JPS624432A - Gas purification device - Google Patents

Gas purification device

Info

Publication number
JPS624432A
JPS624432A JP60140516A JP14051685A JPS624432A JP S624432 A JPS624432 A JP S624432A JP 60140516 A JP60140516 A JP 60140516A JP 14051685 A JP14051685 A JP 14051685A JP S624432 A JPS624432 A JP S624432A
Authority
JP
Japan
Prior art keywords
adsorption tower
adsorbent
tower
adsorption
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60140516A
Other languages
Japanese (ja)
Inventor
Atsushi Obara
敦 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60140516A priority Critical patent/JPS624432A/en
Publication of JPS624432A publication Critical patent/JPS624432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To prevent the clogging of an adsorption tower by providing at least two adsorption towers having an adsorption layer in series, setting the operation temp. in the front tower higher than the rear tower and also providing a heat source for the regeneration of the adsorbent to the rear tower. CONSTITUTION:When gaseous H2 isotope contg. CH4 and C2H6 is passed through an ordinary-temp. adsorption tower 1a, steam and CH4 are adsorbed. The adsorbent of the adsorbent tower 1a is gradually saturated with stream and CH4 but CH4 firstly adsorbed by the difference of b.p. or the like is substituted with steam flowed-in thereafter and flowed in a low-temp. adsorption tower 2a from the adsorption tower 1a and readsorbed therein. In the regeneration of the adsorbent saturated with the impurities, CH4 adsorbed in the low-temp. adsorption tower is desorbed from the adsorbent only by returning it to the ordinary temp. from the temp. of liquid N2. Only tritium water is recovered in a regenerator 3.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、不純物を含んだ流体を精製するだめのガス精
製装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas purification apparatus for purifying a fluid containing impurities.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

核融合炉(=おいでは、水素同位体を核融合反応させ、
その際放出されるエネルギーを利用して発電が行なわれ
るが、目下この燃料として、重水素及びトリチウムの組
合せが有望視されている。しかしながら、燃料中(:不
純物が含まれると融合反応はすみやか1:は進まなくな
る為、不純物を除去して水素同位体の純度をコントロー
ルする必要がある。また燃焼後のガス中(:存在するト
リチウムと重水素は再使用するため1:分離する必要が
あり、特に深冷蒸留法(:よって同位体分離を行う場合
、不純物量のトータルがlppm以下としなければなら
ない。ここにおいても不純物の除去が必要となる。この
不純物の除去法としでは、低温吸着法、多段深冷法等が
考案されでいるが、現在稼働中の重水素プラントでは、
装置の簡便さから低温吸着法(二よる不純物除去が多く
用いられている。
Nuclear fusion reactor (= in which hydrogen isotopes undergo a nuclear fusion reaction,
The energy released during this process is used to generate electricity, and a combination of deuterium and tritium is currently considered to be a promising fuel. However, if impurities are included in the fuel, the fusion reaction will not proceed quickly, so it is necessary to remove impurities and control the purity of hydrogen isotopes.Also, the presence of tritium in the gas after combustion In order to reuse deuterium, they need to be separated, and in particular when isotope separation is performed, the total amount of impurities must be kept below 1 ppm. Here, too, impurity removal is necessary. As methods for removing this impurity, low-temperature adsorption methods, multistage deep cooling methods, etc. have been devised, but in deuterium plants currently in operation,
Due to the simplicity of the equipment, low-temperature adsorption method (two-based impurity removal method) is often used.

上記低温吸着法による装置の主要な部分である吸着塔は
一定量以上の不純物を吸着しないため、一般には、多塔
で構成されて順時切替えで、吸着ずみの吸着剤を再生し
、再使用するよう1:なっている。この切替えのタイミ
ングは一定時間(=行う方法と、出口ガス濃度をモニタ
ーして一1基準値(=不純物濃度が達した時点で行う方
法とがある。所で、核融合炉で用いる吸着塔は、77に
の低温であるため、沸点が高い不純物を多く含む場合に
は、吸着塔内で上記不純物が凝縮して、吸着塔の閉塞が
生じることがある。このようC二なると、流路が一部閉
ざされるため、ガスの流れが悪くなり、次第(:吸着塔
内の圧力が上昇する。このまま放置すると、吸着塔は完
全1=閉塞しで、ガスは流れなくなり、吸着塔内の圧力
が危険な程高くなり、ガスがパイプラインを逆流する恐
れが生じる。これを避ける為1畷は、吸着塔の前(=低
温度の凝縮器を設け、比較的沸点が高い不純物を除去す
ることが考えられる。しかしながら、充分I:効率の良
い凝縮器を裏作することは技術的に困難で、また凝縮器
自体が凝縮成分で閉塞する恐れもでてくる。また、この
措置にともない余分なスペースが必要となり、さら(一
系統はより複雑なものとなるため、核融合炉で使用する
機器1:必要とされる低トリチウムインベントリ−、コ
ンパクトな設計という思想からはずれでしまう。
The adsorption tower, which is the main part of the equipment using the above-mentioned low-temperature adsorption method, does not adsorb more than a certain amount of impurities, so it is generally constructed of multiple towers that are switched over in sequence to regenerate and reuse the adsorbed adsorbent. 1: It's like that. There are two methods of switching the timing: one method is to perform this switching for a certain period of time, and the other is to monitor the outlet gas concentration and perform it when the impurity concentration reaches a standard value.By the way, the adsorption tower used in a fusion reactor is , 77, so if there are many impurities with high boiling points, the impurities may condense in the adsorption tower and cause blockage of the adsorption tower. As a part of the adsorption tower is blocked, the flow of gas deteriorates and the pressure inside the adsorption tower gradually increases. The temperature may become dangerously high and the gas may flow backwards through the pipeline.To avoid this, a low-temperature condenser is installed in front of the adsorption tower to remove impurities with relatively high boiling points. However, it is technically difficult to construct an efficient condenser, and there is also a risk that the condenser itself will become clogged with condensed components.In addition, this measure will require additional space. Furthermore, since one system becomes more complex, it deviates from the concept of equipment used in a fusion reactor 1: the required low tritium inventory and compact design.

〔発明の目的〕[Purpose of the invention]

本発明は、この様な事情に鑑みてなされたもので、その
目的とするところは、前述の吸着塔の閉塞という問題を
無くしたガス精製装置を提供することにある。
The present invention has been made in view of these circumstances, and its purpose is to provide a gas purification apparatus that eliminates the problem of adsorption tower clogging mentioned above.

〔発明の概要〕[Summary of the invention]

本発明は、不純物を含んだ流体の流路(=、前記不純物
を除去するために設け、かつ前記不純物と好ましい平衡
を有する吸着剤を充填した吸着塔を少なくとも直列ロー
2塔有し、前塔での操作温度が後塔より高く設定しであ
るガス精製装置であり、特に、後塔に吸着剤再生用の熱
源を有さない。
The present invention provides a flow path for a fluid containing impurities (i.e., at least two adsorption columns arranged in series for removing the impurities and filled with an adsorbent having a preferable equilibrium with the impurities; This is a gas purification device in which the operating temperature in the rear column is set higher than that in the rear column, and in particular, the rear column does not have a heat source for regenerating the adsorbent.

〔発明の効果〕〔Effect of the invention〕

本発明1:よれば、不純物を含んだガスがガス精製装置
を通過すると、不純物は吸着塔内の吸着剤に吸着されて
、精製されたガスが得られるが、この時、沸点が高い不
純物は前部の比較的操作温度が高い吸着塔に設けられた
吸着剤で吸着し、また、沸点が低い不純物は後部の低温
の吸着塔に設けられた吸着剤で吸着する。この時、沸点
が低い不純物も前部吸着塔(=設けられた吸着剤で吸着
するのであるが、沸点等の違いによる吸着の選択性(二
よつで、沸点が低い不純物は、沸点が高い不純物1:よ
って置換され、前部吸着塔から流れ出し、後部吸着塔に
設けられた吸着剤で再吸着する。
According to present invention 1, when gas containing impurities passes through a gas purification device, the impurities are adsorbed by the adsorbent in the adsorption tower to obtain purified gas, but at this time, impurities with a high boiling point are The adsorbent installed in the front adsorption tower, which has a relatively high operating temperature, adsorbs it, and impurities with a low boiling point are adsorbed by the adsorbent installed in the rear adsorption tower, which has a low temperature. At this time, impurities with a low boiling point are also adsorbed by the adsorbent installed in the front adsorption column, but the selectivity of adsorption due to differences in boiling points, etc. Impurity 1: is thus displaced, flows out from the front adsorption tower, and is readsorbed by the adsorbent provided in the rear adsorption tower.

このため、前部吸着塔(二設けられた吸着剤で沸点が高
い不純物が除去されるため、後部吸着塔(二沸点が高い
不純物が流入することはなく、従って、後部の低温吸着
塔に設Cすられた吸着層の吸着剤間が、沸点が高い不純
物で凝縮することはなくなり、吸着塔の閉塞するという
恐れがなくなる。
For this reason, impurities with high boiling points are removed by the adsorbents installed in the front adsorption tower (2), so impurities with high boiling points do not flow into the rear adsorption tower (2), and therefore, the adsorbents installed in the rear low-temperature adsorption tower Impurities with a high boiling point will no longer condense between the adsorbents in the adsorption layer where carbon has been rubbed, and there will be no possibility of clogging of the adsorption tower.

さら(=、本発明によれば、次ぎのような効果が得られ
る。
Furthermore, according to the present invention, the following effects can be obtained.

後部の低温吸着塔で吸着される不純物は、沸点の低い物
であるため、後部の低温吸着塔を常温で再生することが
可能となり、後部の低温吸着塔には、t¥j(=再生用
の熱源を要しないので、機構が簡略化されるととも(=
、吸着剤の加熱1:よる劣化も防止できる。
Since the impurities adsorbed in the rear low-temperature adsorption tower have low boiling points, it is possible to regenerate the rear low-temperature adsorption tower at room temperature. Since no heat source is required, the mechanism is simplified (=
, heating of the adsorbent 1: Deterioration caused by heating can also be prevented.

また、加熱面の減少は、トリチウムの壁面からの漏洩(
水素同位体は各種材料中を透過する性質を有し、その量
は温度に大きく依存する。)を減少させるため、安全上
も有利となる。
In addition, the reduction in the heating surface is due to leakage of tritium from the wall surface (
Hydrogen isotopes have the property of permeating through various materials, and the amount thereof greatly depends on temperature. ), which is advantageous in terms of safety.

さらI:、不純物除去の後、トリチウム化された不純物
はトリチウムとそれ以外の成分と1−分離し、トリチウ
ムを回収しなければならず、本不純物除去の時点で、不
純物を分離しておくこと1;よって、上述のトリチウム
とそれ以外の成分と1=分離する過程での処理がよりた
やすく効果的(二行える様1=なる。
Further I: After impurity removal, tritiated impurities must be separated from tritium and other components, and tritium must be recovered, and the impurities must be separated at the time of impurity removal. 1; Therefore, the treatment in the process of separating tritium from the other components becomes easier and more effective.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の一実施例1:係わるガス精製装置の
概略の構成図である。この水素同位体ガス中から不純物
を除去する精製塔において、1atlbは吸着剤を充填
した常温の吸着塔で、2a12bは吸着剤を充填した低
温の吸着塔である。低温の吸着塔は恒温槽16a及び1
6b内(77K) t:納められでおり、被精製ガスの
流れGは 配管13−パルプ5−吸着塔1a−バルブ7−配管17
−−パルプ6→吸着塔1b→バルブ8/ /バルブ9−吸5tf塔2a−パルプ11→配管14−
1バルブ10→吸着塔2b→バルブ12/のごとく、バ
ルブ5から121=よって切替えられる。
Embodiment 1 of the present invention: FIG. 1 is a schematic configuration diagram of a related gas purification apparatus. In the purification tower for removing impurities from the hydrogen isotope gas, 1atlb is a normal temperature adsorption tower filled with an adsorbent, and 2a12b is a low temperature adsorption tower filled with an adsorbent. The low-temperature adsorption towers are thermostats 16a and 1.
Inside 6b (77K) t: It is stored, and the flow G of the gas to be purified is from piping 13-pulp 5-adsorption tower 1a-valve 7-piping 17
--Pulp 6 → Adsorption tower 1b → Valve 8/ /Valve 9 - Suction 5tf tower 2a - Pulp 11 → Piping 14 -
1 valve 10→adsorption tower 2b→valve 12/, valve 5 to 121=therefore, switching is performed.

この切替えの動作は、一定の時間あるいは吸着層の破過
が生じた時点で、図には示されでいない制御器からの信
号によって始動する。また、吸着塔の再生は、常温の吸
着塔(=ついでは吸着剤の再生器3を用いてヒーター1
5aあるいは15bで吸着剤を加熱して行い、低温の吸
着塔(二ついては恒温槽16aあるいは16b内の液体
窒素を排液しで、吸着剤の再生器3を用いて常温で行う
。さらに1図(:は示されていないが制御器からの信号
によって始動する吸着塔を冷却する系統と、ガスを運ぶ
系統とで本精製装置は構成されでいる。
This switching operation is initiated by a signal from a controller, not shown, at a certain time or when a breakthrough of the adsorption layer occurs. In addition, the adsorption tower can be regenerated by using the adsorption tower at room temperature (= then using the adsorbent regenerator 3 and the heater 1
5a or 15b, the liquid nitrogen in the low-temperature adsorption tower (or thermostatic chamber 16a or 16b is drained, and the adsorbent regenerator 3 is used to perform the process at room temperature. (Although the : is not shown, this purification equipment is comprised of a system for cooling the adsorption tower, which is started by a signal from the controller, and a system for transporting gas.

このように構成されている水素同位体精製装置において
、沸点が高い不純物として水蒸気、そして沸点が低い不
純物としてメタンを含む場合で説明する。まず、これら
を含んだ水素同位体ガスが常温の吸着塔1aを通過する
時、水蒸気及びメタンが吸着する。吸着塔1aの吸着剤
は次第1:水蒸気及びメタンで飽和してくるが、そうな
ると沸点等の違いによって、先(;吸着したメタンは、
後から流入する水蒸気略=よって置換され、吸着塔1a
から低温の吸着塔2aに流入しで、そこで再吸着される
。また、吸着塔1aと吸着塔2aでの吸着  ′剤は同
一のものである必要はなく、吸着塔1a1:ついては特
(=、高沸点の不純物に対する吸着の選択制が高いもの
を用いることが望まれる。例えば、水蒸気とメタン・を
除去する場合、吸着塔1al−モレキュラーシーブ3人
(商品名)を用い、吸着塔2acモレキユラーシーブ5
A(商品名)を用いると、モレキュラーシーブ3人で水
蒸気のみが除去されメタンはモレキュラーシーブ5Aで
除去される。
A case will be described in which the hydrogen isotope purification apparatus configured as described above contains water vapor as an impurity with a high boiling point and methane as an impurity with a low boiling point. First, when hydrogen isotope gas containing these gases passes through the adsorption tower 1a at room temperature, water vapor and methane are adsorbed. The adsorbent in the adsorption tower 1a gradually becomes saturated with water vapor and methane, but due to differences in boiling points, etc., the adsorbed methane
Abbreviation for water vapor that flows in later = Therefore, it is replaced, and the adsorption tower 1a
It then flows into the low-temperature adsorption tower 2a, where it is re-adsorbed. In addition, the adsorption agents in adsorption tower 1a and adsorption tower 2a do not need to be the same; for adsorption tower 1a1, it is desirable to use one that is highly selective in adsorption for impurities with high boiling points. For example, when removing water vapor and methane, use adsorption tower 1al-molecular sieve 3 (trade name), adsorption tower 2ac molecular sieve 5
When A (trade name) is used, only water vapor is removed using three molecular sieves, and methane is removed using molecular sieve 5A.

また、不純物で飽和した各吸着剤の再生では、前述の様
に再生器を用いで行うが、水蒸気を吸着したモレキュラ
ーシーブ3人の再生の場合には、ヒーターで200〜3
00℃1:加熱する必要があるが、低温の吸着塔(=吸
着したメタンは、液体窒素温度から常温に戻すだけでメ
タンが吸着剤から脱着しでくる。こうして再生器3には
水蒸気、すなわちトリチウム水のみが回収され、これは
、電気分解をすること1:よって、簡単1ニトリチウム
と酸素に分離できる。再生器4にはトリチウム化メタン
が回収され、これは、触媒を用いで酸化してトリチウム
水と炭酸ガスとし、トリチウム水は前述の再生器3で得
られたトリチウム水ととも(=、電気分解をする。こう
することによって、トリチウム化メタンの酸化反応に際
して、プロダクトであるトリチウム水が事前に除去され
るため、酸化反応の収率が低下するのを防止することが
できる。
In addition, regeneration of each adsorbent saturated with impurities is performed using a regenerator as described above, but in the case of regeneration of three molecular sieves that have adsorbed water vapor, a heater
00°C 1: Heating is required, but the adsorbed methane is desorbed from the adsorbent simply by returning it from the liquid nitrogen temperature to room temperature.In this way, the regenerator 3 has water vapor, i.e. Only tritiated water is recovered, which can be easily separated into nitritium and oxygen by electrolysis.Tritiated methane is recovered in the regenerator 4, which is oxidized using a catalyst. The tritiated water is then electrolyzed together with the tritiated water obtained in the regenerator 3 mentioned above. By doing this, during the oxidation reaction of tritiated methane, the product tritiated water is is removed in advance, it is possible to prevent the yield of the oxidation reaction from decreasing.

よって、本発明の実施例によるガス精製装置であると、
吸着塔1aは常温であるため、水蒸気が固化して吸着塔
が閉塞するという問題もなく、さらに凝縮器を設ける必
要もなくなり、スペース約言=も、トリチウムインベン
トリ−的+”−モ、コンパクトな物になり、かつトリチ
ウム漏洩可能箇所の減少化l:も有利となる。なお、上
述の実施例では、吸着塔を2塔2並列に設けでいるが、
3塔以上3並列以上の場合についても同様である。
Therefore, in the gas purification apparatus according to the embodiment of the present invention,
Since the adsorption tower 1a is at room temperature, there is no problem of water vapor solidifying and clogging the adsorption tower, and there is no need to provide a condenser. It is also advantageous to reduce the number of points where tritium can leak.In the above embodiment, two adsorption towers are installed in parallel.
The same applies to the case of 3 or more towers and 3 or more columns in parallel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例I:係わるガス精製装置の
構成図である。
Embodiment I of the present invention: FIG. 1 is a configuration diagram of a related gas purification apparatus.

Claims (1)

【特許請求の範囲】[Claims] 2種以上の不純物を含んだ流体の流路に、前記不純物を
除去するために設け、かつ前記不純物と好ましい平衡を
有する吸着剤を充填した吸着剤層を有する精製塔におい
て、吸着塔を少なくとも直列に2塔有し、前塔での操作
温度が後塔より高く設定し、前記後塔に吸着剤再生用の
熱源を設けずに構成したことを特徴とするガス精製装置
In a purification column having an adsorbent layer provided in a flow path of a fluid containing two or more types of impurities to remove the impurities and filled with an adsorbent having a preferable equilibrium with the impurities, the adsorption columns are arranged at least in series. 1. A gas purification apparatus comprising two columns, the operating temperature of the front column is set higher than that of the rear column, and the rear column is not provided with a heat source for regenerating an adsorbent.
JP60140516A 1985-06-28 1985-06-28 Gas purification device Pending JPS624432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140516A JPS624432A (en) 1985-06-28 1985-06-28 Gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140516A JPS624432A (en) 1985-06-28 1985-06-28 Gas purification device

Publications (1)

Publication Number Publication Date
JPS624432A true JPS624432A (en) 1987-01-10

Family

ID=15270469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140516A Pending JPS624432A (en) 1985-06-28 1985-06-28 Gas purification device

Country Status (1)

Country Link
JP (1) JPS624432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078324A1 (en) * 2003-03-07 2004-09-16 Tokyo Gas Co., Ltd. Method for separating isotope gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078324A1 (en) * 2003-03-07 2004-09-16 Tokyo Gas Co., Ltd. Method for separating isotope gas

Similar Documents

Publication Publication Date Title
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
US3969481A (en) Process for generating ultra high purity H2 or O2
RU2314255C2 (en) Removal of ammonia from purge gas
JP5248478B2 (en) Xenon concentration method and concentration apparatus
JPH0127961B2 (en)
JPH07194918A (en) Method of refining mixture of specific fluid component and at least one kind of impurity
JPS63305924A (en) Method and apparatus for purifying gas containing hydrogen isotope
JPS624432A (en) Gas purification device
CN112919437B (en) Refining method and system for crude helium with high hydrogen content
KR101909291B1 (en) Purifying method and purifying apparatus for argon gas
JP3294067B2 (en) Krypton manufacturing method
JPS6268530A (en) Apparatus for removing tritium water
JP2012153545A (en) Ammonia purification system and ammonia purification method
JPS6129768B2 (en)
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JPS6231317B2 (en)
JPH0377626A (en) Device for refining hydrogen isotope
JPH0531331A (en) Separation of hydrogen isotope
JPH0579754A (en) Manufacturing method of high purity nitrogen
JPH0746160B2 (en) Tritium removal equipment
US20230415071A1 (en) Low temperature decontamination of tritiated water
JPS63178830A (en) Fuel purifying device for nuclear fusion furnace
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JPS638395B2 (en)
JPH0692605A (en) Recovery and purification of hydrogen and equipment therefor