JPS6244362Y2 - - Google Patents
Info
- Publication number
- JPS6244362Y2 JPS6244362Y2 JP79581U JP79581U JPS6244362Y2 JP S6244362 Y2 JPS6244362 Y2 JP S6244362Y2 JP 79581 U JP79581 U JP 79581U JP 79581 U JP79581 U JP 79581U JP S6244362 Y2 JPS6244362 Y2 JP S6244362Y2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- ultrasonic
- front surface
- liquid fluid
- jet nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000523 sample Substances 0.000 claims description 51
- 239000007788 liquid Substances 0.000 claims description 21
- 239000012530 fluid Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 15
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 230000007423 decrease Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000008400 supply water Substances 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
【考案の詳細な説明】
本考案は、超音波探触子と被検材との間に液流
体を噴出介在させて、被検材の疵探傷や寸法測定
を行なう超音波カツプリング用液流体の噴出ノズ
ルに関するものである。[Detailed description of the invention] The present invention is a liquid fluid for ultrasonic coupling, which jets liquid fluid between an ultrasonic probe and a material to be inspected to detect flaws and measure dimensions of the material to be inspected. This relates to a jet nozzle.
超音波による自動探傷装置あるいは自動測寸装
置においては、探触子より被検材に超音波を伝達
する媒体としては液体(水)を用いるのが一般的
である。 In automatic ultrasonic flaw detection devices or automatic size measuring devices, liquid (water) is generally used as a medium for transmitting ultrasonic waves from a probe to a specimen.
而して、超音波探触子と被検材との間に超音波
カツプリング用としての液流体を噴出介在させ
て、超音波で被検材の疵探傷や寸法測定を行なう
この種噴出ノズルにあつては、超音波探触子と被
検材との間に介在する液流体中に空気成分(気
泡)が存在すると、被検材に入射する超音波が減
衰するだけでなく、また気泡からの反響音を受信
してノイズの原因となる問題がある。しかも、上
記超音波探触子と被検材との間に介在する液流体
の流れは、乱流であれば、超音波の通りが悪くな
り、受信時の反響音のS/N比が悪くなる問題が
ある。また超音波探触子と被検材との間の距離が
長くなると、途中での超音波の拡散損失が大きく
なることと、入射角度ズレの影響が大きくなる。
従つて、上記両部材間の液流体には気泡が存在し
ないこと、及びその流れは層流であること、また
両部材間の距離は探傷・測寸に悪影響を及ぼさな
い範囲で出来るだけ短いことが理想的である。 Therefore, this type of jet nozzle jets a liquid for ultrasonic coupling between the ultrasonic probe and the material to be tested, and uses ultrasonic waves to detect flaws and measure the dimensions of the material to be tested. In the event that air components (bubbles) exist in the liquid fluid interposed between the ultrasonic probe and the test material, the ultrasonic waves incident on the test material will not only be attenuated, but also There is a problem with receiving echoes and causing noise. Moreover, if the flow of the liquid fluid interposed between the ultrasonic probe and the test material is turbulent, the passage of the ultrasonic waves will be poor, and the S/N ratio of the echo sound at the time of reception will be poor. There is a problem. Furthermore, as the distance between the ultrasonic probe and the material to be inspected becomes longer, the diffusion loss of the ultrasonic waves along the way becomes larger, and the influence of the deviation in the incident angle becomes larger.
Therefore, there should be no bubbles in the liquid fluid between the two members, the flow should be laminar, and the distance between the two members should be as short as possible without adversely affecting flaw detection and dimension measurement. is ideal.
第1図及び第2図は、夫々従来のこの種噴出ノ
ズルの実施例を示すものである。 FIGS. 1 and 2 each show an example of a conventional jet nozzle of this type.
第1図の従来例において、1は被検材Sに向け
て液流体を噴出させる噴出ノズル本体、2はこの
本体1内に装着された超音波探触子、3はカツプ
リング用液流体(以下は液流体を水として説明す
る)の供給管、4は供給口、5は吐出口である。
供給口4は、探触子前面2aより前方に開口され
ている。 In the conventional example shown in FIG. 1, 1 is a jet nozzle body that jets a liquid fluid toward a test material S, 2 is an ultrasonic probe mounted inside this main body 1, and 3 is a liquid fluid for coupling (hereinafter referred to as 4 is a supply port, and 5 is a discharge port.
The supply port 4 is opened in front of the probe front surface 2a.
この従来例にあつては、上述の如く供給口4が
探触子前面2aより前方に開口されているので、
水の流れが供給管3の探触子前面2aと供給口4
との間で澱み、水の供給開始時にここに閉じ込め
られた空気が停滞或いは探触子前面2aに附着し
たままになることがあつた。また水と探触子2と
の温度差によつては、探触子前面2aに気泡が発
生するが、この気泡も探触子前面2aに附着した
ままになつていた。このため、探触子2より発信
される超音波は、上記気泡の存在により、減衰し
たり、或いは気泡に反射されてノイズを発生して
いた。更に、供給管3より供給される水は、噴出
ノズル本体1内に入ると、その流路の容積が拡張
されるので、噴出ノズル本体1内で乱流を起こ
し、超音波の伝播を悪くしていた。また供給口4
を探触子前面2aより前方に開口するこの構成で
は、探触子前面2aと吐出口5との距離が長くな
り、超音波の拡散損失大きい問題があつた。 In this conventional example, as mentioned above, the supply port 4 is opened in front of the front surface 2a of the probe.
The flow of water flows between the probe front surface 2a of the supply pipe 3 and the supply port 4.
When the water supply starts, the air trapped there may become stagnant or remain attached to the front surface 2a of the probe. Further, depending on the temperature difference between the water and the probe 2, bubbles are generated on the front surface 2a of the probe, but these bubbles also remain attached to the front surface 2a of the probe. For this reason, the ultrasonic waves emitted from the probe 2 are attenuated due to the presence of the bubbles, or are reflected by the bubbles to generate noise. Furthermore, when the water supplied from the supply pipe 3 enters the jet nozzle body 1, the volume of the flow path is expanded, causing turbulence within the jet nozzle body 1 and impairing the propagation of ultrasonic waves. was. Also, supply port 4
In this configuration in which the discharge port 5 is opened in front of the probe front surface 2a, the distance between the probe front surface 2a and the discharge port 5 becomes long, and there is a problem in that the diffusion loss of the ultrasonic waves is large.
第2図のものは、第1図の実施例における噴出
ノズル本体1の先端1aを絞つた例であるが、こ
の従来例もやはり前記従来例同様の問題があつ
た。 2 is an example in which the tip 1a of the jet nozzle main body 1 in the embodiment shown in FIG. 1 is constricted, but this conventional example also has the same problems as the aforementioned conventional example.
要するに、従来のこの種噴出ノズルは、前述し
た理想的な要件を満足しておらず、検出若しくは
測定を実行する上で探触子と被検材間の超音波の
良好な伝達が得られなかつた。 In short, conventional jet nozzles of this type do not meet the ideal requirements mentioned above, and do not provide good transmission of ultrasonic waves between the probe and the material to be tested when performing detection or measurement. Ta.
そこで本考案は従来のこの種噴出ノズルの上記
欠点に鑑みてこれを改良し、直角断面積が下流方
向に向つて減少し、且つ探触子の前面の接線方向
に液流体を案内する部分を有する通路を、探触子
の外周全面に設け、該通路の途中に液流体の旋回
を防止するフインを設けることにより、探触子と
噴出ノズル本体の吐出口間の距離を小さくした構
造となし、また液流体の流れを乱流から層流に整
流して探触子前面に沿つて流すようにし、探触子
前面に附着する気泡等を除去するようにした探触
子と被検材間の良好な超音波の伝達が可能な超音
波カツプリング用液流体の噴出ノズルを提供せん
とするものである。 Therefore, in view of the above-mentioned drawbacks of the conventional jet nozzle of this type, the present invention has been improved, and the perpendicular cross-sectional area decreases in the downstream direction, and the part that guides the liquid fluid in the tangential direction of the front surface of the probe has been developed. A passageway is provided on the entire outer circumference of the probe, and fins are provided in the middle of the passageway to prevent the liquid from swirling, thereby reducing the distance between the probe and the discharge port of the jet nozzle body. In addition, the flow of liquid fluid is rectified from turbulent flow to laminar flow so that it flows along the front surface of the probe, and air bubbles etc. attached to the front surface of the probe are removed. It is an object of the present invention to provide a liquid fluid ejection nozzle for ultrasonic coupling which is capable of transmitting good ultrasonic waves.
以下本考案の構成を図面に示す実施例に基づい
て説明すると次の通りである。 The configuration of the present invention will be described below based on the embodiments shown in the drawings.
本考案の噴出ノズルは第3図乃至第6図に示す
ように、超音波探触子6、筒状の異径体7、中間
部材8、ホルダー9、ノイズ本体10、液流体
(以下は液流体を水として説明する)の供給管1
1,11及びフイン12で構成されている。超音
波探触子6は、その外周にフランジ13とコネク
ター(図示せず)との結合用螺子部14を有し、
コネクターを介して超音波装置に接続される。筒
状の異径体7は、その外周面部に形成された螺子
部が中間部材8の内周面に形成まれた螺子部と螺
合15して一体化され、これらの両部材7,8は
超音波探触子6の外周面上に嵌合装着される。そ
して、中間部材8の環状の段部16に、供給管1
1,11を一体化してなるノズル本体10の一方
側の開口端部が装着され、ノズル本体10は、中
間部材8にボルト17で締結される。また中間部
材8は、探触子6のフランジ13を挾んでホルダ
ー9にボルト20で締結される。これにより全体
の組立が完了し、ノズル本体10の内周面と筒状
の異径体7と外周面との間に、水の供給通路18
が構成される。筒状の異径体7の外周面は、探触
子前面6a側に向うに連れてその径が増大し、そ
してやがて探触子前面6aと接する様にR部19
が構成されている。このため、上記通路18は、
下流側に向うに従つて直角断面積が減少する。 As shown in FIGS. 3 to 6, the jet nozzle of the present invention includes an ultrasonic probe 6, a cylindrical variable diameter body 7, an intermediate member 8, a holder 9, a noise main body 10, and a liquid fluid (hereinafter referred to as liquid Supply pipe 1 of (explaining the fluid as water)
1, 11 and fins 12. The ultrasonic probe 6 has a screw portion 14 for coupling the flange 13 and a connector (not shown) on its outer periphery,
Connected to the ultrasound device via a connector. The cylindrical body 7 with different diameters is integrated by threading 15 a threaded portion formed on its outer circumferential surface with a threaded portion formed on the inner circumferential surface of the intermediate member 8, and these two members 7, 8 are integrated. It is fitted and mounted on the outer peripheral surface of the ultrasonic probe 6. Then, the supply pipe 1 is attached to the annular step portion 16 of the intermediate member 8.
The opening end of one side of the nozzle body 10 formed by integrating the nozzle bodies 1 and 11 is attached, and the nozzle body 10 is fastened to the intermediate member 8 with bolts 17. Further, the intermediate member 8 is fastened to the holder 9 with bolts 20, sandwiching the flange 13 of the probe 6. This completes the entire assembly, and a water supply passage 18 is provided between the inner circumferential surface of the nozzle body 10, the cylindrical variable diameter body 7, and the outer circumferential surface.
is configured. The diameter of the outer circumferential surface of the cylindrical body 7 of different diameters increases toward the probe front surface 6a, and the R portion 19 is formed so as to eventually come into contact with the probe front surface 6a.
is configured. Therefore, the passage 18 is
The perpendicular cross-sectional area decreases toward the downstream side.
フイン12は第5図に示すように、通路18の
円周等配位置に複数個(図面では8個の場合を図
示している)が設置され、この実施例では筒状の
異径体7のR部19に一体的に取付けられてい
る。そしてフイン12の上流側の端面部12a
は、このフイン12の設置に起因して発生する水
の乱流を防止するために、鋭いエツヂ構造となつ
ている。尚、21は水の供給口、22は吐出口で
ある。吐出口22の径は、探触子6より発信され
る超音波ビームが全て被検材に入射できるよう
に、探触子6の有効径よりも大きく設定してあ
る。 As shown in FIG. 5, a plurality of fins 12 (eight fins are shown in the drawing) are installed at equidistant positions on the circumference of the passage 18, and in this embodiment, a cylindrical body 7 with different diameters is installed. It is integrally attached to the R section 19 of. And the upstream end surface portion 12a of the fin 12
The fins 12 have a sharp edge structure to prevent water turbulence caused by the installation of the fins 12. Note that 21 is a water supply port, and 22 is a water discharge port. The diameter of the discharge port 22 is set larger than the effective diameter of the probe 6 so that all the ultrasonic beams emitted from the probe 6 can be incident on the specimen.
次に上記構成噴出ノズルの動作要領を説明す
る。先づ対向する2つの供給口11,11より供
給される水は、供給口21を通つて超音波探触子
6の全周に構成された通路18へ流入する。この
時点では、上記供給水は乱流状態である。供給水
は、直角断面積が下流方向に伴つて減少しる通路
18を流れるに従つて縮流されることになり、ま
たフイン12で旋回が防止されるので、順次整流
されて層流状態となる。そしてR部19で探触子
前面6aの接線方向に案内され、探触子6の全周
からその前面6aに沿つて流下し、吐出口22よ
り被検材に対して吐出される。このため、探触子
前面6aを流れる供給水は、該供給水と探触子前
面6aとの温度差に因つて発生してその前面6a
に附着する気泡を除去流出することができる。ま
た水の供給開始時に、探触子前面6aの近傍に存
在する気泡をも、流出することができる。 Next, the operating procedure of the jet nozzle having the above structure will be explained. First, water supplied from the two opposing supply ports 11, 11 flows into the passage 18 formed around the entire circumference of the ultrasonic probe 6 through the supply port 21. At this point, the feed water is in a turbulent state. As the supply water flows through the passage 18 whose perpendicular cross-sectional area decreases in the downstream direction, the flow is contracted, and since swirling is prevented by the fins 12, the flow is sequentially rectified into a laminar flow state. . Then, it is guided in the tangential direction of the probe front surface 6a by the R portion 19, flows down from the entire circumference of the probe 6 along the front surface 6a, and is discharged from the discharge port 22 onto the specimen. Therefore, the supply water flowing through the front surface 6a of the probe is generated due to the temperature difference between the supply water and the front surface 6a of the probe, and
Air bubbles that adhere to the water can be removed and flowed out. Furthermore, when the water supply starts, air bubbles existing near the front surface of the probe 6a can also flow out.
従つて、探触子前面6aと被検材との間をカツ
プリングする供給水中には気泡の存在がなくな
り、気泡の存在に起因する被検材に入射する超音
波の減衰及びノイズの発生等の問題がない。また
供給水の流動状態は層流状態であるため、超音波
の伝播性に優れ、超音波のビームを全て被検材に
入射できる。更に供給口21を探触子前面6aよ
り後方に配置する構成であるから、探触子前面6
aとノイズ先端部の吐出口22との間の距離を小
さくすることができ、探触子6と被検材との間の
距離短縮が図れる。このため超音波の拡散損失が
少なくなる。 Therefore, there are no air bubbles in the supply water that couples between the front surface of the probe 6a and the test material, which reduces the attenuation of ultrasonic waves incident on the test material and the generation of noise caused by the presence of air bubbles. there is no problem. Furthermore, since the flow state of the supplied water is a laminar flow state, the ultrasonic wave propagation property is excellent, and the entire ultrasonic beam can be incident on the specimen. Furthermore, since the supply port 21 is arranged behind the probe front surface 6a, the probe front surface 6a
The distance between a and the discharge port 22 at the noise tip can be reduced, and the distance between the probe 6 and the material to be tested can be shortened. Therefore, the diffusion loss of ultrasonic waves is reduced.
以上説明したように本考案にあつては、直角断
面積が下流方向に向つて減少し、且つ探触子の前
面の接線方向に液流体を案内する部分を有する通
路を、探触子の外周全面に設け、該通路の途中に
液流体の旋回を防止するフインを設けることによ
り、探触子と噴出ノズル本体の吐出口間の距離を
小さくした構造となし、また液流体の流れを乱流
から層流に整流して探触子前面に沿つて流すよう
にし、探触子前面に附着する気泡等を除去するよ
うにしたから、超音波の減衰及びノイズの発生、
更には拡散損失の少ないこの種噴出ノズルの提供
が可能となり、誤差の少ない高精度の検出若しく
は測定が行えなる。 As explained above, in the present invention, a passage having a section whose perpendicular cross-sectional area decreases in the downstream direction and which guides the liquid fluid in the tangential direction of the front surface of the probe is formed on the outer periphery of the probe. By providing fins on the entire surface and preventing swirling of the liquid fluid in the middle of the passage, the distance between the probe and the discharge port of the jet nozzle body is reduced, and the flow of the liquid fluid is prevented from turbulent. The current is rectified into a laminar flow so that it flows along the front of the probe, and air bubbles adhering to the front of the probe are removed, which reduces the attenuation of ultrasonic waves and the generation of noise.
Furthermore, it is possible to provide this type of jet nozzle with less diffusion loss, and highly accurate detection or measurement with less error can be performed.
第1図及び第2図は従来の噴出ノズルの縦断面
図、第3図乃至第6図は本考案に係る噴出ノズル
の一実施例を示すもので、第3図は全体を示す半
断面側面図、第4図は正面図、第5図はフイン及
び異径体の正面図、第6図は中間部材の正面図で
ある。
6……超音波探触子、6a……探触子前面、1
8……通路、12……フイン。
FIGS. 1 and 2 are longitudinal sectional views of a conventional jet nozzle, FIGS. 3 to 6 show an embodiment of the jet nozzle according to the present invention, and FIG. 3 is a half-sectional side view showing the whole. 4 is a front view, FIG. 5 is a front view of the fins and the variable diameter body, and FIG. 6 is a front view of the intermediate member. 6... Ultrasonic probe, 6a... Probe front, 1
8...Aisle, 12...Fin.
Claims (1)
在させて、被検材の疵探傷や寸法測定を行なう超
音波カツプリング用液流体の噴出ノズルにおい
て、直角断面積が下流方向に向つて減少し、且つ
探触子の前面の接線方向に液流体を案内する部分
を有する通路を、探触子の外周全面に設け、該通
路の途中に液流体の旋回を防止するフインを設け
たことを特徴とする超音波カツプリング用液流体
の噴出ノズル。 In a liquid jet nozzle for ultrasonic coupling, which jets a liquid fluid between an ultrasonic probe and a test material to perform flaw detection and dimension measurement of the test material, the perpendicular cross-sectional area is in the downstream direction. A passageway is provided on the entire outer periphery of the probe, and a passageway is provided on the entire outer periphery of the probe, and a fin is provided in the middle of the passageway to prevent swirling of the liquidflow. A liquid fluid ejection nozzle for ultrasonic coupling, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP79581U JPS6244362Y2 (en) | 1981-01-06 | 1981-01-06 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP79581U JPS6244362Y2 (en) | 1981-01-06 | 1981-01-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57142358U JPS57142358U (en) | 1982-09-07 |
JPS6244362Y2 true JPS6244362Y2 (en) | 1987-11-21 |
Family
ID=29799343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP79581U Expired JPS6244362Y2 (en) | 1981-01-06 | 1981-01-06 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6244362Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT524519B1 (en) | 2020-12-01 | 2022-12-15 | Facc Ag | Ultrasonic testing device |
-
1981
- 1981-01-06 JP JP79581U patent/JPS6244362Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57142358U (en) | 1982-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4507969A (en) | Ultrasonic liquid jet probe | |
US4735097A (en) | Method and apparatus for measuring fluid characteristics using surface generated volumetric interrogation signals | |
CA2647711C (en) | Fluid flow meter and mixer | |
US5001932A (en) | Ultrasonic squirter | |
US4930701A (en) | Confluent nozzle | |
CN101672828B (en) | Nozzle used for water-spray ultrasonic nondestructive testing | |
US8181536B2 (en) | Ultrasonic Flow Meter including a transducer having conical face | |
JP5271923B2 (en) | Probe for inspecting the edge of a structure | |
JPH1030946A (en) | Device for measuring flow rate of fluid | |
US3908445A (en) | Ultrasonic transducer with coupling means | |
US4393991A (en) | Sonic water jet nozzle | |
US4403510A (en) | Apparatus and method for ultrasonic inspection | |
US10890471B2 (en) | Method and assembly for ultrasonic clamp-on flow measurement, and bodies for implementing off-center flow measurement | |
US6338277B1 (en) | Flowmeter for attenuating acoustic propagations | |
US5431342A (en) | Nozzle providing a laminar exhaust stream | |
JPS6244362Y2 (en) | ||
US4506552A (en) | Coaxial flowpath apparatus | |
US4823612A (en) | Socket structure for mounting ultrasonic gas flow measuring device with respect to gas flow pipe | |
US4546920A (en) | Sonic water jet nozzle | |
JPH10274551A (en) | Ultrasonic flow meter | |
JP2880520B2 (en) | Water column nozzle | |
CN105333912A (en) | Ultrasonic base table device | |
JPH0915012A (en) | Ultrasonic wave flowmeter | |
JP2023137432A (en) | Skater for ultrasonography | |
CN218673764U (en) | Ultrasonic gas flow metering device |