JPS6244207B2 - - Google Patents

Info

Publication number
JPS6244207B2
JPS6244207B2 JP56002430A JP243081A JPS6244207B2 JP S6244207 B2 JPS6244207 B2 JP S6244207B2 JP 56002430 A JP56002430 A JP 56002430A JP 243081 A JP243081 A JP 243081A JP S6244207 B2 JPS6244207 B2 JP S6244207B2
Authority
JP
Japan
Prior art keywords
magnetic field
moving body
magnetic sensor
correction
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56002430A
Other languages
Japanese (ja)
Other versions
JPS57116211A (en
Inventor
Hisatsugu Ito
Kosaku Uota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP243081A priority Critical patent/JPS57116211A/en
Publication of JPS57116211A publication Critical patent/JPS57116211A/en
Publication of JPS6244207B2 publication Critical patent/JPS6244207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車、小型船舶などの移動体の進
行方向を計測するための方角計測装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a direction measuring device for measuring the traveling direction of a moving object such as an automobile or a small boat.

〔従来の技術〕[Conventional technology]

従来より上記目的に対して、地磁気による磁石
の回転を応用したいわゆる羅針儀(コンパス)が
実用されているが、この従来の羅針儀は応答速度
が遅く、また機械摩擦増大による精度低下などが
欠点とされている。
Conventionally, so-called compasses that utilize the rotation of magnets due to the earth's magnetic field have been used for the above purposes, but these conventional compasses have drawbacks such as slow response speed and decreased accuracy due to increased mechanical friction. ing.

そこで、地磁気の方向を電子的に検知する電子
コンパスが提案されているが、この電子コンパス
により小型船舶、自動車などの移動体上で地磁気
の方向を電子的に検知する場合、その方法の如何
によらず、移動体そのものの持つている磁気の影
響を受けるため、何らかの手段でこれを補償する
必要がある。
Therefore, an electronic compass that electronically detects the direction of the earth's magnetic field has been proposed, but when using this electronic compass to electronically detect the direction of the earth's magnetic field on a moving object such as a small boat or car, there is no way to do that. However, since it is affected by the magnetism of the moving body itself, it is necessary to compensate for this by some means.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記目的を達成するために、地磁気を検知する
部分の周囲に複数個の永久磁石を配置する方法も
あるが、完全な補償が困難である上に、調整に長
時間を要する等の欠点がある。従つて従来の電子
コンパスにおいては、その地磁気検知部を含むよ
うに2つの巻線を直交して巻き、移動体を真北
(又は真南)に向けた状態で計測結果が真北(又
は真南)となるよう一方の巻線に供給する電流を
調整し、次に移動体を真東(又は真西)に向けた
状態で計測結果が真東(又は真西)となるよう他
方の巻線に供給する電流を調整することにより、
誤差磁界を打消す方式が用いられている。この方
法によれば、ほぼ完全な補正が行えるが、調整に
先立つて真の東西南北を知る必要があり、また測
定結果を人間が確認しながら調整を行うため、調
整に時間がかかるなどの欠点があつた。
In order to achieve the above purpose, there is a method of arranging multiple permanent magnets around the part that detects geomagnetism, but this method has drawbacks such as difficulty in completely compensating and requiring a long time for adjustment. . Therefore, in a conventional electronic compass, two windings are wound perpendicularly to include the geomagnetic sensing part, and the measurement result is determined to be true north (or true south) when the moving object is facing true north (or true south). Adjust the current supplied to one winding so that the winding is facing due east (or due west), then adjust the current supplied to the other winding so that the measurement result is due east (or due west) with the moving object facing due east (or due west). By adjusting the current supplied to the line,
A method is used to cancel the error magnetic field. This method allows for almost perfect correction, but it has drawbacks such as the need to know the true north, south, east, west, and east directions before making adjustments, and the fact that adjustments are made while checking the measurement results manually, so it takes time to make adjustments. It was hot.

本発明はかかる従来の問題点に鑑みてなされた
もので、移動体そのものに起因する誤差磁界の補
償を自動的に行い、調整に際し人間の操作が不要
で簡便な方角計測装置を得ることを目的とする。
The present invention was made in view of such conventional problems, and an object of the present invention is to provide a simple direction measuring device that automatically compensates for error magnetic fields caused by the moving object itself and does not require human operations during adjustment. shall be.

〔問題を解決するための手段〕[Means to solve the problem]

ここで、磁気センサ(移動体)を回転させ、複
数の回転位置において該磁気センサから得られる
2方向U、V成分に対応する出力信号をプロツト
した場合、その軌跡は円又は楕円となる。そして
この場合、移動体自身の誤差磁界による影響は、
上記2方向出力EU,EVの検出基準軸の原点から
上記円又は楕円の中心のシフト量に対応してい
る。この発明に係る方角計測装置は、この点に着
目してなされたもので、移動体自身の磁界による
影響を補償するための信号を演算により求めるよ
うにしたものである。
Here, when a magnetic sensor (moving body) is rotated and output signals corresponding to two-direction U and V components obtained from the magnetic sensor at a plurality of rotational positions are plotted, the locus becomes a circle or an ellipse. In this case, the influence of the moving body's own error magnetic field is
This corresponds to the amount of shift of the center of the circle or ellipse from the origin of the detection reference axis of the bidirectional outputs EU and EV . The direction measuring device according to the present invention has been developed with this point in mind, and is designed to calculate a signal to compensate for the influence of the magnetic field of the moving object itself.

即ち、移動体自身の磁気及び地磁気の水平成分
を検出して移動体の進行方向及びこれに垂直な方
向のそれぞれの成分EU,EVを検知する検知部、
及びこの検知部の周囲に設けられ該検知部に補正
用磁界を印加するためのコイルからなる磁気セン
サと、該磁気センサの回転位置において得られる
センサ出力(EUi,EVi)が描く円又は楕円軌跡
と上記成分EU,EVの検出基準軸との交点を求め
て、上記円又は楕円の中心位置EUO,EVOを求
め、該中心位置が上記検出基準軸の交点(原点)
と一致するよう上記コイルに誤差磁界補償用の電
流を供給する演算手段と、誤差磁界が補償された
磁気検知信号を出力する出力端子とを設けたもの
である。
That is, a detection unit that detects the horizontal components of the magnetic field of the mobile body itself and the earth's magnetism, and detects the respective components EU and EV in the traveling direction of the mobile body and in the direction perpendicular thereto;
A circle or Find the intersection of the elliptical locus and the detection reference axes of the components EU and EV , find the center positions of the circle or ellipse E UO and E VO , and determine whether the center position is the intersection of the detection reference axes (origin)
, and an output terminal for outputting a magnetic detection signal with the error magnetic field compensated for.

〔作用〕[Effect]

この発明においては、磁気検知部に補正用磁界
を印加するためのコイルを設け、このコイルに似
下の手順に従つて得られた誤差磁界補正用の電流
を供給し、移動体自身による誤差磁界を補正す
る。
In this invention, a coil for applying a correction magnetic field is provided to the magnetic detection section, and a current for error magnetic field correction obtained according to the procedure below is supplied to this coil, and the error magnetic field generated by the moving object itself is Correct.

即ち、移動体を回転させ、その複数の回転位置
における磁気センサ出力EUi,EViを得る。そし
てこのセンサ出力が描く円又は楕円の軌跡と検出
基準軸との交点を求め、これらより上記円又は楕
円の中心位置を求める。次にこの中心位置が上記
検出基準軸の交点(原点)と一致するよう上記コ
イルに誤差磁界補正用の電流を供給する。
That is, the moving body is rotated and magnetic sensor outputs E Ui and E Vi at a plurality of rotational positions are obtained. Then, the intersection point between the locus of the circle or ellipse drawn by this sensor output and the detection reference axis is determined, and the center position of the circle or ellipse is determined from these points. Next, a current for error magnetic field correction is supplied to the coil so that this center position coincides with the intersection (origin) of the detection reference axis.

このようにして移動体自身による誤差磁界が補
正された後は、上記磁気センサからの2方向成分
出力により正確な方向の計測が可能となる。
After the error magnetic field caused by the moving body itself is corrected in this way, accurate direction measurement becomes possible using the two-directional component output from the magnetic sensor.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による方角計測装置
を示し、図において、1は移動体に装着され印加
される磁界に対応した2つの信号を出力する磁気
センサであり、磁気検知部10と補正磁界発生部
11,12とから構成されている。補正磁界発生
部11,12は、上記検知部10の周囲に互いに
直交するよう巻回された1組のコイルである。2
0,21は上記磁気センサ1より得られる2つの
信号をそぞれ増幅して直流信号を出力する増幅
器、200,210は該増幅器20,21の出力
が現れる出力端子であり、以上により計測装置本
体5が構成されている。
FIG. 1 shows a direction measuring device according to an embodiment of the present invention. In the figure, 1 is a magnetic sensor attached to a moving body and outputs two signals corresponding to the applied magnetic field, and a magnetic sensor 10 and It is composed of correction magnetic field generating sections 11 and 12. The correction magnetic field generating sections 11 and 12 are a pair of coils wound around the detection section 10 so as to be orthogonal to each other. 2
Reference numerals 0 and 21 are amplifiers that respectively amplify the two signals obtained from the magnetic sensor 1 and output a DC signal, and 200 and 210 are output terminals from which the outputs of the amplifiers 20 and 21 appear. A main body 5 is configured.

また、3は上記磁気センサ1の複数の回転位置
において上記増幅器20,21より得られる複数
組の信号から上記移動体自体により磁界の地球磁
場に与える影響を補償するための少なくとも2つ
の信号を求める演算回路、4は演算回路3の出力
を磁気センサ1の補正磁界発生コイル11,12
に印加するのに適した信号に変換する変換回路で
ある。
Further, 3 calculates at least two signals for compensating for the influence of the magnetic field on the earth's magnetic field by the moving body itself from a plurality of sets of signals obtained from the amplifiers 20 and 21 at a plurality of rotational positions of the magnetic sensor 1. An arithmetic circuit 4 converts the output of the arithmetic circuit 3 into correction magnetic field generating coils 11 and 12 of the magnetic sensor 1.
This is a conversion circuit that converts the signal into a signal suitable for application to the

次に上記演算回路3における演算処理の基本原
理について説明する。
Next, the basic principle of arithmetic processing in the arithmetic circuit 3 will be explained.

第2図は磁気センサ1と地磁気H及び誤差磁界
Eの相対関係を示す図であつて、1U及び1V
は磁気センサ1の検出基準軸を示す。第2図にお
いて、移動体(図示せず)の持つている磁気によ
る誤差磁界HEが零の状態を考える。すなわち磁
気センサ1に対して、一方の検出基準軸1Uと角
度θを成して、強さHの磁界が加わつている状態
を考える。
FIG. 2 is a diagram showing the relative relationship between the magnetic sensor 1, the earth's magnetism H, and the error magnetic field H E , and shows 1U and 1V.
indicates the detection reference axis of the magnetic sensor 1. In FIG. 2, consider a state in which the error magnetic field H E due to the magnetism of a moving body (not shown) is zero. In other words, consider a state in which a magnetic field of strength H is applied to the magnetic sensor 1 at an angle θ with one detection reference axis 1U.

この場合、磁気センサ1の出力端子10U,1
0Vに得られる信号をそれぞれev,euとしたと
き、ev,euは次式で与えられる。
In this case, the output terminals 10U, 1 of the magnetic sensor 1
When the signals obtained at 0V are ev and eu, respectively, ev and eu are given by the following equations.

eu=K1H・cosθ …(1) ev=K2H・sinθ …(2) ここで、K1,K2は磁気センサ1のそれぞれの
検出基準方向に対する感度にかかわる定数であ
る。上記eu,evは増幅器20,21で増幅さ
れ、増幅器20,21の出力端子200,210
に出力EU,EVを得る。この場合、増幅器20,
21の増幅度をそれぞれG1,G2とすると、出力
U,EVは EU=G1 eu=K1G1cosθ …(3) EV=G2 ev=K2G2sinθ …(4) で与えられる。ここでK1G1=KU、K2G2=KV
おくと、 EU=KUH・cosθ …(5) EV=KVH・sinθ …(6) となる。したがつて、磁気センサ1の検出基準軸
1Uと地磁気の成す角度θは θ=tan-1(sinθ/cosθ)=tan-1(KUV/K
VU)で与えられる。ここで定数KU,KVは既知
であるから、増幅器20,21の出力信号EU
Vより角度θが得られることが判る。したがつ
て検出基準軸1Uを移動体の進行方向と一致させ
れば、移動体の進行する方向が計測できる。
eu=K 1 H·cosθ (1) ev=K 2 H·sinθ (2) Here, K 1 and K 2 are constants related to the sensitivity of the magnetic sensor 1 to each detection reference direction. The above eu and ev are amplified by amplifiers 20 and 21, and output terminals 200 and 210 of the amplifiers 20 and 21
The outputs EU and EV are obtained. In this case, the amplifier 20,
Letting the amplification degrees of 21 be G 1 and G 2 respectively, the outputs E U and EV are E U =G 1 eu=K 1 G 1 cosθ…(3) EV =G 2 ev=K 2 G 2 sinθ… (4) is given by Here, if K 1 G 1 = K U and K 2 G 2 = K V , then E U = K U H·cosθ (5) E V = K V H·sinθ (6). Therefore, the angle θ between the detection reference axis 1U of the magnetic sensor 1 and the earth's magnetism is θ=tan -1 (sinθ/cosθ)=tan -1 (K U E V /K
V E U ). Here, since the constants K U and K V are known, the output signals EU and K V of the amplifiers 20 and 21 are
It can be seen that the angle θ can be obtained from EV . Therefore, by aligning the detection reference axis 1U with the moving direction of the moving object, the moving direction of the moving object can be measured.

以上の説明は、第2図において誤差磁界HE
零の場合について行つた。誤差磁界HEが零で無
い場合について次に述べる。
The above explanation has been made for the case where the error magnetic field H E is zero in FIG. 2. The case where the error magnetic field H E is not zero will be described next.

第2図に示すように、磁気センサ1の検出基準
軸1Uに対しφなる角度をなして誤差磁界HE
印加されている場合、同様の計算を行つて EU=KU(Hcosθ+HEcosφ) …(8) EV=KV(Hsinθ+HEsinφ) …(9) が得られる。この場合、一般的にはtan-1(KU
V/KVU)はθに等しくないため、前述の方法
で移動体の進行する方向を計測した場合、誤差を
生ずる。この誤差をとり除く目的で第1図に示す
ように磁気センサ1には補正磁界発生器11,1
2が備えられている。即ちこの補正磁界発生部
は、前述のように磁気センサ1の検知部10の周
囲に互いに直交するごとく巻回された1組のコイ
ル11,12であり(第3図参照)、この2つの
コイル11,12にそれぞれ電流IV,IUを流し
た場合、第2図に示すように検知部10に対して
磁界HU,HVが印加されることになる。このとき
磁界HU,HVは定数LU,LVを使つて次のように
表せる。
As shown in FIG. 2, when the error magnetic field H E is applied at an angle φ with respect to the detection reference axis 1U of the magnetic sensor 1, similar calculations are performed to obtain E U =K U (Hcosθ+H E cosφ ) ...(8) E V =K V (Hsinθ+H E sinφ) ...(9) is obtained. In this case, generally tan -1 (K U E
Since V /K V EU ) is not equal to θ, an error occurs when the moving direction of the moving body is measured using the method described above. In order to eliminate this error, as shown in FIG.
2 are provided. That is, this correction magnetic field generation section is a pair of coils 11 and 12 wound around the detection section 10 of the magnetic sensor 1 so as to be perpendicular to each other (see FIG. 3), as described above. When currents I V and I U are applied to the detectors 11 and 12, respectively, magnetic fields H U and H V are applied to the detection unit 10 as shown in FIG. At this time, the magnetic fields H U and H V can be expressed as follows using constants L U and L V.

U=LUU …(10) HV=LVV …(11) 今、磁界HUとHVの合成ベクトルHCとしたと
き、HCとHEの大きさが等しく、方向が逆であれ
ば誤差磁界を実効的に打消すことができる。した
がつて、誤差磁界を打消すためには、次式が成立
する必要がある。
H U = L U I U …(10) H V = L V I V …(11) Now, when we assume the composite vector H C of the magnetic fields H U and H V , the magnitudes of H C and H E are equal, If the direction is reversed, the error magnetic field can be effectively canceled. Therefore, in order to cancel the error magnetic field, the following equation needs to hold true.

U=−HEcosφ …(12) HV=−HEsinφ …(13) 従来は電流IU,IVを手動で調整することによ
り、誤差磁界HEを打消していたわけである。
H U =-H E cosφ (12) H V =-H E sinφ (13) Conventionally, the error magnetic field H E was canceled by manually adjusting the currents I U and IV .

さて、誤差磁界HEが存在する状態では、前述
のように、式(8)、(9)が成立するから (E/K−HEcosφ)+(E/K−HEsinφ)=H2(cos2θ+sin2θ)=H2 (14) が成立する。上式を整理すると次式を得る。
Now, in the state where the error magnetic field H E exists, as mentioned above, equations (8) and (9) hold, so (E U /K U −H E cosφ) 2 + (E V /K V −H E sinφ) 2 = H 2 (cos 2 θ + sin 2 θ) = H 2 (14) holds. By rearranging the above equation, we get the following equation.

(E−Kcosφ)/K +(E−K
sinφ)/K =H2… (15) 上式は増幅器20,21の出力EU,EVを変数
として考えた場合、KU=KVであれば円の方程式
であり、KU≠KVであれば楕円の方程式である。
この場合、誤差磁界HEによる影響は、円又は楕
円の中心からのシフト量に対応している。
(E U −K U H E cosφ) 2 /K U 2 +(E V −K V
H E sinφ) 2 /K V 2 = H 2 (15) When considering the outputs EU and EV of the amplifiers 20 and 21 as variables, the above equation is a circular equation if K U =K V. , K U ≠ K V , it is an elliptic equation.
In this case, the influence of the error magnetic field H E corresponds to the amount of shift from the center of the circle or ellipse.

したがつて、移動体を適宜回転させ、複数個の
θに対してそれぞれ出力EU,EVを求めることに
より、円又は楕円の中心(EUO,EVO)が求ま
る。円又は楕円の中心(EUO,EVO)が求まれ
ば、 EUO=KUEcosφ …(16) EVO=KVEsinφ …(17) であるから誤差磁界HEを打消すための電流IU
Vは次式により求まる。
Therefore, the center (E UO , E VO ) of the circle or ellipse can be found by appropriately rotating the moving body and finding the outputs EU and EV for a plurality of values of θ. Once the center of the circle or ellipse (E UO , E VO ) is found, E UO = K U H E cosφ…(16) E VO = K V H E sinφ…(17) Therefore, we can apply the error magnetic field H E. Current I U for extinguishing,
I V is determined by the following formula.

U=−Hcosφ/L=−EUO/K
(18) IU=−Hsinφ/L=−EVO/K
(19) ここで定数LU,LVは既知であり、多くの場合
定数KU,KVも既知であるから、円又は楕円の中
心の座標EUO,EVOを求めることにより、補正に
必要な電流IU,IVは上記のように簡単な計算で
求まる。また、定数KU,KVが既知でない場合で
も、測定点を適宜に選ぶことにより、この定数K
U,KVを求めることができる。
I U =-H E cosφ/L U =-E UO /K U L U
(18) I U =-H E sinφ/L V =-E VO /K V L V
(19) Here, the constants L U and L V are known, and in many cases the constants K U and K V are also known, so the correction can be made by finding the coordinates E UO and E VO of the center of the circle or ellipse. The required currents I U and I V can be found by simple calculations as described above. In addition, even if the constants K U and K V are not known, by selecting the measurement points appropriately, the constant K
U and KV can be found.

第4図は最も簡便な計算方法を説明する図であ
つて、横軸EU,縦軸EVをとつて幅器20,21
の出力端子200,210に得られる信号EU
Vから決まる点(EU,EV)の軌跡を楕円で示
している。楕円が横軸、縦軸と交わる点P,Q,
R,Sの座標をそれぞれP(EU1、0)、Q
(0、EV1)、R(EU2、0)、S(0、EV2)と
すれば、中心O(EUO,EVO)の座標成分は EUO=(EU1+EU2)/2 …(20) EVO=(EV1+EV2)/2 …(21) で求められる。
FIG. 4 is a diagram explaining the simplest calculation method, in which the horizontal axis E U and the vertical axis E V are taken, and the width scales 20, 21 are
The signals EU obtained at the output terminals 200, 210 of
The locus of the point ( EU , EV ) determined from EV is shown by an ellipse. Points P, Q, where the ellipse intersects the horizontal and vertical axes,
Let the coordinates of R and S be P(E U1 , 0) and Q
(0, E V1 ), R (E U2 , 0), S (0, E V2 ), the coordinate components of the center O (E UO , E VO ) are E UO = (E U1 +E U2 )/2 ...(20) E VO = (E V1 + E V2 )/2 ...(21) It is obtained as follows.

以上述べた補正を第1図に示す装置で実行する
ための手順を以下に示す。先ず第1図の装置に対
し外部から補正を行うべき旨の指示を与えると、
演算回路3はその時点の入力端子200,210
の電圧の如何に関わらず出力端子300,310
の電圧RU,RVを共に零にする。これにより、変
換回路4の出力端子400,410の信号IU
Vも零となり、補正が零、即ち、未補正の状態
となる。
The procedure for executing the above-mentioned correction using the apparatus shown in FIG. 1 is shown below. First, when an instruction to perform correction is given to the device shown in Figure 1 from the outside,
The arithmetic circuit 3 has input terminals 200 and 210 at that time.
Output terminals 300, 310 regardless of the voltage of
The voltages R U and R V of both are set to zero. As a result, the signals I U , 410 at the output terminals 400 and 410 of the conversion circuit 4
I V also becomes zero, and the correction becomes zero, that is, the state is uncorrected.

次に、人の操作により磁気センサ1が取り付け
られた移動体を適時回転させると、演算回路3に
入力される信号電圧EUi,EViは前述のように第
4図に示すような楕円又は円を描く。この時、検
出基準軸EU,EVと円又は楕円との交点P(EU
、0)、Q(0、EV1)、R(EU2、0)、S
(0、EV2)の値より前記式(20)、(21)に従つ
て中心位置O(EUO,EVO)を求める。これに従
つて、中心位置Oが検出基準軸EU,EVの交点
(原点)と一致するように演算回路3の出力端子
300,310の信号電圧として、 RU=−EUO/K …(22) RV=−EVO/K …(23) を出力する。ここで、MU,MVは変換回路4の変
換係数であり、これより前述のように IU=MUU=−EUO/K …(18) IV=MVV=−EVO/K …(19) となり、これらの電流IU,IVを磁気センサの補
正用コイル11,12に流すことにより補正が終
了する。
Next, when the moving object to which the magnetic sensor 1 is attached is rotated at a suitable time by human operation, the signal voltages E Ui and E Vi input to the arithmetic circuit 3 will be shaped like an ellipse or an ellipse as shown in FIG. Draw a circle. At this time, the intersection point P ( E U
1 , 0), Q (0, E V1 ), R (E U2 , 0), S
From the values of (0, E V2 ), the center position O (E UO , E VO ) is determined according to equations (20) and (21). Accordingly, the signal voltages of the output terminals 300 and 310 of the arithmetic circuit 3 are set such that the center position O coincides with the intersection (origin) of the detection reference axes EU and EV , R U =-E UO /K U L U M U ...(22) R V =-E VO /K V L V M V ... (23) is output. Here, M U and M V are the conversion coefficients of the conversion circuit 4, and from this, as mentioned above, I U = M U R U = -E UO / K U L U (18) I V = M V R V =−E VO /K V LV (19), and the correction is completed by flowing these currents I U and IV to the correction coils 11 and 12 of the magnetic sensor.

このようにして誤差磁界が補正された後は、磁
気センサ1の出力は移動体自身による磁気が補償
されたものとなり、従つて出力端子200,21
0に得られる2つの信号により、前述の式(7)に従
つて角度θを求めれば正しい方角を計測すること
ができる。例えば、磁気センサの検出出力(E
U,EV)の何れかが零の時、即ち(0、+EVi
であれば東、(0、−EVi)であれば西、(−EUi
0)であれば南、(+EUi、0)であれば北とな
る。
After the error magnetic field is corrected in this way, the output of the magnetic sensor 1 becomes one in which the magnetism caused by the moving body itself is compensated, and therefore the output terminals 200, 21
The correct direction can be measured by calculating the angle θ using the two signals obtained at 0 according to the above-mentioned equation (7). For example, the detection output (E
When either U , EV ) is zero, that is, (0, +E Vi )
If it is east, if (0, -E Vi ), it is west, (-E Ui ,
0), it is south, and (+E Ui , 0), it is north.

ここで演算回路3としては、演算が単純である
ため、アナログ回路でも実現できるが、演算に必
要なデータの記憶および計算結果の記憶の必要性
を考えると、デジタル方式、特にマイクロコンピ
ユータを使つた方式が最適である。
Since the calculation is simple, the calculation circuit 3 can be implemented using an analog circuit, but considering the necessity of storing the data necessary for calculation and the storage of calculation results, it is possible to implement the calculation circuit 3 using a digital method, especially a microcomputer. method is optimal.

第5図はマイクロコンピユータを使つた演算回
路の構成図であつて、30は増幅器20,21の
出力信号EU,EVをデジタル信号に変換するため
のAD変換器、31は演算の制御、データ保持等
を行うマイクロコンピユータ、32はマイクロコ
ンピユータ31から出力される信号をアナログ信
号に変換するためのDA変換器である。変換回路
4としては、第3図に示すような構造を持つ磁気
センサ1に対しては電圧−電流変換器が必要であ
るが、第3図においてコイル11,12の抵抗が
低い場合には、第6図に示すごとく、抵抗40,
41のみから成る回路でも十分である。
FIG. 5 is a block diagram of an arithmetic circuit using a microcomputer, in which 30 is an AD converter for converting the output signals EU and EV of the amplifiers 20 and 21 into digital signals, 31 is an arithmetic control circuit; A microcomputer 32 that holds data is a DA converter that converts a signal output from the microcomputer 31 into an analog signal. As the conversion circuit 4, a voltage-current converter is required for the magnetic sensor 1 having the structure shown in FIG. 3, but when the resistance of the coils 11 and 12 is low in FIG. As shown in Fig. 6, the resistor 40,
A circuit consisting only of 41 is sufficient.

このようにして磁気センサ1に補正が施されれ
ば、移動体自身による誤差磁界HEは磁気センサ
1のコイル11,12に流れる電流IU,IVによ
つて生じる磁界HU,HVにより打ち消されるた
め、磁界Hを正確に測定することができ、移動体
の進行方向を正確に計測することができる。ここ
で、方角の計測は出力端子200,210に得ら
れる信号を他の機器に入力して求めても良いし、
また演算回路3で求めてもよい。
If the magnetic sensor 1 is corrected in this way, the error magnetic field H E caused by the moving object itself is replaced by the magnetic fields H U , H V generated by the currents I U , IV flowing through the coils 11 and 12 of the magnetic sensor 1. Therefore, the magnetic field H can be accurately measured, and the traveling direction of the moving body can be accurately measured. Here, the direction may be measured by inputting the signals obtained at the output terminals 200 and 210 to other equipment, or
Alternatively, it may be determined by the arithmetic circuit 3.

なお、上記誤差磁界を補正するための手順は一
度行えば方角計測の都度行う必要はない。但し自
動車の車体等の移動体の磁化が何らかの原因で変
化したときには、方角計測結果にも誤差が出て来
るようになるので、このようなときには上記補正
が必要となり、これが従来のように人手をほとん
ど必要とせず、自動的に行える所に本発明の効果
がある。
Note that once the procedure for correcting the error magnetic field is performed, it is not necessary to perform it every time the direction is measured. However, if the magnetization of a moving object such as a car body changes for some reason, errors will appear in the direction measurement results. The advantage of the present invention is that it can be done automatically without much need.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、磁気センサと
増幅器とを備えた計測装置本体に演算回路を付加
し、磁気センサの複数回転位置において得られる
複数組の信号から移動体自体の磁界による影響を
補償するための信号を求め、これを計測装置本体
に加えて上記影響を補償するようにしたので、手
動による面倒な補正を行うことなく、誤差磁界の
打消が可能であり、自動車、小型船舶用方角計測
装置としてきわめて有用である。
As described above, according to the present invention, an arithmetic circuit is added to the main body of a measuring device equipped with a magnetic sensor and an amplifier, and the influence of the magnetic field of the moving body itself is determined from multiple sets of signals obtained at multiple rotational positions of the magnetic sensor. Since we have determined a signal to compensate for the above effects and added it to the measurement device itself to compensate for the above effects, it is possible to cancel the error magnetic field without having to perform troublesome manual corrections, making it suitable for automobiles and small boats. It is extremely useful as a direction measurement device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による方角計測装置
の回路構成図、第2図は磁気センサと地磁気およ
び誤差磁界の相対関係を示す図、第3図は補正磁
界発生用コイルを備えた磁気センサの構造を示す
斜視図、第4図は補正計算の方法を説明するため
の図、第5図はマイクロコンピユータを用いた演
算回路の回路構成図、第6図は変換回路の一例を
示す回路図である。 1……磁気センサ、20,21……増幅器、3
……演算回路、5……計測装置本体、60,61
……加算器。なお図中同一符号は同一又は相当部
分を示す。
Fig. 1 is a circuit configuration diagram of a direction measuring device according to an embodiment of the present invention, Fig. 2 is a diagram showing the relative relationship between a magnetic sensor, the earth's magnetism, and an error magnetic field, and Fig. 3 is a diagram showing a magnetic sensor equipped with a correction magnetic field generating coil. A perspective view showing the structure of the sensor, Fig. 4 is a diagram for explaining the correction calculation method, Fig. 5 is a circuit configuration diagram of an arithmetic circuit using a microcomputer, and Fig. 6 is a circuit showing an example of a conversion circuit. It is a diagram. 1... Magnetic sensor, 20, 21... Amplifier, 3
...Arithmetic circuit, 5...Measuring device main body, 60, 61
...Adder. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 移動体自体の磁界による影響を補償して該移
動体の進行方向を計測するための信号を出力する
方角計測装置であつて、 上記移動体に装着され、該移動体自体の磁気及
び地磁気の水平成分を検出して、その上記移動体
の進行方向の成分に対応する信号及びこの進行方
向に垂直な方向の成分に対応する信号を出力する
検知部、及びこの検知部の周囲に互いに直交する
よう巻回され該検知部に補正用磁界を印加するた
めの1組の補正磁界発生用コイルからなる磁気セ
ンサと、 該磁気センサより得られる2つの信号をそれぞ
れ増幅して直流信号を出力する増幅器と、 上記磁気センサの複数の回転位置において上記
増幅器より得られる複数組の信号によつて描かれ
る円又は楕円軌跡と上記2方向の検出基準軸との
交点を求めて上記円又は楕円の中心位置を求め、
該中心位置が上記2つの検出基準軸の交点と一致
するよう上記補正磁界発生用コイルに誤差磁界補
正用の電流を供給する演算手段と、 それぞれ上記各増幅器の出力側に接続され、上
記磁気センサより得られる2つの信号を出力する
ための出力端子とを備えたことを特徴とする方角
計測装置。
[Scope of Claims] 1. A direction measuring device that outputs a signal for measuring the traveling direction of a moving body by compensating for the influence of the magnetic field of the moving body itself, which is attached to the moving body and is attached to the moving body. a detection unit that detects horizontal components of its own magnetism and geomagnetism, and outputs a signal corresponding to a component in the traveling direction of the moving body and a signal corresponding to a component in a direction perpendicular to the traveling direction, and this detection unit a magnetic sensor consisting of a pair of correction magnetic field generating coils wound perpendicularly around the sensor to apply a correction magnetic field to the detection section; and a magnetic sensor that amplifies two signals obtained from the magnetic sensor. An amplifier that outputs a DC signal, and the intersection of the detection reference axes in the two directions with the circular or elliptical locus drawn by a plurality of sets of signals obtained from the amplifier at a plurality of rotational positions of the magnetic sensor, and the Find the center position of the circle or ellipse,
computing means for supplying a current for error magnetic field correction to the correction magnetic field generation coil so that the center position coincides with the intersection of the two detection reference axes; 1. A direction measuring device comprising: an output terminal for outputting two signals obtained from the method.
JP243081A 1981-01-09 1981-01-09 Measuring device for direction Granted JPS57116211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP243081A JPS57116211A (en) 1981-01-09 1981-01-09 Measuring device for direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP243081A JPS57116211A (en) 1981-01-09 1981-01-09 Measuring device for direction

Publications (2)

Publication Number Publication Date
JPS57116211A JPS57116211A (en) 1982-07-20
JPS6244207B2 true JPS6244207B2 (en) 1987-09-18

Family

ID=11529039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP243081A Granted JPS57116211A (en) 1981-01-09 1981-01-09 Measuring device for direction

Country Status (1)

Country Link
JP (1) JPS57116211A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127807A (en) * 1981-02-02 1982-08-09 Toyota Motor Corp Method and device for correcting output for azimuth detector
JPS5824810A (en) * 1981-08-05 1983-02-14 Nippon Soken Inc Bearing detecting device
US4546551A (en) * 1983-03-24 1985-10-15 Prince Corporation Electrical control system
US4677381A (en) * 1984-10-19 1987-06-30 Prince Corporation Flux-gate sensor electrical drive method and circuit
US5010653A (en) * 1988-02-29 1991-04-30 Digicourse, Inc. Apparatus and method for determining azimuth, pitch and roll
US5105548A (en) * 1988-02-29 1992-04-21 Digicourse, Inc. Apparatus and method for determining azimuth, pitch and roll
US6301794B1 (en) 1999-05-27 2001-10-16 Johnson Controls, Inc. Vehicle compass system with continuous automatic calibration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116192A (en) * 1974-02-26 1975-09-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116192A (en) * 1974-02-26 1975-09-11

Also Published As

Publication number Publication date
JPS57116211A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
US4416067A (en) Correction method and device for a magnetic field probe
US3991361A (en) Semi-automatic compass calibrator apparatus for a vehicle mounted flux gate compass system to cancel out effect of local magnetic disturbances
EP0225493B1 (en) Magnetic compass calibration
US4497034A (en) Heading detecting apparatus
US6534969B1 (en) Offset-compensated angle measuring system
EP3855127B1 (en) Single channel magnetoresistance-based angle sensor
WO2006088057A1 (en) Bearing measuring instrument
US11193794B2 (en) Rotation angle sensor, angle signal calculation method and non-transitory computer readable medium
JPS62287115A (en) Output correcting device for azimuth detecting device
JPS6244207B2 (en)
US4116057A (en) Pendulous induction compass transmitter with means to compensate for heading errors in turns due to the vertical component of the Earth's magnetic field and due to two cycle error
JPS60135814A (en) Azimuth detecting apparatus
JPS6035851Y2 (en) Direction detection device
US5828984A (en) Data processing method for an electronic compass system
JP4004166B2 (en) Geomagnetic detector
JPH0319928B2 (en)
JPS6230569B2 (en)
JP2680168B2 (en) Azimuth error correction device
JPH0319929B2 (en)
JPS5824811A (en) Bearing detecting device
JPS6230570B2 (en)
JPH0319927B2 (en)
JP3318763B2 (en) Electronic compass
JP2573667B2 (en) Direction measurement device
RU1830493C (en) Way of determination of magnetic induction vector component