JPS6244370B2 - - Google Patents

Info

Publication number
JPS6244370B2
JPS6244370B2 JP7880077A JP7880077A JPS6244370B2 JP S6244370 B2 JPS6244370 B2 JP S6244370B2 JP 7880077 A JP7880077 A JP 7880077A JP 7880077 A JP7880077 A JP 7880077A JP S6244370 B2 JPS6244370 B2 JP S6244370B2
Authority
JP
Japan
Prior art keywords
card
lever
switch
operating
switch lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7880077A
Other languages
Japanese (ja)
Other versions
JPS5412477A (en
Inventor
Hideya Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7880077A priority Critical patent/JPS5412477A/en
Publication of JPS5412477A publication Critical patent/JPS5412477A/en
Publication of JPS6244370B2 publication Critical patent/JPS6244370B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は欠相保護付きのサーマルリレーの構造
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a thermal relay with open phase protection.

従来のこの種のサーマルリレーにあつては、第
8図に示すように構成されていた。バイメタル1
の低膨張側面にのみ夫々当接する第1カード2
と、バイメタル1の高膨張側面に当接する第2カ
ード3とが平行に設けられ、両カード2,3の端
部に両カード2,3と直交するように作動レバー
5が配置され、作動レバー5の一端に設けた軸1
0に第2カード3の端部が軸着され、作動レバー
5の一端手前に設けた軸9′に第1カード2の端
部が当接され、作動レバー5の他端の自由端部に
動作部8′が設けられ、動作部8′をスイツチレバ
ー6に対向させてあつた。かかる従来例にあつて
は、通電するとバイメタル1の高膨張側面側が伸
びてバイメタル1が低膨張側面側に変形するが、
このバイメタル1の変形にて第1カード2の作動
凸部18が押されて第1カード2が作動レバー5
側に移動し、これと一緒に第2カード3も作動レ
バー5側に移動する(このときバイメタル1にて
第1カード2だけが押されるが、第2カード3の
作動凸部18とバイメタル1との間に隙間ができ
るため第1カード2に引つ張られるように第2カ
ード3も同方向に移動する。つまり第1カード2
が作動レバー5側に移動すると動作部8′がスイ
ツチレバー6に当たり、軸9′を中心に作動レバ
ー5が回動して第2カード3の作動凸部18がバ
イメタル1に当接するまで引つ張られ、実質的に
第1カード2と第2カード3とが一緒に同方向に
移動する。)。この通電状態で過電流が流れると、
バイメタル1がさらに作動レバー5側に変形して
第1カード2と第2カード3がさらに移動して動
作部8′にてスイツチレバー6が一定量押されて
スイツチ部が動作する。また通電状態で欠相を生
じたとき第1カード2が作動レバー5側に変形し
ているバイメタル1にて作動レバー5側に移動し
ているが、欠相により変形しないバイメタル1に
て第2カード3は作動レバー5側に移動せず、第
1カード2と第2カード3は相対的に相反する方
向に移動し、作動レバー5は軸10を中心に回動
して動作部8′がスイツチレバー6を一定量押し
てスイツチ部が動作する。ところでこの種サーマ
ルリレーにおいては動作する設定電流を自在に変
えるようにするためスイツチレバーの枢支軸の位
置を調整してスイツチ部が動作するスイツチレバ
ー6の角度を調整できるようになつている。つま
り設定電流大のときは両カード2,3が大きく移
動しないとスイツチ部が動作しないようになつて
おり、設定電流が小さいときは両カード2,3の
移動量が少なくてもスイツチ部が動作するように
なつている。しかし上記従来例にあつては、過電
流時も欠相時も同一の動作部8′がスイツチレバ
ー6の枢支軸から一定距離離れた一定位置を押し
てスイツチ部を作動させる構造のため、欠相時ス
イツチレバー6を押してスイツチ部を作動させる
動作余裕(通常の通電状態からスイツチレバー6
を押してスイツチ部を作動させる間隔)が設定電
流によらず同じである。そして欠相時は梃子の作
用にて両カード2,3の移動量の差が増幅して動
作部8′に伝えられる。従つて設定電流が大のと
き3相間の部品のばらつきや不平衡電流によるバ
イメタル1のたわみ差が大きくなることにより欠
相でないのにミストリツプしやすいという欠点が
ある。また設定電流大のときの欠相時ミストリツ
プしないようにすると、設定電流の小のときの欠
相時両カード2,3の移動量の差が小さいため欠
相検出能力が低くなるという欠点がある。
A conventional thermal relay of this type was constructed as shown in FIG. Bimetal 1
The first cards 2 each abut only on the low-expansion side surfaces of the
and a second card 3 that comes into contact with the high-expansion side surface of the bimetal 1 are provided in parallel, and an actuation lever 5 is arranged at the ends of both cards 2 and 3 so as to be orthogonal to both cards 2 and 3. Shaft 1 provided at one end of 5
0, the end of the first card 2 is brought into contact with a shaft 9' provided in front of one end of the actuating lever 5, and the free end of the other end of the actuating lever 5 is An operating section 8' was provided, and the operating section 8' was placed opposite the switch lever 6. In such a conventional example, when electricity is applied, the high expansion side of the bimetal 1 expands and the bimetal 1 deforms to the low expansion side.
Due to this deformation of the bimetal 1, the actuating convex portion 18 of the first card 2 is pushed, and the first card 2 is moved to the actuating lever 5.
At the same time, the second card 3 also moves to the operating lever 5 side (at this time, only the first card 2 is pushed by the bimetal 1, but the operating protrusion 18 of the second card 3 and the bimetal 1 Since a gap is created between the first card 2 and the second card 3, the second card 3 also moves in the same direction as if being pulled by the first card 2.
When the card moves toward the actuating lever 5 side, the actuating part 8' hits the switch lever 6, and the actuating lever 5 rotates about the shaft 9' and is pulled until the actuating protrusion 18 of the second card 3 comes into contact with the bimetal 1. the first card 2 and the second card 3 substantially move together in the same direction. ). If an overcurrent flows in this energized state,
The bimetal 1 is further deformed toward the operating lever 5 side, the first card 2 and the second card 3 are further moved, and the switch lever 6 is pushed a certain amount by the operating section 8', thereby operating the switch section. In addition, when an open phase occurs in the energized state, the first card 2 moves toward the actuating lever 5 side with the bimetal 1 deformed toward the actuating lever 5, but the bimetal 1, which is not deformed due to the open phase, moves to the second The card 3 does not move toward the actuating lever 5, the first card 2 and the second card 3 move in relatively opposite directions, and the actuating lever 5 rotates around the shaft 10 so that the operating part 8' The switch part is operated by pushing the switch lever 6 a certain amount. By the way, in this type of thermal relay, in order to freely change the operating set current, the angle of the switch lever 6 at which the switch section operates can be adjusted by adjusting the position of the pivot shaft of the switch lever. In other words, when the set current is large, the switch section will not operate unless both cards 2 and 3 move a large amount, and when the set current is small, the switch section will operate even if the amount of movement of both cards 2 and 3 is small. I'm starting to do that. However, in the above conventional example, the same operating section 8' operates the switch section by pushing a fixed position a fixed distance from the pivot shaft of the switch lever 6, both in the event of an overcurrent and in the event of a phase loss. Operation margin for pressing the switch lever 6 to operate the switch part (from the normal energized state to the switch lever 6
The interval at which the switch is activated by pressing is the same regardless of the set current. When the phase is open, the difference in the amount of movement of both cards 2 and 3 is amplified by the action of the lever and is transmitted to the operating section 8'. Therefore, when the set current is large, the difference in deflection of the bimetal 1 due to variations in components among the three phases and unbalanced current becomes large, resulting in a disadvantage that mistrips are likely to occur even though there is no open phase. Also, if you prevent mistrips when a phase is missing when the set current is large, the difference in the amount of movement of both cards 2 and 3 during a phase open when the set current is small is small, so there is a drawback that the ability to detect a phase open will be low. .

本発明は叙述の点に鑑みてなされたものであつ
て、本発明の目的とするところは、不平衡電流に
よるミストリツプを防止でき、しかも設定電流幅
の全域に亘つて欠相保護特性を均一化できるサー
マルリレーを提供するにある。
The present invention has been made in view of the above points, and an object of the present invention is to prevent mistrips caused by unbalanced current, and to make the open-phase protection characteristics uniform over the entire set current width. It is possible to provide thermal relays.

以下本発明を実施例により詳述する。1はU.
V.Wの各相に対応して設けられたバイメタルであ
つて、両端を夫々電源側及び負荷側端子14,1
5に接続したヒータ16が絶縁紙13を介して巻
回されており、このヒータ16に各相電流を通電
することにより通電電流量に応じてバイメタル1
が撓み変形する。17は端子ねじである。2は第
1カードであつて、第1カード2はその側端部よ
り突設した作動凸部18がバイメタル1の下部に
おいて低膨張側面に当接するようにしてある。3
は第2カードであつて、第2カード3はその側端
部より突設した作動凸部18がバイメタル1の下
部において高膨張側面に当接するようにしてあ
る。この第1カード2と第2カード3とは同一面
内において平行に配置してある。また5は第1、
第2カード2,3の端部で両カード2,3と直角
方向に横架させる作動レバーであつて、第5図に
示すように作動レバー5の一端と一端手前に軸
9,10を立設してある。第2カード3の端部は
軸10に軸着してあり、第1カード2の端部を軸
9に軸着することにより第1カード2と作動レバ
ー5とを連繋させてある。第1カード2の端部に
はスイツチ部4のスイツチレバー6を押圧する第
1動作部7を突設してあり、作動レバー5の他端
の自由端の下部にもスイツチレバー6を押圧する
第2動作部8を設けてある。かかる第1動作部7
及び第2動作部8がスイツチレバー6に接触する
位置はスイツチレバー6の枢支軸6aからl1、l2
(l1<l2)となつている。つまり第1動作部7がス
イツチレバー6に接触する位置より第2動作部8
がスイツチレバー6に接触する位置がスイツチレ
バー6の一方の端部側(第3図の図面の下方側)
となつている。この枢支軸6aにて枢支せるスイ
ツチレバー6は第1動作部7及び第2動作部8に
より図中時計方向に回転駆動され、可動接点板4
0に取着された反転ばね23を上記スイツチレバ
ー6の他方の端部側により押駆動し、可動接点板
40に付設したCOM接点21をNO接点24及び
NC接点25に接点交換自在に付設してスイツチ
部4が構成されている。26はNC端子、27は
電流値切換レバー、28は復帰釦、29は復帰釦
支持ばね、30はNO端子、31はテスタカー
ド、35はCOM端子、37はカバー、38はケ
ースである。33はダイヤル連動金具であつて、
ダイヤル連動金具33の下端を枢支軸33aにて
回動自在に支持してある。36は電流値調整用ダ
イヤルであつて、電流値調整用ダイヤル36を回
転することにより偏心カム36aにてダイヤル連
動金具33を枢支軸33aを中心に回動してダイ
ヤル連動金具33に一体に設けた枢支軸6aの位
置を変えてスイツチレバー6の角度を変えられる
ようになつている。32は連動金具支持ばねであ
つて、ダイヤル連動金具33の枢支軸33aと反
対の端部を偏心カム36aに押圧するように付勢
している。34は調整ねじでダイヤル調整金具3
3に対して枢支軸6aの位置を微調整できるよう
になつている。
The present invention will be explained in detail below with reference to Examples. 1 is U.
It is a bimetal provided corresponding to each phase of VW, and both ends are connected to power supply side and load side terminals 14 and 1, respectively.
A heater 16 connected to the bimetallic metal 1
bends and deforms. 17 is a terminal screw. Reference numeral 2 denotes a first card, and the first card 2 has an actuating convex portion 18 protruding from a side end portion of the first card 2 so as to come into contact with a low-expansion side surface at the lower part of the bimetal 1. 3
is a second card, and the second card 3 has an actuating convex portion 18 protruding from its side end portion, which abuts against the high-expansion side surface of the bimetal 1 at the lower portion thereof. The first card 2 and the second card 3 are arranged in parallel within the same plane. Also, 5 is the first,
It is an actuating lever that is hung horizontally at the ends of the second cards 2, 3 at right angles to both cards 2, 3, and as shown in FIG. It has been set up. The end of the second card 3 is pivoted to a shaft 10, and the end of the first card 2 is pivoted to a shaft 9, thereby linking the first card 2 and the operating lever 5. At the end of the first card 2, a first actuating part 7 for pressing the switch lever 6 of the switch part 4 is protruded, and also for pressing the switch lever 6 at the lower part of the other free end of the actuating lever 5. A second operating section 8 is provided. Such first operating section 7
The positions where the second operating portion 8 contacts the switch lever 6 are l 1 and l 2 from the pivot shaft 6a of the switch lever 6.
(l 1 < l 2 ). In other words, from the position where the first operating section 7 contacts the switch lever 6, the second operating section 8
The position where it contacts the switch lever 6 is on one end side of the switch lever 6 (lower side of the drawing in Fig. 3).
It is becoming. The switch lever 6, which is supported by the pivot shaft 6a, is rotated clockwise in the figure by the first operating section 7 and the second operating section 8, and the movable contact plate 4
The reversing spring 23 attached to the switch lever 6 is pushed and driven by the other end side of the switch lever 6, and the COM contact 21 attached to the movable contact plate 40 is moved to the NO contact 24 and
A switch portion 4 is constructed by attaching the contact to the NC contact 25 so that the contact can be exchanged freely. 26 is an NC terminal, 27 is a current value switching lever, 28 is a return button, 29 is a return button support spring, 30 is an NO terminal, 31 is a tester card, 35 is a COM terminal, 37 is a cover, and 38 is a case. 33 is a dial interlocking metal fitting,
The lower end of the dial interlocking fitting 33 is rotatably supported by a pivot shaft 33a. Reference numeral 36 denotes a current value adjustment dial, and by rotating the current value adjustment dial 36, the dial interlocking fitting 33 is rotated around the pivot shaft 33a by an eccentric cam 36a, and is integrated with the dial interlocking fitting 33. The angle of the switch lever 6 can be changed by changing the position of the provided pivot shaft 6a. Reference numeral 32 denotes an interlocking metal fitting support spring, which biases the end of the dial interlocking metal fitting 33 opposite to the pivot shaft 33a so as to press it against the eccentric cam 36a. 34 is the adjustment screw and dial adjustment fitting 3
3, the position of the pivot shaft 6a can be finely adjusted.

次に上述の如く構成せるサーマルリレーの動作
を説明する。通電するとバイメタル1の高膨張側
面側が伸びてバイメタル1が低膨張側面側に変形
するが、このバイメタル1の変形にて第1カード
2の作動凸部18が押されて第1カード2が作動
レバー5側に移動し、これと一緒に第2カード3
も作動レバー5側に移動する(このときバイメタ
ル1にて第1カード2だけが押されるが、第2カ
ード3の作動凸部18とバイメタル1との間に隙
間ができるため第1カード2に引つ張られるよう
に第2カード3も同方向に移動する)。この通電
状態が通常電流であると、第1動作部7や第2動
作部8がスイツチレバー6に近接するだけでスイ
ツチ部4を動作させるようにスイツチレバー6を
押さない。通電状態で過電流が流れると、バイメ
タル1がさらに作動レバー5側に変形し、第1カ
ード2や第2カード3に対して作動レバー5が直
角な状態を維持したまま第1カード2と第2カー
ド3がさらに第3図左方に移動し、第1動作部7
がスイツチレバー6を一定量押圧し、可動接点板
40が反転してスイツチ部4が動作する。また通
電状態で欠相を生じたとき第1カード2が作動レ
バー5側に変形しているバイメタル1にて作動レ
バー5側に移動しているが、欠相により変形しな
いバイメタル1にて第2カード3は作動レバー5
側に移動せず、第1カード2と第2カード3は相
対的に相反する方向に移動し、作動レバー5は軸
10を中心に回動して第2動作部8がスイツチレ
バー6を一定量押し、可動接点板40が反転して
スイツチ部4が動作する。また枢支軸6aから第
1動作部7がスイツチレバー6に接触する位置ま
での距離l1と枢支軸6aから第2動作部8がスイ
ツチレバー6に接触する位置までの距離l2がl1
l2となつていると、第6図aに示すように設定電
流が小の場合の第2動作部8の動作余裕dより第
6図bに示すように設定電流が大の場合の動作余
裕d′が大きくなる。つまり、設定電流は電流値調
整用ダイヤル36にてダイヤル連動金具33を回
動させてスイツチレバー6の枢支軸6aを移動さ
せてスイツチレバー6でスイツチ部4を動作させ
る角度を変えること調整されるが、設定電流が小
の場合第6図aに示すように垂直方向に対してス
イツチレバー6の動作する傾斜角度が小さく、設
定電流が大の場合第6図bに示すように垂直方向
に対してスイツチレバー6の動作する傾斜角度が
大きくなり、l1<l2の関係になつていると、第2
動作部8とスイツチレバー6との間の動作余裕は
設定電流が大きくなる程大きくなる。従つて設定
電流が大のとき各相のバイメタル1間の撓み量に
ばらつきがあつてもスイツチレバー6が押されて
ミストリツプしなく、設定電流が小のとき欠相し
ても確実に動作する。
Next, the operation of the thermal relay configured as described above will be explained. When energized, the high expansion side of the bimetal 1 expands and the bimetal 1 is deformed to the low expansion side, but this deformation of the bimetal 1 pushes the actuating convex portion 18 of the first card 2, causing the first card 2 to move into the actuating lever. Move to the 5 side and add the second card 3 along with this.
(At this time, only the first card 2 is pushed by the bimetal 1, but since there is a gap between the actuating protrusion 18 of the second card 3 and the bimetal 1, the first card 2 is pushed by the bimetal 1.) As if being pulled, the second card 3 also moves in the same direction). When this energization state is a normal current, the first actuating part 7 and the second actuating part 8 just come close to the switch lever 6 and do not push the switch lever 6 to actuate the switch part 4. When an overcurrent flows in the energized state, the bimetal 1 further deforms toward the actuating lever 5 side, and the actuating lever 5 remains perpendicular to the first card 2 and the second card 3 while the first card 2 and the second card 3 2 card 3 further moves to the left in FIG.
presses the switch lever 6 by a certain amount, the movable contact plate 40 is reversed, and the switch portion 4 is operated. In addition, when an open phase occurs in the energized state, the first card 2 moves toward the actuating lever 5 side with the bimetal 1 deformed toward the actuating lever 5, but the bimetal 1, which is not deformed due to the open phase, moves to the second Card 3 is actuating lever 5
The first card 2 and the second card 3 move in opposite directions, and the operating lever 5 rotates around the shaft 10 so that the second operating part 8 holds the switch lever 6 at a constant position. When pressed, the movable contact plate 40 is reversed and the switch portion 4 is operated. Furthermore, the distance l1 from the pivot shaft 6a to the position where the first operating part 7 contacts the switch lever 6 , and the distance l2 from the pivot shaft 6a to the position where the second operating part 8 contacts the switch lever 6 are l. 1 <
l 2 , the operating margin d of the second operating section 8 when the set current is small as shown in FIG. 6a is greater than the operating margin d when the set current is large as shown in FIG. 6b. d′ becomes larger. In other words, the set current is adjusted by rotating the dial interlocking fitting 33 using the current value adjustment dial 36, moving the pivot shaft 6a of the switch lever 6, and changing the angle at which the switch part 4 is operated by the switch lever 6. However, when the set current is small, the tilt angle at which the switch lever 6 operates is small with respect to the vertical direction, as shown in Figure 6a, and when the set current is large, as shown in Figure 6b, the angle of inclination at which the switch lever 6 operates is small. On the other hand, if the inclination angle at which the switch lever 6 operates increases and the relationship l 1 < l 2 is established, the second
The operating margin between the operating section 8 and the switch lever 6 increases as the set current increases. Therefore, when the set current is large, even if there are variations in the amount of deflection between the bimetals 1 of each phase, the switch lever 6 will not be pressed and cause a mistrip, and when the set current is small, the switch will operate reliably even if a phase is missing.

また第7図は叙述の他の実施例を示すものであ
る。本実施例の場合第1動作部7を作動レバー5
に設けてあり、第1カード2の端部を第1動作部
7のスイツチレバー6側と反対に係当させること
により第1カード2と作動レバー5とを連繋させ
てある。本実施例の場合も前記実施例と同様に動
作する。
FIG. 7 shows another embodiment of the description. In this embodiment, the first operating portion 7 is connected to the operating lever 5.
The first card 2 and the operating lever 5 are connected by engaging the end of the first card 2 opposite to the switch lever 6 side of the first operating section 7. This embodiment also operates in the same manner as the previous embodiment.

本発明は叙述の如く過電流時に第1、第2カー
ドが同じ方向に移動したときスイツチ部のスイツ
チレバーを押圧する第1動作部を作動レバーと上
記第1カードの端部との連繋部近傍に設け、欠相
時第1カードと第2カードが相対的に相反する方
向に移動したときスイツチ部のスイツチレバーを
押圧する第2動作部を作動レバーの他端の自由端
部に設け、スイツチ部のスイツチレバーの枢支軸
から上記第1動作部がスイツチレバーに接触する
位置までの長さより、スイツチレバーの枢支軸か
ら上記第2動作部がスイツチレバーに接触する位
置までの長さが長くなるように第1動作部と第2
動作部の高さ位置を違えているので、過電流時に
は第1動作部がスイツチレバーを一定量押してス
イツチ部が動作すると共に欠相時作動レバーの回
動で第2動作部がスイツチレバーを一定量押して
スイツチ部が動作し、過電流保護と欠相保護がで
きるのは勿論、設定電流が大きくなる程第2動作
部がスイツチレバーを動作させる動作余裕が徐々
に大きくなるものであつて、設定電流が大のとき
に部品のばらつきや電流不平衡に起因するミスト
リツプを生じなくなり、しかも設定電流が小のと
きでも欠相時には確実に動作するものである。従
つて部品のばらつきや電流不平衡に起因するト
リップ特性のばらつきが改善されると共に欠相保
護特性が均一化されるものである。
As described above, when the first and second cards move in the same direction during an overcurrent, the first actuating part that presses the switch lever of the switch part is placed near the connecting part between the actuating lever and the end of the first card. A second actuating part is provided at the other free end of the actuating lever to press the switch lever of the switch part when the first card and the second card move in relatively opposite directions in the event of a phase failure. The length from the pivot shaft of the switch lever to the position where the second operating part contacts the switch lever is longer than the length from the pivot shaft of the switch lever in the section to the position where the first operating part contacts the switch lever. The first operating part and the second
Since the height positions of the operating parts are different, in the event of an overcurrent, the first operating part pushes the switch lever a certain amount to operate the switch, and in the event of a phase failure, the second operating part moves the switch lever at a constant level by rotating the operating lever. Of course, the switch part operates when the switch lever is pressed, providing overcurrent protection and open phase protection. When the current is large, mistrips due to component variations and current imbalance do not occur, and even when the set current is small, it operates reliably in the event of an open phase. Therefore, variations in trip characteristics caused by component variations and current imbalance are improved, and open-phase protection characteristics are made uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の平面図、第2図は
第1図の正面図、第3図は第2図の正断面図、第
4図は第3図の平断面図、第5図は同上の作動レ
バーと第1及び第2カードを示す分解斜視図、第
6図a,bは同上の動作説明するための概略斜視
図、第7図は同上の他の実施例の平断面図、第8
図は従来例の平断面図であつて、1はバイメタ
ル、2は第1カード、3は第2カード、4はスイ
ツチ部、5は作動レバー、6はスイツチレバー、
7は第1動作部、8は第2動作部である。
1 is a plan view of an embodiment of the present invention, FIG. 2 is a front view of FIG. 1, FIG. 3 is a front sectional view of FIG. 2, FIG. 4 is a plan sectional view of FIG. Figure 5 is an exploded perspective view showing the operating lever and the first and second cards, Figures 6a and b are schematic perspective views for explaining the operation of the same, and Figure 7 is a flat view of another embodiment of the same. Sectional view, No. 8
The figure is a plan sectional view of a conventional example, in which 1 is a bimetal, 2 is a first card, 3 is a second card, 4 is a switch section, 5 is an operating lever, 6 is a switch lever,
7 is a first operating section, and 8 is a second operating section.

Claims (1)

【特許請求の範囲】[Claims] 1 3相の各相のバイメタルの低膨張側面にのみ
に夫々当接する第1カードと、バイメタルの高膨
張側面にのみ夫々当接する第2カードとを略平行
に設け、両カードの変位によりスイツチ部を作動
させるサーマルリレーにおいて、両カードの端部
側で両カードと直角方向に作動レバーを横架して
第2カードの端部を作動レバーの一端に軸着する
と共に第1カードの端部をこの第1カードの作動
レバー側への移動にて作動レバーを押すように第
1カードの端部を作動レバーの一端手前に連繋さ
せ、過電流時に上記両カードが同じ方向に移動し
たときスイツチ部のスイツチレバーを押圧する第
1動作部を作動レバーと上記第1カードの端部と
の連繋部近傍に設け、欠相時第1カードと第2カ
ードが相対的に相反する方向に移動したときスイ
ツチ部のスイツチレバーを押圧する第2動作部を
作動レバーの他端の自由端部に設け、スイツチ部
のスイツチレバーの枢支軸から上記第1動作部が
スイツチレバーに接触する位置までの長さより、
スイツチレバーの枢支軸から上記第2動作部がス
イツチレバーに接触する位置までの長さが長くな
るように第1動作部と第2動作部の高さ位置を違
えて成ることを特徴とするサーマルリレー。
1. A first card that abuts only the low-expansion side surfaces of the bimetal of each of the three phases, and a second card that abuts only the high-expansion side surfaces of the bimetal, respectively, are provided approximately parallel to each other, and the switch section is activated by displacement of both cards. In a thermal relay that operates, an operating lever is horizontally mounted on the end sides of both cards in a direction perpendicular to both cards, and the end of the second card is pivoted to one end of the operating lever, and the end of the first card is attached to the end of the first card. The end of the first card is linked to one end of the operating lever in front of one end of the operating lever so that the operating lever is pushed when the first card moves toward the operating lever, and when both cards move in the same direction during an overcurrent, the switch section A first operating part for pressing the switch lever is provided near the connecting part between the operating lever and the end of the first card, and when the first card and the second card move in relatively opposite directions during a phase failure. A second operating part that presses the switch lever of the switch part is provided at the other free end of the operating lever, and the length from the pivot shaft of the switch lever of the switch part to the position where the first operating part contacts the switch lever is provided. Sayori,
The height position of the first operating part and the second operating part are different so that the length from the pivot shaft of the switch lever to the position where the second operating part contacts the switch lever is longer. thermal relay.
JP7880077A 1977-06-30 1977-06-30 Thermal relay Granted JPS5412477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7880077A JPS5412477A (en) 1977-06-30 1977-06-30 Thermal relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7880077A JPS5412477A (en) 1977-06-30 1977-06-30 Thermal relay

Publications (2)

Publication Number Publication Date
JPS5412477A JPS5412477A (en) 1979-01-30
JPS6244370B2 true JPS6244370B2 (en) 1987-09-19

Family

ID=13671927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7880077A Granted JPS5412477A (en) 1977-06-30 1977-06-30 Thermal relay

Country Status (1)

Country Link
JP (1) JPS5412477A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152166B2 (en) * 2009-12-11 2013-02-27 富士電機機器制御株式会社 thermal relay

Also Published As

Publication number Publication date
JPS5412477A (en) 1979-01-30

Similar Documents

Publication Publication Date Title
JPS5931817B2 (en) circuit breaker
US2214695A (en) Circuit breaker
JPH0347242Y2 (en)
JPH0668774A (en) Electric switch
JPS58176843A (en) Overcurrent protecting switch
US3706057A (en) Single or multipole push button actuated excess current switch having thermal and/or electromagnetic trip
US2908786A (en) Overload relay switch with ambient temperature compensation
US2897319A (en) Electric switch
SU753370A3 (en) Switching device
JPS6244370B2 (en)
JPS6313624Y2 (en)
US8138879B2 (en) Thermal overload relay
JP2522938B2 (en) Electric lamp and disconnector
US3147353A (en) Contact weld breaking means
US3426301A (en) Interconnected multipole circuit breaker
PL164308B1 (en) Lock for a protective overcurrent circuit-breaker
JPS6214589Y2 (en)
KR200218834Y1 (en) construction of shifter and lever in thermal overload relay for protecting phase deficiency motor
US3263045A (en) Circuit breaker with high and low overcurrent means for disengaging the latch
JPH0422528Y2 (en)
KR200226336Y1 (en) Trip for open phase protection type thermal over load relay
US3171930A (en) Precalibrated thermostatic latch assembly
WO2024042746A1 (en) Thermal overload relay
JPS5917072Y2 (en) thermal relay
US3032624A (en) Control mechanism