嵌入
すべき凹所をもつ固体電解質仮成形体を得る工
程; (ロ) 金属粉体または金属粉体とその金属の酸化物
粉体との混合粉体からなり、その中に出力取出
用リード線の一端を埋設し、その表面に上記出
力取出用リード線と電気的に接続せしめた耐熱
性金属ペーストを塗布した固体極仮成形体を上
記固体電解質仮成形体の凹所内に配設する工
程; (ハ) 固体極仮成形体を抱持する固体電解質仮成形
体上にさらに固体電解質粉末を載せて一体加圧
成形し、固体極が固体電解質中に埋設された構
造体を得る工程; (ニ) 上記構造体を非酸化性または還元性雰囲気中
で1350℃〜1500℃程度の温度で焼成する工程; (ホ) 焼成体表面の少くとも一部に金属電極層を形
成する工程。
(a) A step of press-molding a solid electrolyte powder to obtain a solid electrolyte temporary molded body having a recess into which a solid electrode is to be inserted; (b) A metal powder or a metal powder and an oxide powder of the metal. A solid electrode temporary molded body made of a mixed powder with a powder, in which one end of an output lead wire is buried, and a heat-resistant metal paste is applied to the surface of the powder, which is electrically connected to the output lead wire. (c) Further solid electrolyte powder is placed on the solid electrolyte temporary molded body holding the solid electrode temporary molded body, and the solid electrolyte powder is integrally press-molded to form the solid electrode. a step of obtaining a structure in which is embedded in a solid electrolyte; (d) a step of firing the above structure in a non-oxidizing or reducing atmosphere at a temperature of approximately 1350°C to 1500°C; (e) a step of sintering the surface of the fired body A step of forming a metal electrode layer on at least a portion.

以下、本発明の製造方法を図面により説明す
る。
Hereinafter, the manufacturing method of the present invention will be explained with reference to the drawings.

第1図Aに示すように、固体電解質材料、例え
ば少量のY2O3,CaOまたはMgOを添加したZrO2
の粉体を成形金型1中に充填し、先端に凸所を持
つ押し棒4を成形空間へ押し込むことによつて凹
所をもつ固体電解質仮成形体2を加圧成形する
〔(イ)工程〕。押し棒4の押込みは例えばハンドプレ
スを用い、300〜1500Kg/cm2程度加圧する。
As shown in Figure 1A, solid electrolyte materials such as ZrO 2 with small amounts of Y 2 O 3 , CaO or MgO
A solid electrolyte temporary molded body 2 having a concave portion is pressure-molded by filling the powder into a molding die 1 and pushing a push rod 4 having a convex portion at the tip into the molding space [(a) process]. For example, a hand press is used to press the push rod 4, and a pressure of about 300 to 1500 kg/cm 2 is applied.

次いで第1図Bに示すように予め準備された固
体極仮成形体3を固体電解質仮成形体2の凹部に
嵌入する〔(ロ)工程〕。固体極仮成形体3は、第1
図B′に示すように金属粉体または金属粉体とその
金属の酸化物粉体との混合物、好ましくはこの混
合物に更に焼結防止剤粉体を混合した混合物を加
圧成形した柱状体で、一方の端面に、白金または
白金―ロジウム合金などのリード線5の一端を埋
設し、少くとも上記一方の端面全面に白金などの
金属ペーストを上記リード線5と接続するように
塗布して電極6を形成せしめることにより構成す
る。電極6は上記端面の他、固体電解質を接する
側面および底面全面に形成するのが最も望まし
い。
Next, as shown in FIG. 1B, the solid electrode temporary molded body 3 prepared in advance is fitted into the recess of the solid electrolyte temporary formed body 2 [step (b)]. The solid electrode temporary formed body 3 is the first
As shown in Figure B', it is a columnar body formed by pressure molding a mixture of metal powder or metal powder and oxide powder of the metal, preferably a mixture of this mixture and an anti-sintering agent powder. , one end of a lead wire 5 made of platinum or a platinum-rhodium alloy is embedded in one end surface, and a metal paste such as platinum is applied to the entire surface of at least one end surface so as to be connected to the lead wire 5 to form an electrode. 6. It is most desirable that the electrode 6 be formed not only on the above-mentioned end surface but also on the entire side surface and bottom surface in contact with the solid electrolyte.

次いで、第1図Cに示すように、固体極仮成形
体3を抱持する固体電解質仮成形体2上に固体電
解質粉体7をその表面がリード線5の先端と一致
する高さとなるまで載せ、例えば中棒8′をもつ
押し棒8を押し込むことにより一体に加圧成形す
る〔(ハ)工程〕。そしてこれを離型することにより
第1図Dに示すような、固体極が固体電解質中に
埋設された構造体9が得られる。上記押し棒8を
用いることによりリード線5を位置ずれさせるこ
となく、かつ固体電解質粉体7を均一に圧縮する
ことができる。
Next, as shown in FIG. 1C, the solid electrolyte powder 7 is placed on the solid electrolyte temporary molded body 2 holding the solid electrode temporary molded body 3 until its surface reaches a height that matches the tip of the lead wire 5. For example, by pressing a push rod 8 having a center rod 8', the parts are press-formed into one piece [step (c)]. By releasing the mold, a structure 9 in which a solid electrode is embedded in a solid electrolyte as shown in FIG. 1D is obtained. By using the push rod 8, it is possible to uniformly compress the solid electrolyte powder 7 without displacing the lead wire 5.

得られた構造体9を非酸化性または還元性雰囲
気中で1350〜1500℃の温度にて焼成することによ
り焼結体とする〔(ニ)工程〕。焼成時間は固体極材
料および固体電解質材料の種類、量および焼成温
度等に依存するが、通常1〜6時間の範囲で選び
得る。
The obtained structure 9 is fired at a temperature of 1350 to 1500° C. in a non-oxidizing or reducing atmosphere to form a sintered body [step (d)]. The firing time depends on the type and amount of the solid electrode material and the solid electrolyte material, the firing temperature, etc., but can usually be selected within the range of 1 to 6 hours.

次いで、第1図Eに示すように、被測定ガスに
さらされる焼結構造体9の外表面の少くとも一部
に電極10を形成する〔(ホ)工程〕。電極10は、
白金または白金―ロジウムなどの耐熱性導電金属
材料のペースト(ガラスフリツトなし)を塗布焼
成するなどの常用の技法によりなされる。また、
被測定ガスにさらされる電極10の上には、マグ
ネシウムスピネルの溶射層などの耐熱金属酸化物
の多孔質保護層11を形成することが望ましい。
また、図示のように、構造体9の上端面に出力取
出用リード線5の上端に接続するように白金など
のペーストを径方向に塗布して内部リード線12
を形成すれば、リード線を外部へ導出するのに都
合がよい。
Next, as shown in FIG. 1E, an electrode 10 is formed on at least a portion of the outer surface of the sintered structure 9 exposed to the gas to be measured [step (e)]. The electrode 10 is
This is done by conventional techniques such as applying and firing a paste of heat-resistant conductive metal material such as platinum or platinum-rhodium (without glass frit). Also,
A porous protective layer 11 of a refractory metal oxide, such as a sprayed layer of magnesium spinel, is preferably formed on the electrode 10 exposed to the gas to be measured.
Further, as shown in the figure, a paste such as platinum is applied in the radial direction to the upper end surface of the structure 9 so as to connect to the upper end of the output lead wire 5, and the internal lead wire 12 is
If this is formed, it is convenient to lead the lead wires to the outside.

酸素センサ素子の形状は格別限定されることは
なく、デイスク状、円柱状、球状、角柱状などの
いずれでもよいが、デイスク状または円柱状が好
ましい。また、出力取出用リード線はデイスクま
たは円柱状センサ素子の中心軸と一致または平行
となるように配設することが好ましい。
The shape of the oxygen sensor element is not particularly limited and may be disc-shaped, cylindrical, spherical, or prismatic, but preferably disc-shaped or cylindrical. Further, it is preferable that the output lead wire is arranged so as to coincide with or be parallel to the central axis of the disk or cylindrical sensor element.

固体電解質は、従来周知の酸素濃淡電池用固体
電解質材料、例えばジルコニア(ZrO2)で構成す
ればよく、熱安定化のためにこの固体電解質材料
に少量のY2O3,CaOまたはMgOを添加して仮焼
成処理を行ない固溶体としたものが有利に用いら
れる。特に好ましい固体電解質層4は4〜10モル
%のY2O3を固溶したZrO2からなる。
The solid electrolyte may be composed of a conventionally well-known solid electrolyte material for oxygen concentration batteries, such as zirconia (ZrO 2 ), and a small amount of Y 2 O 3 , CaO or MgO is added to this solid electrolyte material for thermal stabilization. It is advantageous to use a solid solution obtained by performing a pre-calcination treatment. A particularly preferable solid electrolyte layer 4 is made of ZrO 2 containing 4 to 10 mol % of Y 2 O 3 as a solid solution.

固体極は、金属粉体または金属粉体とその金属
の酸化物粉体との混合物から得られるが、金属粉
体―金属酸化物粉体混合物ではなく金属粉体のみ
を用いて製作したものであつても、酸素センサの
使用時に固体電解質を通して導かれる酸素イオン
を受容して金属の一部が酸化物に転化するので、
金属―金属酸化物混合物の焼結体からなる基準酸
素分圧付与手段が実質的に構成される。固体極の
製作に用いる金属成分としては鉄、モリブデン、
クロム、タングステン、ニツケル、コバルト、シ
リコンおよびマンガン等が挙げられる。
A solid electrode is obtained from a metal powder or a mixture of a metal powder and an oxide powder of the metal, but it is manufactured using only a metal powder rather than a metal powder-metal oxide powder mixture. However, when an oxygen sensor is used, some of the metals are converted into oxides by receiving oxygen ions guided through the solid electrolyte.
The reference oxygen partial pressure applying means is substantially composed of a sintered body of a metal-metal oxide mixture. The metal components used in the production of solid electrodes include iron, molybdenum,
Examples include chromium, tungsten, nickel, cobalt, silicon and manganese.

なお、固体極材料として、上述の金属―金属酸
化物成分および白金族元素成分に加えて、固体電
解質と同じZrO2、またはAl2O3,Al2O3・MgO,
SiO2,Al2O3・SiO2のような金属酸化物からなる
焼結防止剤を適当量配合することが望ましい。こ
れらの金属酸化物を配合することによつて、固体
極がその製造に際し焼結過程で過度に焼結するの
を防止すると共に、固体極と電解質層との熱収縮
率を揃え、以つて、焼結および使用過程でセンサ
素子に変形、破損および電極剥離などの不都合が
生じるのを阻止することができる。
In addition to the above-mentioned metal-metal oxide components and platinum group element components, the solid electrode material may include ZrO 2 , which is the same as the solid electrolyte, or Al 2 O 3 , Al 2 O 3・MgO,
It is desirable to mix an appropriate amount of a sintering inhibitor made of a metal oxide such as SiO 2 or Al 2 O 3 .SiO 2 . By blending these metal oxides, the solid electrode is prevented from being excessively sintered during the sintering process during its manufacture, and the thermal shrinkage rates of the solid electrode and the electrolyte layer are made equal. It is possible to prevent problems such as deformation, damage, and electrode peeling of the sensor element during the sintering and use process.

本発明は上記の如く、固体電解質中に固体極を
埋設して一体的に焼結した固体極センサ素子を作
業性よく製造することができる。この種のセンサ
素子の製造方法に関しては、固体極のまわりに固
体電解質材料を蒸着またはスパツタリングする方
法等が提案されているが、これに比べて本発明方
法は、固体電解質の厚さ、形状および密度等の調
整が極めて容易に行ない得る。
As described above, the present invention makes it possible to easily manufacture a solid electrode sensor element in which a solid electrode is embedded in a solid electrolyte and sintered integrally. Regarding the manufacturing method of this type of sensor element, methods such as vapor deposition or sputtering of a solid electrolyte material around a solid electrode have been proposed, but compared to this method, the method of the present invention Density etc. can be adjusted extremely easily.

しかして本発明により製造された酸素センサ素
子は、冒頭に記載したように車両の空気燃料比制
御システムにおいて、排気ガス中の酸素濃度検出
手段として有効に用いられるものである。特に本
発明により得られた固体極酸素センサ素子は長期
間にわたり所定の起電力を安定して発生せしめる
ことができる。即ち、固体極自体の電気導電性を
利用して内側電極を兼ねる形式の固体極酸素セン
サにおいては高温、酸化性雰囲気下で使用してい
ると固体電解質中に内包した固体極の表面に酸化
物の絶縁層が生成してセンサの内部抵抗が増し、
正規の起電力が発生しなくなる問題があつた。本
発明による素子においては固体極表面に固体極側
の出力取出用リード線と接続する耐熱性多孔質金
属電極を形成したことにより、耐久後においても
内部抵抗が上昇せず正規の起電力を維持せしめる
ことができる。
Thus, the oxygen sensor element manufactured according to the present invention can be effectively used as a means for detecting oxygen concentration in exhaust gas in a vehicle air-fuel ratio control system as described at the beginning. In particular, the solid state polar oxygen sensor element obtained according to the present invention can stably generate a predetermined electromotive force over a long period of time. In other words, in a solid electrode oxygen sensor that uses the electrical conductivity of the solid electrode itself to double as an inner electrode, if it is used at high temperatures and in an oxidizing atmosphere, oxides may form on the surface of the solid electrode contained in the solid electrolyte. An insulating layer is formed, increasing the sensor's internal resistance.
There was a problem where the regular electromotive force was no longer generated. In the element according to the present invention, a heat-resistant porous metal electrode is formed on the surface of the solid electrode to connect with the output lead wire on the solid electrode side, so that the internal resistance does not increase even after durability and the normal electromotive force is maintained. You can force it.

次に本発明の実施例について具体的に説明す
る。
Next, examples of the present invention will be specifically described.

5.5モル%のY2O3で安定化したZrO2粉末を第1
図Aに示すように仮成形して凹部をもつ固体電解
質仮成形体2を得た。別途、直径0.3mmの白金―
ロジウム合金リード線5の一端を埋設した円柱状
固体極仮成形体3をハンドプレスを用いて600
Kg/cm2で3分間加圧成形して製造した。固体極仮
成形体3の材料としてカルボニル分解鉄粉末40重
量%、ZrO2粉末20重量%、NH4HCO3粉末40重量
%の混合物を用いた。
The first ZrO2 powder stabilized with 5.5 mol% Y2O3
As shown in Figure A, a solid electrolyte temporary molded body 2 having a concave portion was obtained by temporary molding. Separately, platinum with a diameter of 0.3 mm.
Using a hand press, the cylindrical solid electrode temporary molded body 3 with one end of the rhodium alloy lead wire 5 buried therein was
It was manufactured by pressure molding at Kg/cm 2 for 3 minutes. A mixture of 40% by weight of carbonyl decomposed iron powder, 20% by weight of ZrO 2 powder, and 40% by weight of NH 4 HCO 3 powder was used as the material for the solid temporary compact 3.

固体極仮成形体3にはその全表面に白金粉末に
ニトロセルロース、酢酸ブチルなどの揮発性有機
溶剤を混合した白金ペースト(ガラスフリツトな
し)を塗布して、出力取出用リード線5と電気的
に接続する多孔質金属電極6を形成した〔第1図
B′〕。
A platinum paste (without glass frit), which is a mixture of platinum powder and volatile organic solvents such as nitrocellulose and butyl acetate, is applied to the entire surface of the solid electrode temporary molded body 3, and electrically connected to the output lead wire 5. A porous metal electrode 6 to be connected was formed [Fig.
B′].

固体極仮成形体3を固体電解質仮成形体2の凹
所に嵌入し〔第1図B〕、その上に上記と同じ
Y2O3混合ZrO2粉末を充填し、ハンドプレスを用
いて中棒8′をもつ押し棒8を成形圧力600Kg/
cm2、成形時間3分間にて押し込み、離型して固体
電解質2中に固体極3を埋設した構造体9を得た
〔第1図C,D〕 この構造体9を水素1容量%混入アルゴン気流
中で1450℃、3時間熱処理し、焼結体を得た。こ
の焼結体を濃弗化水素酸を用いて5分間エツチン
グ処理し、次いで水洗処理したうえ、白金ペース
ト(ガラスフリツトなし)を塗布し焼付けを行な
つて白金電極層10を形成した。さらに焼結体の
上面には径方向に上記と同様に白金ペーストを塗
布焼付けて出力取出用リード線5と接続する内部
リード線12を形成した。また、白金電極層10
の上にスピネル(MgO・Al2O3)粉末を溶射して
多孔質保護コーテイング層11を形成した〔第1
図E〕。
Insert the solid electrode temporary molded body 3 into the recess of the solid electrolyte temporary molded body 2 [Fig. 1B], and place the same as above on it.
Filled with Y 2 O 3 mixed ZrO 2 powder, using a hand press, press the push rod 8 with the middle rod 8' at a molding pressure of 600 kg/
cm 2 , and the molding time was 3 minutes, and the mold was released to obtain a structure 9 in which the solid electrode 3 was embedded in the solid electrolyte 2 [Fig. 1C, D] This structure 9 was mixed with 1% by volume of hydrogen. Heat treatment was performed at 1450°C for 3 hours in an argon stream to obtain a sintered body. This sintered body was etched for 5 minutes using concentrated hydrofluoric acid, then washed with water, and a platinum paste (without glass frit) was applied and baked to form a platinum electrode layer 10. Further, on the upper surface of the sintered body, platinum paste was applied and baked in the radial direction in the same manner as described above to form internal lead wires 12 to be connected to the output lead wires 5. In addition, the platinum electrode layer 10
A porous protective coating layer 11 was formed by thermally spraying spinel (MgO.Al 2 O 3 ) powder on the [first
Figure E].

次に、上記の如くして得た酸素センサ素子を具
備する排気ガスの酸素測定用センサの一具体例を
第2図に示す。
Next, FIG. 2 shows a specific example of a sensor for measuring oxygen in exhaust gas, which includes the oxygen sensor element obtained as described above.

固体電解質材2Aおよび出力取出用リード線5
を取付けた固体極3Aとを一体的に構成してなる
センサ素子Aは多数の通気孔14を設けた保護カ
バー13の先端部内に配設される。センサ素子A
の上端にはセラミツクを焼結してなる棒状の絶縁
部材15がガラス系接着剤16により連結されて
おり、該絶縁部材15の側面には軸方向に白金ペ
ーストを帯状に塗布して形成したリード線17
a,17bが設けられている。固体電解質材2A
の外表面に形成した白金電極10の一端は上記リ
ード線17bに接続され、一端を固体極3A中に
埋設し、固体極表面に形成した白金電極6と接続
する出力取出用リード線5は、内部リード線12
を介して上記リード線17aに接続されている。
そしてリード線17a,17bを設けた絶縁部材
15および白金電極10を設けた固体電解質材3
の表面にはセラミツクの保護コーテイング層11
が形成されている。
Solid electrolyte material 2A and output lead wire 5
The sensor element A, which is integrally formed with the solid electrode 3A to which the solid electrode 3A is attached, is disposed within the tip of a protective cover 13 provided with a large number of ventilation holes 14. Sensor element A
A rod-shaped insulating member 15 made of sintered ceramic is connected to the upper end with a glass adhesive 16, and on the side surface of the insulating member 15 are leads formed by applying platinum paste in a belt shape in the axial direction. line 17
a, 17b are provided. Solid electrolyte material 2A
One end of the platinum electrode 10 formed on the outer surface of the solid electrode 3A is connected to the lead wire 17b, and the output lead wire 5 has one end buried in the solid electrode 3A and connected to the platinum electrode 6 formed on the surface of the solid electrode. Internal lead wire 12
The lead wire 17a is connected to the lead wire 17a through the lead wire 17a.
Then, an insulating member 15 provided with lead wires 17a and 17b and a solid electrolyte material 3 provided with a platinum electrode 10.
A protective ceramic coating layer 11 is placed on the surface of the
is formed.

保護カバー13の一端にはフランジ18が形成
され、該フランジ18を介して保護カバー13に
は筒状のハウジング19が連結されている。上記
棒状絶縁部材15はハウジング19内に延在し、
その上端にはリード線20aおよび20b(図示
せず)が埋設されており、リード線20aはリー
ド線21aを経て出力端子22aに接続され、リ
ード線20bは同様にして出力端子22bに接続
されている。また、上記帯状リード線17aはリ
ード線20aに、帯状リード線17bはリード線
20bに接続され、これ等接続部には無機接続着
材23が施されて固定されている。なお、棒状絶
縁部材15とハウジング19の内周面との間には
絶縁用セラミツクリング24が上記部材15に接
合した状態で介在している。また、リード線20
a,20b,21a,21bの間には相互の接触
を防止するため絶縁性充填剤25が充填されてい
る。出力端子22a,22bは絶縁用ブツシユ2
6により固定されている。
A flange 18 is formed at one end of the protective cover 13, and a cylindrical housing 19 is connected to the protective cover 13 via the flange 18. The rod-shaped insulating member 15 extends within the housing 19,
Lead wires 20a and 20b (not shown) are embedded in the upper end thereof, and lead wire 20a is connected to output terminal 22a via lead wire 21a, and lead wire 20b is similarly connected to output terminal 22b. There is. Further, the band-shaped lead wire 17a is connected to a lead wire 20a, and the band-shaped lead wire 17b is connected to a lead wire 20b, and an inorganic connection material 23 is applied to the connecting portions of these to be fixed. Note that an insulating ceramic ring 24 is interposed between the rod-shaped insulating member 15 and the inner circumferential surface of the housing 19 and is joined to the member 15. In addition, the lead wire 20
An insulating filler 25 is filled between a, 20b, 21a, and 21b to prevent mutual contact. Output terminals 22a and 22b are insulating bushes 2
It is fixed by 6.

そして上記酸素センサは、フランジ18におい
て車両の排気管に取付けられ、センサ素子Aを内
蔵する保護カバー13が排気管内に配設される。
The oxygen sensor is attached to the exhaust pipe of the vehicle at the flange 18, and the protective cover 13 containing the sensor element A is disposed inside the exhaust pipe.

上記の如く本発明により、起電力が安定して耐
久性にすぐれた車両の排気ガス酸素濃度検出用に
好適の固体極酸素センサ素子を、作業性容易に、
かつ製品品質のバラツキなく製造することができ
る。
As described above, the present invention provides a solid-state polar oxygen sensor element that has a stable electromotive force and excellent durability and is suitable for detecting oxygen concentration in vehicle exhaust gas, with easy workability.
Moreover, it can be manufactured without any variation in product quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aないし第1図Eは本発明による酸素セ
ンサの製造工程説明図、第2図Aは酸素センサ全
体の半断面図、第2図Bはその要部断面図であ
る。 1……成形金型、2……固体電解質仮成形体、
3……固体極仮成形体、5……出力取出用リード
線、6,10……金属電極、13……保護カバ
ー、A……酸素センサ素子。
1A to 1E are explanatory views of the manufacturing process of the oxygen sensor according to the present invention, FIG. 2A is a half-sectional view of the entire oxygen sensor, and FIG. 2B is a sectional view of the main part thereof. 1... Molding mold, 2... Solid electrolyte temporary molded body,
3... Solid electrode temporary molded body, 5... Lead wire for output extraction, 6, 10... Metal electrode, 13... Protective cover, A... Oxygen sensor element.

Claims (1)

【特許請求の範囲】 1 (イ) 固体電解質粉体を加圧成形して固体極を
嵌入すべき凹所をもつ固体電解質仮成形体を得
る工程; (ロ) 金属粉体または金属粉体とその金属の酸化物
粉体の混合粉体からなり、その中に出力取出用
リード線の一端を埋設し、その表面に上記出力
取出用リード線と電気的に接続せしめた耐熱性
金属ペーストを塗布した固体極仮成形体を上記
固体電解質仮成形体の凹所内に配設する工程; (ハ) 固体極仮成形体を抱持する固体電解質仮成形
体上にさらに固体電解質粉体を載せ、一体加圧
成形して固体極が固体電解質中に埋設された構
造体を得る工程; (ニ) 上記構造体を非酸化性または還元性雰囲気中
で1350℃〜1500℃程度の温度で焼成する工程; (ホ) 焼成体表面の少くとも一部に金属電極を形成
する工程; とよりなり、出力取出用リード線を接続した金属
粉体または金属粉体とその金属の酸化物粉体との
混合物の焼結体からなる基準酸素分圧付与手段た
る固体極が、固体電解質焼結体中に完全に埋設さ
れ、該固体電解質焼結体層の表面に金属電極が形
成され、固体極の表面に上記出力取出用リード線
と接続する金属電極が形成された酸素センサ素子
の製造方法。
[Claims] 1 (a) A step of press-molding solid electrolyte powder to obtain a solid electrolyte temporary molded body having a recess into which a solid electrode is to be inserted; (b) Metal powder or metal powder and It is made of a mixed powder of oxide powder of the metal, one end of the output lead wire is buried in it, and a heat-resistant metal paste is coated on the surface of the powder, which is electrically connected to the output lead wire. A step of placing the solid electrode temporary molded body in the recess of the solid electrolyte temporary molded body; (c) Further placing solid electrolyte powder on the solid electrolyte temporary molded body holding the solid electrode temporary molded body, A step of pressure forming to obtain a structure in which a solid electrode is embedded in a solid electrolyte; (d) a step of firing the above structure at a temperature of about 1350°C to 1500°C in a non-oxidizing or reducing atmosphere; (e) A step of forming a metal electrode on at least a part of the surface of the fired body; and a process of forming a metal powder or a mixture of metal powder and oxide powder of the metal to which an output lead wire is connected. A solid electrode made of a sintered body and serving as a reference oxygen partial pressure imparting means is completely embedded in the solid electrolyte sintered body, a metal electrode is formed on the surface of the solid electrolyte sintered body layer, and the above-mentioned solid electrode is formed on the surface of the solid electrode. A method for manufacturing an oxygen sensor element having a metal electrode connected to an output lead wire.
JP16997979A 1979-12-26 1979-12-26 Production of oxygen sensor element Granted JPS5692449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16997979A JPS5692449A (en) 1979-12-26 1979-12-26 Production of oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16997979A JPS5692449A (en) 1979-12-26 1979-12-26 Production of oxygen sensor element

Publications (2)

Publication Number Publication Date
JPS5692449A JPS5692449A (en) 1981-07-27
JPS6244614B2 true JPS6244614B2 (en) 1987-09-21

Family

ID=15896340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16997979A Granted JPS5692449A (en) 1979-12-26 1979-12-26 Production of oxygen sensor element

Country Status (1)

Country Link
JP (1) JPS5692449A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827056A (en) * 1981-08-12 1983-02-17 Mitsubishi Electric Corp Oxygen gas sensor
JP5035853B2 (en) * 2008-08-26 2012-09-26 独立行政法人日本原子力研究開発機構 Oxygen concentration sensor, method for forming the same, and method for measuring oxygen concentration in high-temperature high-pressure water

Also Published As

Publication number Publication date
JPS5692449A (en) 1981-07-27

Similar Documents

Publication Publication Date Title
US3978006A (en) Methods for producing oxygen-sensing element, particularly for use with internal combustion engine exhaust emission analysis
US4219359A (en) Sintered body of zirconia for oxygen concentration sensor
GB2031156A (en) Solid electrolyte sensors for determining the oxygen content of gases
JP4080002B2 (en) Sensor element and manufacturing method thereof
JPS6245496B2 (en)
JPS6055012B2 (en) Solid electrolyte tube for a detector that measures the amount of oxygen in exhaust gas and its manufacturing method
US8097137B2 (en) Gas sensor element and gas sensor
JPS6126621B2 (en)
JPH0430537Y2 (en)
US4299627A (en) Method of manufacturing oxygen sensing element
JPS6138413B2 (en)
JP4980996B2 (en) Gas sensor element and gas sensor
JPS6244614B2 (en)
US4155828A (en) Oxygen sensor with a sintered reference source of oxygen
KR100253859B1 (en) High-activity electrodes for exhaust gas sensors
RU2339028C1 (en) Detecting element of oxygen analyser and method of making it
JPH09510298A (en) Electrochemical sensor having a sensor member arranged without potential
JPWO2002082068A1 (en) Concentration cell type hydrogen sensor and method for producing solid electrolyte having proton conductivity
JPH05501297A (en) electrochemical measurement sensor
JPH07235319A (en) Solid electrolyte type fuel cell
JP5097082B2 (en) Gas sensor and manufacturing method thereof
JP3050328B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH065220B2 (en) Oxygen concentration detector
JP3668059B2 (en) Method for manufacturing heater-integrated oxygen sensor element
JP3050331B2 (en) Method for manufacturing solid electrolyte fuel cell